Racial, Ethnic and Age Disparities in Liver Fibrosis Screening Using Fibrosis Score Measures: A Critical Review of Diagnostic Equity in Liver Disease
Abstract
1. Introduction
2. Noninvasive Tools for MASLD Risk Assessment
2.1. Blood-Based Scoring Systems
- FIB-4 (Fibrosis-4 Index):
- <1.3: low risk for advanced fibrosis (≥F3).
- 1.3–2.67: indeterminate risk.
- >2.67: high risk for advanced fibrosis.
- NAFLD Fibrosis Score (NFS):
- APRI (AST to Platelet Ratio Index):
- BARD score:
- Other Noninvasive lab tests:
- Emerging Technologies—MicroRNAs and NIS4®/NIS2+™:
2.2. Imaging-Based Modalities
- Ultrasound and Shear Wave Elastography (SWE):
- Transient Elastography (FibroScan®):
- Quantitative Multiparametric Magnetic Resonance Elastography (MRE):
- Computed Tomography (CT):
2.3. Combined Modalities
- FAST (FibroScan-AST) Score:
- Agile 3+, Agile 4 score:
3. Disparities in Performance of Noninvasive Tests by Racial/Ethnic Group
3.1. Methods
3.2. Hispanic/Latino Populations
3.3. Black/African American Populations
3.4. Asian Populations
3.5. Other and Mixed Populations
4. Disparities in Performance of Noninvasive Tests by Age Group
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, W.K.; Chuah, K.H.; Rajaram, R.B.; Lim, L.L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- Feng, G.; Targher, G.; Byrne, C.D.; Yilmaz, Y.; Wai-Sun Wong, V.; Adithya Lesmana, C.R.; Adams, L.A.; Boursier, J.; Papatheodoridis, G.; El-Kassas, M.; et al. Global burden of metabolic dysfunction-associated steatotic liver disease, 2010 to 2021. JHEP Rep. 2025, 7, 101271. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Chen, H.; Wang, H.; Zhang, Y.; Li, L.; Lan, Y.; Ma, L. Global burden and risk factors of MASLD: Trends from 1990 to 2021 and predictions to 2030. Intern. Emerg. Med. 2025, 20, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.A.; Lazarus, J.V.; Fuentes-Lopez, E.; Idalsoaga, F.; Ayares, G.; Desaleng, H.; Danpanichkul, P.; Cotter, T.G.; Dunn, W.; Barrera, F.; et al. Disparities in steatosis prevalence in the United States by Race or Ethnicity according to the 2023 criteria. Commun. Med. 2024, 4, 219. [Google Scholar] [CrossRef]
- Ochoa-Allemant, P.; Marrero, J.A.; Serper, M. Racial and ethnic differences and the role of unfavorable social determinants of health across steatotic liver disease subtypes in the United States. Hepatol. Commun. 2023, 7, e0324. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Reinson, T.; Buchanan, R.M.; Byrne, C.D. Noninvasive serum biomarkers for liver fibrosis in NAFLD: Current and future. Clin. Mol. Hepatol. 2023, 29, S157–S170. [Google Scholar] [CrossRef]
- Chan, W.K.; Petta, S.; Noureddin, M.; Goh, G.B.B.; Wong, V.W. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment. Pharmacol. Ther. 2024, 59 (Suppl. 1), S23–S40. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Lin, H.; Lee, H.W.; Yip, T.C.; Tsochatzis, E.; Petta, S.; Bugianesi, E.; Yoneda, M.; Zheng, M.H.; Hagstrom, H.; Boursier, J.; et al. Vibration-Controlled Transient Elastography Scores to Predict Liver-Related Events in Steatotic Liver Disease. J. Am. Med. Assoc. 2024, 331, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Marella, H.K.; Reddy, Y.K.; Jiang, Y.; Ganguli, S.; Podila, P.S.B.; Snell, P.D.; Kovalic, A.J.; Cholankeril, G.; Singal, A.K.; Nair, S.; et al. Accuracy of Noninvasive Fibrosis Scoring Systems in African American and White Patients with Nonalcoholic Fatty Liver Disease. Clin. Transl. Gastroenterol. 