Systemic Oxidative Stress Correlates with Sarcopenia and Pruritus Severity in Primary Biliary Cholangitis (PBC): Two Independent Relationships Simultaneously Impacting the Quality of Life—Is the Low Absorption of Cholestasis-Promoted Vitamin D a Puzzle Piece?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Patients
2.3. Controlled Regimen for Diet, Nutritional, and Lifestyle-Related Assessments
2.4. Biochemical Assessments
2.5. Body Composition and Sarcopenia Assessment
2.6. Systemic Oxidative Stress Assessment
2.7. Liver Stiffness Measurement Assessment
2.8. Evaluation of Pruritus and QoL in PBC Patients
2.9. Statistical Analysis
3. Results
3.1. Characteristics and Liver Disease Progression Status (DPS) of the Study Population
3.1.1. Anthropometric, Demographic, and Clinical Features of the Study Population
3.1.2. Liver Disease Progression Status (DPS) of the Study Population
3.2. Nutritional Assessment: Evaluation of Dietary Habits, Physical Exercise, and Body Composition
3.3. Systemic Oxidative Stress and Liver DPS in PBC vs. Other CLDs
3.4. Sarcopenia and Liver DPS in PBC vs. Other CLDs
3.5. Sarcopenia and Systemic Oxidative Stress in PBC vs. Other CLDs
3.6. SOS, Sarcopenia, and Pruritus Global Impact on QoL in a PBC Setting: A Matter of Cholestasis
3.7. Vitamin D Level Assessment and Relative Relationship with SOS and MQ in PBC vs. Other CLDs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tanaka, A.; Ma, X.; Takahashi, A.; Vierling, J.M. Primary Biliary Cholangitis. Lancet 2024, 404, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Ma, J.; Zhao, C.; Tai, W. Reasons Why Women Are More Likely to Develop Primary Biliary Cholangitis. Heliyon 2024, 10, e25634. [Google Scholar] [CrossRef] [PubMed]
- Tsuneyama, K.; Baba, H.; Morimoto, Y.; Tsunematsu, T.; Ogawa, H. Primary Biliary Cholangitis: Its Pathological Characteristics and Immunopathological Mechanisms. J. Med. Investig. 2017, 64, 7–13. [Google Scholar] [CrossRef]
- Sorrentino, P.; Terracciano, L.; D’Angelo, S.; Ferbo, U.; Bracigliano, A.; Tarantino, L.; Perrella, A.; Perrella, O.; De Chiara, G.; Panico, L.; et al. Oxidative Stress and Steatosis Are Cofactors of Liver Injury in Primary Biliary Cirrhosis. J. Gastroenterol. 2010, 45, 1053–1062. [Google Scholar] [CrossRef]
- Dallio, M.; Romeo, M.; Cipullo, M.; Ventriglia, L.; Scognamiglio, F.; Vaia, P.; Iadanza, G.; Coppola, A.; Federico, A. Systemic Oxidative Balance Reflects the Liver Disease Progression Status for Primary Biliary Cholangitis (Pbc): The Narcissus Fountain. Antioxidants 2024, 13, 387. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, D.J. What Is Oxidative Stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Sullivan-Gunn, M.J.; Lewandowski, P.A. Elevated Hydrogen Peroxide and Decreased Catalase and Glutathione Peroxidase Protection Are Associated with Aging Sarcopenia. BMC Geriatr. 2013, 13, 104. [Google Scholar] [CrossRef]
- Ryan, M.J.; Jackson, J.R.; Hao, Y.; Leonard, S.S.; Alway, S.E. Inhibition of Xanthine Oxidase Reduces Oxidative Stress and Improves Skeletal Muscle Function in Response to Electrically Stimulated Isometric Contractions in Aged Mice. Free Radic. Biol. Med. 2011, 51, 38–52. [Google Scholar] [CrossRef]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.-C.; et al. Sarcopenia in Daily Practice: Assessment and Management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef]
- Kamijo, Y.; Kanda, E.; Ishibashi, Y.; Yoshida, M. Sarcopenia and Frailty in PD: Impact on Mortality, Malnutrition, and Inflammation. Perit. Dial. Int. 2018, 38, 447–454. [Google Scholar] [CrossRef]