2020, 11, e00165. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, A.D.; Zhang, J.; Durkalski-Mauldin, V.; Livingston, S.; Marsden, J.; Bian, J.; Mauldin, P.D.; Moran, W.P.; Rockey, D.C. Advanced liver fibrosis and the metabolic syndrome in a primary care setting. Diabetes Metab. Res. Rev. 2021, 37, e3452. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Seth, A.; Cortes-Santiago, N.; Jain, S.; Sood, G.K.; El-Serag, H.B.; Thrift, A.P. External Validation of Four Point-of-Care Noninvasive Scores for Predicting Advanced Hepatic Fibrosis in a Predominantly Hispanic NAFLD Population. Dig. Dis. Sci. 2021, 66, 2387–2393. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef]
- Kanwal, F.; Shubrook, J.H.; Adams, L.A.; Pfotenhauer, K.; Wai-Sun Wong, V.; Wright, E.; Abdelmalek, M.F.; Harrison, S.A.; Loomba, R.; Mantzoros, C.S.; et al. Clinical Care Pathway for the Risk Stratification and Management of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2021, 161, 1657–1669. [Google Scholar] [CrossRef]
- Caussy, C.; Verges, B.; Leleu, D.; Duvillard, L.; Subtil, F.; Abichou-Klich, A.; Hervieu, V.; Milot, L.; Segrestin, B.; Bin, S.; et al. Screening for Metabolic Dysfunction-Associated Steatotic Liver Disease-Related Advanced Fibrosis in Diabetology: A Prospective Multicenter Study. Diabetes Care 2025, 48, 877–886. [Google Scholar] [CrossRef]
- Oh, J.H.; Ahn, S.B.; Cho, S.; Nah, E.H.; Yoon, E.L.; Jun, D.W. Diagnostic performance of non-invasive tests in patients with MetALD in a health check-up cohort. J. Hepatol. 2024, 81, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, M.; Kim, H.L.; Cho, S.; Yoon, E.L.; Jun, D.W. Diagnostic performances of Fibrosis-4 index and nonalcoholic fatty liver disease fibrosis score in metabolic dysfunction-associated steatotic liver disease in Asian primary care clinics. Hepatol. Res. 2024, 54, 1027–1034. [Google Scholar] [CrossRef]
- Mozes, F.E.; Lee, J.A.; Selvaraj, E.A.; Jayaswal, A.N.A.; Trauner, M.; Boursier, J.; Fournier, C.; Staufer, K.; Stauber, R.E.; Bugianesi, E.; et al. Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: An individual patient data meta-analysis. Gut 2022, 71, 1006–1019. [Google Scholar]
- Wu, Y.L.; Kumar, R.; Wang, M.F.; Singh, M.; Huang, J.F.; Zhu, Y.Y.; Lin, S. Validation of conventional non-invasive fibrosis scoring systems in patients with metabolic associated fatty liver disease. World J. Gastroenterol. 2021, 27, 5753–5763. [Google Scholar] [CrossRef] [PubMed]
- Wattacheril, J.J.; Abdelmalek, M.F.; Lim, J.K.; Sanyal, A.J. AGA Clinical Practice Update on the Role of Noninvasive Biomarkers in the Evaluation and Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2023, 165, 1080–1088. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Castellana, M.; Donghia, R.; Guerra, V.; Procino, F.; Castellana, F.; Zupo, R.; Lampignano, L.; Sardone, R.; De Pergola, G.; Romanelli, F.; et al. Fibrosis-4 Index vs Nonalcoholic Fatty Liver Disease Fibrosis Score in Identifying Advanced Fibrosis in Subjects with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Am. J. Gastroenterol. 2021, 116, 1833–1841. [Google Scholar] [CrossRef]
- Sterling, R.K.; Duarte-Rojo, A.; Patel, K.; Asrani, S.K.; Alsawas, M.; Dranoff, J.A.; Fiel, M.I.; Murad, M.H.; Leung, D.H.; Levine, D.; et al. AASLD Practice Guideline on imaging-based noninvasive liver disease assessment of hepatic fibrosis and steatosis. Hepatology 2025, 81, 672–724. [Google Scholar]
- Polyzos, S.A.; Slavakis, A.; Koumerkeridis, G.; Katsinelos, P.; Kountouras, J. Noninvasive Liver Fibrosis Tests in Patients with Nonalcoholic Fatty Liver Disease: An External Validation Cohort. Horm. Metab. Res. 2019, 51, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Amernia, B.; Moosavy, S.H.; Banookh, F.; Zoghi, G. FIB-4, APRI, and AST/ALT ratio compared to FibroScan for the assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease in Bandar Abbas, Iran. BMC Gastroenterol. 2021, 21, 453. [Google Scholar]
- Jang, S.Y.; Yoon, K.T.; Cho, Y.Y.; Jo, H.G.; Baek, Y.H.; Moon, S.Y.; Jo, A.J.; Kweon, Y.O.; Park, S.Y.; Lee, Y.R.; et al. Aspartate aminotransferase-to-platelet ratio index outperforms Fibrosis-4 in 2843 Korean patients with metabolic dysfunction-associated steatotic liver disease. Hepatol. Res. 2025, 55, 479–491. [Google Scholar] [CrossRef]
- Younes, R.; Caviglia, G.P.; Govaere, O.; Rosso, C.; Armandi, A.; Sanavia, T.; Pennisi, G.; Liguori, A.; Francione, P.; Gallego-Duran, R.; et al. Long-term outcomes and predictive ability of non-invasive scoring systems in patients with non-alcoholic fatty liver disease. J. Hepatol. 2021, 75, 786–794. [Google Scholar] [CrossRef]
- Kjaergaard, M.; Lindvig, K.P.; Thorhauge, K.H.; Andersen, P.; Hansen, J.K.; Kastrup, N.; Jensen, J.M.; Hansen, C.D.; Johansen, S.; Israelsen, M.; et al. Using the ELF test, FIB-4 and NAFLD fibrosis score to screen the population for liver disease. J. Hepatol. 2023, 79, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Vali, Y.; Lee, J.; Boursier, J.; Spijker, R.; Loffler, J.; Verheij, J.; Brosnan, M.J.; Bocskei, Z.; Anstee, Q.M.; Bossuyt, P.M.; et al. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2020, 73, 252–262. [Google Scholar] [CrossRef]
- Ampuero, J.; Pais, R.; Aller, R.; Gallego-Duran, R.; Crespo, J.; Garcia-Monzon, C.; Boursier, J.; Vilar, E.; Petta, S.; Zheng, M.H.; et al. Development and Validation of Hepamet Fibrosis Scoring System-A Simple, Noninvasive Test to Identify Patients with Nonalcoholic Fatty Liver Disease with Advanced Fibrosis. Clin. Gastroenterol. Hepatol. 2020, 18, 216–225.e5. [Google Scholar] [CrossRef] [PubMed]
- Jampoka, K.; Muangpaisarn, P.; Khongnomnan, K.; Treeprasertsuk, S.; Tangkijvanich, P.; Payungporn, S. Serum miR-29a and miR-122 as Potential Biomarkers for Non-Alcoholic Fatty Liver Disease (NAFLD). Microrna 2018, 7, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Al, A.; El-Ahwany, E.; Zoheiry, M.; Hassan, M.; Ouf, A.; Abu-Taleb, H.; Abdel Rahim, A.; El-Talkawy, M.D.; Zada, S. miRNA-221 and miRNA-222 are promising biomarkers for progression of liver fibrosis in HCV Egyptian patients. Virus Res. 2018, 253, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Harrison, S.A.; Hajji, Y.; Magnanensi, J.; Petit, S.; Majd, Z.; Delecroix, E.; Rosenquist, C.; Hum, D.; Staels, B.; et al. NIS2+(TM) as a screening tool to optimize patient selection in metabolic dysfunction-associated steatohepatitis clinical trials. J. Hepatol. 2024, 80, 209–219. [Google Scholar] [CrossRef]
- Harrison, S.A.; Ratziu, V.; Magnanensi, J.; Hajji, Y.; Deledicque, S.; Majd, Z.; Rosenquist, C.; Hum, D.W.; Staels, B.; Anstee, Q.M.; et al. NIS2+, an optimisation of the blood-based biomarker NIS4(R) technology for the detection of at-risk NASH: A prospective derivation and validation study. J. Hepatol. 2023, 79, 758–767. [Google Scholar] [CrossRef]
- Naranbat, D.; Herdes, E.; Tapinos, N.; Tripathi, A. Review of microRNA detection workflows from liquid biopsy for disease diagnostics. Expert. Rev. Mol. Med. 2025, 27, e11. [Google Scholar] [CrossRef]
- Harrison, S.A.; Ratziu, V.; Boursier, J.; Francque, S.; Bedossa, P.; Majd, Z.; Cordonnier, G.; Sudrik, F.B.; Darteil, R.; Liebe, R.; et al. A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 2020, 5, 970–985. [Google Scholar] [CrossRef]
- Selvaraj, E.A.; Mozes, F.E.; Jayaswal, A.N.A.; Zafarmand, M.H.; Vali, Y.; Lee, J.A.; Levick, C.K.; Young, L.A.J.; Palaniyappan, N.; Liu, C.H.; et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2021, 75, 770–785. [Google Scholar] [CrossRef]
- Cassinotto, C.; Boursier, J.; Paisant, A.; Guiu, B.; Irles-Depe, M.; Canivet, C.; Aube, C.; de Ledinghen, V. Transient Versus Two-Dimensional Shear-Wave Elastography in a Multistep Strategy to Detect Advanced Fibrosis in NAFLD. Hepatology 2021, 73, 2196–2205. [Google Scholar] [CrossRef]
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020, 2, 100067. [Google Scholar] [CrossRef]
- Ravaioli, F.; Dajti, E.; Mantovani, A.; Newsome, P.N.; Targher, G.; Colecchia, A. Diagnostic accuracy of FibroScan-AST (FAST) score for the non-invasive identification of patients with fibrotic non-alcoholic steatohepatitis: A systematic review and meta-analysis. Gut 2023, 72, 1399–1409. [Google Scholar]
- Newsome, P.N.; Sasso, M.; Deeks, J.J.; Paredes, A.; Boursier, J.; Chan, W.K.; Yilmaz, Y.; Czernichow, S.; Zheng, M.H.; Wong, V.W.; et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 2020, 5, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Foucquier, J.; Younossi, Z.M.; Harrison, S.A.; Newsome, P.N.; Chan, W.K.; Yilmaz, Y.; De Ledinghen, V.; Costentin, C.; Zheng, M.H.; et al. Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores. J. Hepatol. 2023, 78, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Taru, M.G.; Tefas, C.; Neamti, L.; Minciuna, I.; Taru, V.; Maniu, A.; Rusu, I.; Petrushev, B.; Procopciuc, L.M.; Leucuta, D.C.; et al. FAST and Agile-the MASLD drift: Validation of Agile 3+, Agile 4 and FAST scores in 246 biopsy-proven NAFLD patients meeting MASLD criteria of prevalent caucasian origin. PLoS ONE 2024, 19, e0303971. [Google Scholar] [CrossRef]
- Papatheodoridi, M.; De Ledinghen, V.; Lupsor-Platon, M.; Bronte, F.; Boursier, J.; Elshaarawy, O.; Marra, F.; Thiele, M.; Markakis, G.; Payance, A.; et al. Agile scores in MASLD and ALD: External validation and their utility in clinical algorithms. J. Hepatol. 2024, 81, 590–599. [Google Scholar] [CrossRef]
- Noureddin, M.; Mena, E.; Vuppalanchi, R.; Samala, N.; Wong, M.; Pacheco, F.; Polanco, P.; Sakkal, C.; Antaramian, A.; Chang, D.; et al. Increased accuracy in identifying NAFLD with advanced fibrosis and cirrhosis: Independent validation of the Agile 3+ and 4 scores. Hepatol. Commun. 2023, 7, e0055. [Google Scholar] [CrossRef]
- Bril, F.; Gray, M. Noninvasive tests to identify liver fibrosis in metabolic dysfunction-associated steatotic liver disease are affected by race. Obesity 2024, 32, 612–622. [Google Scholar] [CrossRef]
- Singh, J.; Ibrahim, B.; Jackson, N.J.; Khalil, H.; Valenzuela, J.; Yanny, B.; Saab, S. Lower FIB-4 threshold in patients with diabetes improves diagnostic accuracy of the test in a Hispanic population. Transl. Gastroenterol. Hepatol. 2024, 9, 16. [Google Scholar] [CrossRef]
- Kallwitz, E.R.; Daviglus, M.L.; Allison, M.A.; Emory, K.T.; Zhao, L.; Kuniholm, M.H.; Chen, J.; Gouskova, N.; Pirzada, A.; Talavera, G.A.; et al. Prevalence of suspected nonalcoholic fatty liver disease in Hispanic/Latino individuals differs by heritage. Clin. Gastroenterol. Hepatol. 2015, 13, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Tincopa, M.A.; Diaz, L.A.; Huang, D.Q.; Arab, J.P.; Arrese, M.; Gadano, A.; Oliveira, C.P.; Bettencourt, R.; Madamba, E.; Kim, S.; et al. Disparities in screening and risk stratification for Hispanic adults with metabolic dysfunction-associated steatotic liver disease. Hepatology 2025, 81, 1792–1804. [Google Scholar] [CrossRef]
- Cathy Xu, L.; Rangel-Garcia, M.; Pinon-Gutierrez, R.; Fine, J.R.; Medici, V.; Molfino, A. Liver fibrosis prediction models in a population of Latina and White women. J. Investig. Med. 2024, 72, 697–704. [Google Scholar] [CrossRef]
- Wang, T.; Sylla, M.; Jirapinyo, P.; Ryou, M. FIB-4 is more accurate than FibroScan in predicting advanced fibrosis at higher stages of body mass index. Gastroenterology 2023, 164, 1246. [Google Scholar] [CrossRef]
- Rich, N.E.; Oji, S.; Mufti, A.R.; Browning, J.D.; Parikh, N.D.; Odewole, M.; Mayo, H.; Singal, A.G. Racial and Ethnic Disparities in Nonalcoholic Fatty Liver Disease Prevalence, Severity, and Outcomes in the United States: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 198–210.e2. [Google Scholar] [CrossRef]
- Akpoigbe, K.; Bath, K.; Genao, A.; Culpepper-Morgan, J. Performance of Non-invasive Biomarkers of Liver Fibrosis Amongst Hispanics and African Americans. Cureus 2023, 15, e35032. [Google Scholar] [CrossRef]
- Kim, R.G.; Chu, J.N.; Vittinghoff, E.; Deng, J.; Reaso, J.N.; Grenert, J.P.; Khalili, M. Racial/ethnic differences in fibrosis prevalence and progression in biopsy-proven steatosis: A focus on the Asian American population. Hepatol. Commun. 2022, 6, 3024–3035. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Brancati, F.L.; Yeh, H.C. Trends in the prevalence of type 2 diabetes in Asians versus whites: Results from the United States National Health Interview Survey, 1997–2008. Diabetes Care 2011, 34, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Becerra, M.B.; Becerra, B.J. Disparities in Age at Diabetes Diagnosis Among Asian Americans: Implications for Early Preventive Measures. Prev. Chronic Dis. 2015, 12, E146. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Tak, W.Y.; Goh, G.B.B.; Cheng, P.N.; Lawitz, E.J.; Younossi, Z.M.; Vuppalanchi, R.; Younes, Z.; Alkhouri, N.; Wang, L.; et al. Performance of Noninvasive Tests of Fibrosis Among Asians, Hispanic, and non-Hispanic Whites in the STELLAR Trials. Clin. Gastroenterol. Hepatol. 2023, 21, 90–102.e6. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.C.; Zhang, G.X.; Cheng, Z.; Du, X. Evaluation of Six Noninvasive Methods for the Detection of Fibrosis in Chinese Patients with Obesity and Nonalcoholic Fatty Liver Disease. Obes. Surg. 2022, 32, 3619–3626. [Google Scholar] [CrossRef]
- Sumida, Y.; Yoneda, M.; Hyogo, H.; Itoh, Y.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Aoki, N.; Kanemasa, K.; et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012, 12, 2. [Google Scholar] [CrossRef]
- Cheung, J.T.K.; Zhang, X.; Wong, G.L.; Yip, T.C.; Lin, H.; Li, G.; Leung, H.H.; Lai, J.C.; Mahadeva, S.; Nik Mustapha, N.R.; et al. MAFLD fibrosis score: Using routine measures to identify advanced fibrosis in metabolic-associated fatty liver disease. Aliment. Pharmacol. Ther. 2023, 58, 1194–1204. [Google Scholar] [CrossRef]
- van Dijk, A.M.; Vali, Y.; Mak, A.L.; Galenkamp, H.; Nieuwdorp, M.; van den Born, B.J.; Holleboom, A.G. Noninvasive tests for nonalcoholic fatty liver disease in a multi-ethnic population: The HELIUS study. Hepatol. Commun. 2023, 7, e2109. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Dsouza, S.; Khamis, A.H.; Abdul, F.; Farooqi, M.H.; Sulaiman, F.; Mulla, F.; Al Awadi, F.; Hassanein, M.; Bayoumi, R. Noninvasive Assessment of the Severity of Liver Fibrosis in MASLD Patients with Long-Standing Type 2 Diabetes. J. Gen. Intern. Med. 2025, 40, 2309–2318. [Google Scholar] [CrossRef]
- Ishiba, H.; Sumida, Y.; Tanaka, S.; Yoneda, M.; Hyogo, H.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Yoneda, M.; et al. The novel cutoff points for the FIB4 index categorized by age increase the diagnostic accuracy in NAFLD: A multi-center study. J. Gastroenterol. 2018, 53, 1216–1224. [Google Scholar] [CrossRef]
- Pitisuttithum, P.; Chan, W.K.; Piyachaturawat, P.; Imajo, K.; Nakajima, A.; Seki, Y.; Kasama, K.; Kakizaki, S.; Fan, J.G.; Song, M.J.; et al. Predictors of advanced fibrosis in elderly patients with biopsy-confirmed nonalcoholic fatty liver disease: The GOASIA study. BMC Gastroenterol. 2020, 20, 88. [Google Scholar] [CrossRef]
- Sung, S.; Al-Karaghouli, M.; Tam, M.; Wong, Y.J.; Jayakumar, S.; Davyduke, T.; Ma, M.; Abraldes, J.G. Age-dependent differences in FIB-4 predictions of fibrosis in patients with MASLD referred from primary care. Hepatol. Commun. 2025, 9, e0609. [Google Scholar] [CrossRef]
- Ma, C.; Goldberg, D.S. Impact of the Underutilization of Vibration-Controlled Transient Elastography in MASLD Patients Without Insurance Coverage. Dig. Dis. Sci. 2025, 70, 2007–2015. [Google Scholar] [CrossRef]
- Abboud, Y.; Shah, V.P.; Bebawy, M.; Al-Khazraji, A.; Hajifathalian, K.; Gaglio, P.J. Mapping the Hidden Terrain of Hepatocellular Carcinoma: Exploring Regional Differences in Incidence and Mortality across Two Decades by Using the Largest US Datasets. J. Clin. Med. 2024, 13, 5256. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver; European Association for the Study of Diabetes; European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD): Executive Summary. Diabetologia 2024, 67, 2375–2392. [Google Scholar] [CrossRef] [PubMed]
Test | Components | Strengths | Limitations | Performance |
---|---|---|---|---|
FIB-4 | Age, AST, ALT, Platelet count | High NPV, high accuracy when using standard cutoffs | Reduced accuracy in patients under 35 or over 65, lower sensitivity for moderate fibrosis | Using standard cutoffs (<1.3 low risk, >2.67 high risk), sensitivity ~66–71%, specificity ~77–86% |
NAFLD Fibrosis Score (NFS) | Age, BMI, Diabetes, AST/ALT ratio, Platelet count, Albumin | High NPV, incorporates metabolic risk factors | Complex formula, low specificity in patients over 65 | AUROC values typically range from 0.72 to 0.82 |
APRI | AST, Platelet count | Useful in resource-limited/primary care settings due to its simplicity | Less accurate than FIB-4 and NFS, not recommended as a first-line tool | AUROC value 0.80 for predicting significant fibrosis |
BARD Score | BMI ≥ 28, AST/ALT ratio ≥ 0.8, Diabetes | Helpful in excluding advanced fibrosis | Low accuracy for detecting advanced fibrosis when compared to other noninvasive scores. | AUROC value of 0.609 for detecting advanced fibrosis |
VCTE | Liver stiffness determined via ultrasound | Superior diagnostic accuracy when compared to other ultrasound and blood-based scores, CAP adds measurement of steatosis | Less accurate than MRE, accuracy of assessment can be affected by obesity, presence of ascites or inflammation and operator expertise | AUROC value of 0.77–0.89 depending on degree of fibrosis. |
Shear Wave Elastography (SWE) | Liver stiffness determined via ultrasound | Highly accessible, rapid results, can be performed during standard ultrasound exam, able to detect steatosis | Limited accuracy of assessment of fibrosis, can be affected by obesity and operator expertise, less standardization across radiologic platforms when compared to VCTE or MRE | AUROC for advanced fibrosis between 0.85 and 0.89 |
Magnetic Resonance Elastography (MRE) | Liver stiffness determined via MRI | Highest diagnostic accuracy among imaging modalities | Limited availability, high cost | AUROC 0.95–0.96 for advanced fibrosis |
CT | Liver attenuation measured in Hounsfield units | Limited role in the assessment of liver fibrosis and MASLD but can be used in combination with laboratory assessments for tumor markers to screen for HCC | Less sensitive than ultrasound for assessing steatosis and exposes patients to ionizing radiation, high cost | Role is limited in assessment of fibrosis and is not recommended for screening |
FAST | LSM (VCTE) + CAP + AST | Outperforms FIB-4 and APRI for identifying high-risk steatohepatitis with significant fibrosis | Low PPV, requires access to transient elastography | AUROC value of ~0.82 for identifying high-risk steatohepatitis with significant fibrosis |
AGILE ¾ | LSM (VCTE) + AST/ALT ratio, platelet count, sex, diabetes, age | Outperforms FIB-4 and LSM alone, reduces indeterminate results | Developed in Caucasian cohorts and not yet widely validated in diverse populations | AUROC value for AGILE 3 predicting advanced fibrosis 0.85–0.91 and for AGILE predicting cirrhosis 0.93–0.97 |
Fib-4 | NFS | APRI | Imaging (VCTE) | Key Observations | Recommended Adjustments | |
---|---|---|---|---|---|---|
Caucasian | Well-established performance, moderate sensitivity; moderate specificity | Generally effective with high accuracy | Moderate utility; less accurate than FIB-4 and NFS | Widely used with strong diagnostic capabilities; gold standard in clinical use | Well-established performance but limitations exist in age-based scores | Current thresholds appropriate for most; ensure use of age-adjusted NFS and FIB-4 cutoffs in older adults |
Hispanic | Moderate ability; high false-negative rates in advanced fibrosis | Variable, especially in age and fibrosis stage; lower accuracy at advanced stages | Moderate ability; less accurate compared to FIB-4 and NFS | Reduced accuracy in Hispanic patients | Inconsistencies in accuracy due to metabolic and genetic factors; NITs require tailored thresholds for Hispanics | Consider heritage-specific validation (e.g., Mexican vs. Caribbean ancestry); incorporate metabolic risk factors (diabetes; obesity) into stratification. |
African American | Lower accuracy in detecting advanced fibrosis; high false negatives | Elevated due to higher metabolic risk factors; performs better in early stages | Moderate utility | Continued investigation is necessary to clarify these findings. | Underdiagnosis due to lower sensitivity; requires race-specific calibration for better diagnostic accuracy | Adjust thresholds downward given lower LFTs; use NITs primarily for rule-out (high NPV); explore novel biomarkers beyond aminotransferase-based scoring |
Asian | High sensitivity and specificity in advanced fibrosis; especially in non-Hispanic Asians | Moderate accuracy; useful but with regional variations (e.g., in Chinese patients) | Performance varies by region | Continued investigation is necessary to clarify these findings. | Higher risk for fibrosis but NITs perform well; however, regional differences should be considered | Apply region-specific approaches: FIB-4 reliable in Japanese; APRI/SWE superior in Chinese cohorts; consider earlier screening thresholds due to younger age/lower BMI diabetes onset; use modified scores incorporating metabolic markers (e.g., INR, GGT, diabetes status) |
Topic | Observations |
---|---|
Noninvasive Tests (NITs) | NITs like FIB-4, NFS, and APRI are widely used for risk stratification, but have limitations in certain populations. |
Racial and Ethnic Disparities | Significant differences in NIT accuracy across racial/ethnic groups; underdiagnosis in African Americans, overdiagnosis in Hispanics. |
Age-Specific Considerations | Age impacts the accuracy of NITs; older adults (>65) have higher false-positive rates. Age-adjusted thresholds may improve accuracy. |
Imaging Modalities (VCTE, MRE) | Imaging modalities like VCTE and MRE show better accuracy than serum-based tests, but still have limitations based on ethnicity and obesity. |
Bias and Calibration | NITs may require race-specific calibration or updated cutoffs to improve diagnostic accuracy and reduce biases in underrepresented populations. |
Social and Structural Barriers | Social factors like limited healthcare access and language barriers impact diagnosis and management, particularly in underserved populations. |
Emerging Therapies and NITs | New therapies for MASLD require equitable NITs for access and treatment, highlighting the need for reliable, inclusive screening tools. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsian, E.; Bebawy, M.; Israeli, Z.; Mohsen, M.; Karkra, R.; Rella, S.; Shankman, R.; Gaglio, P. Racial, Ethnic and Age Disparities in Liver Fibrosis Screening Using Fibrosis Score Measures: A Critical Review of Diagnostic Equity in Liver Disease. Livers 2025, 5, 51. https://doi.org/10.3390/livers5040051
Shamsian E, Bebawy M, Israeli Z, Mohsen M, Karkra R, Rella S, Shankman R, Gaglio P. Racial, Ethnic and Age Disparities in Liver Fibrosis Screening Using Fibrosis Score Measures: A Critical Review of Diagnostic Equity in Liver Disease. Livers. 2025; 5(4):51. https://doi.org/10.3390/livers5040051
Chicago/Turabian StyleShamsian, Ethan, Michael Bebawy, Zachary Israeli, Mahinaz Mohsen, Rohan Karkra, Steven Rella, Raphael Shankman, and Paul Gaglio. 2025. "Racial, Ethnic and Age Disparities in Liver Fibrosis Screening Using Fibrosis Score Measures: A Critical Review of Diagnostic Equity in Liver Disease" Livers 5, no. 4: 51. https://doi.org/10.3390/livers5040051
APA StyleShamsian, E., Bebawy, M., Israeli, Z., Mohsen, M., Karkra, R., Rella, S., Shankman, R., & Gaglio, P. (2025). Racial, Ethnic and Age Disparities in Liver Fibrosis Screening Using Fibrosis Score Measures: A Critical Review of Diagnostic Equity in Liver Disease. Livers, 5(4), 51. https://doi.org/10.3390/livers5040051