- Chargi, N.; Bril, S.I.; Emmelot-Vonk, M.H.; de Bree, R. Sarcopenia Is a Prognostic Factor for Overall Survival in Elderly Patients with Head-and-Neck Cancer. Eur. Arch. Otorhinolaryngol. 2019, 276, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Konishi, M.; Kagiyama, N.; Kamiya, K.; Saito, H.; Saito, K.; Ogasahara, Y.; Maekawa, E.; Misumi, T.; Kitai, T.; Iwata, K.; et al. Impact of Sarcopenia on Prognosis in Patients with Heart Failure with Reduced and Preserved Ejection Fraction. Eur. J. Prev. Cardiol. 2021, 28, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Bunchorntavakul, C. Sarcopenia and Frailty in Cirrhosis: Assessment and Management. Med. Clin. N. Am. 2023, 107, 589–604. [Google Scholar] [CrossRef]
- Buchard, B.; Boirie, Y.; Cassagnes, L.; Lamblin, G.; Coilly, A.; Abergel, A. Assessment of Malnutrition, Sarcopenia and Frailty in Patients with Cirrhosis: Which Tools Should We Use in Clinical Practice? Nutrients 2020, 12, 186. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, S.; Fan, Q.; Wen, D.; Liu, Y.; Wang, K.; Yang, H.; Guo, C.; Zhou, X.; Guo, G.; et al. Prevalence and Effect on Prognosis of Sarcopenia in Patients with Primary Biliary Cholangitis. Front. Med. 2024, 11, 1346165. [Google Scholar] [CrossRef]
- Jorgensen, R.A.; Lindor, K.D.; Sartin, J.S.; LaRusso, N.F.; Wiesner, R.H. Serum Lipid and Fat-Soluble Vitamin Levels in Primary Sclerosing Cholangitis. J. Clin. Gastroenterol. 1995, 20, 215–219. [Google Scholar] [CrossRef]
- Sokol, R.J.; Kim, Y.S.; Hoofnagle, J.H.; Heubi, J.E.; Jones, E.A.; Balistreri, W.F. Intestinal Malabsorption of Vitamin E in Primary Biliary Cirrhosis. Gastroenterology 1989, 96, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Freund, C.; Gotthardt, D.N. Vitamin A Deficiency in Chronic Cholestatic Liver Disease: Is Vitamin A Therapy Beneficial? Liver Int. 2017, 37, 1752–1758. [Google Scholar] [CrossRef]
- Levy, C.; Lindor, K.D. Management of Osteoporosis, Fat-Soluble Vitamin Deficiencies, and Hyperlipidemia in Primary Biliary Cirrhosis. Clin. Liver Dis. 2003, 7, 901–910. [Google Scholar] [CrossRef]
- Ebadi, M.; Ip, S.; Lytvyak, E.; Asghari, S.; Rider, E.; Mason, A.; Montano-Loza, A.J. Vitamin D Is Associated with Clinical Outcomes in Patients with Primary Biliary Cholangitis. Nutrients 2022, 14, 878. [Google Scholar] [CrossRef]
- Saeki, C.; Oikawa, T.; Kanai, T.; Nakano, M.; Torisu, Y.; Sasaki, N.; Abo, M.; Saruta, M.; Tsubota, A. Relationship between Osteoporosis, Sarcopenia, Vertebral Fracture, and Osteosarcopenia in Patients with Primary Biliary Cholangitis. Eur. J. Gastroenterol. Hepatol. 2021, 33, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Kopilov, R.; Selmi, C.; Nussinovitch, U.; Sánchez-Castañón, M.; López-Hoyos, M.; Amital, H.; Kivity, S.; Gershwin, E.M.; Shoenfeld, Y. Vitamin D in Primary Biliary Cirrhosis, a Plausible Marker of Advanced Disease. Immunol. Res. 2015, 61, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ali, A.; Khan, S.; Bakillah, A.; Damanhouri, G.; Khan, A.; Makki, A.; AlAnsari, I.; Banu, N. Current Therapies in Alleviating Liver Disorders and Cancers with a Special Focus on the Potential of Vitamin D. Nutr. Metab. 2018, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, H. Vitamin D Is a Membrane Antioxidant. Ability to Inhibit Iron-Dependent Lipid Peroxidation in Liposomes Compared to Cholesterol, Ergosterol and Tamoxifen and Relevance to Anticancer Action. FEBS Lett. 1993, 326, 285–288. [Google Scholar] [CrossRef]
- Gil, Á.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.; Simmons, Z.; Norris, K.C.; Ferrini, M.G.; Artaza, J.N. Vitamin D Induces Myogenic Differentiation in Skeletal Muscle Derived Stem Cells. Endocr. Connect. 2017, 6, 139–150. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, C.; Wang, P.; Sui, J.; Wang, Y.; Sun, G.; Liu, M. Serum Vitamin D Level Is Related to Disease Progression in Primary Biliary Cholangitis. Scand. J. Gastroenterol. 2020, 55, 1333–1340. [Google Scholar] [CrossRef]
- Kremer, A.E.; Namer, B.; Bolier, R.; Fischer, M.J.; Oude Elferink, R.P.; Beuers, U. Pathogenesis and Management of Pruritus in PBC and PSC. Dig. Dis. 2015, 33 (Suppl. S2), 164–175. [Google Scholar] [CrossRef]
- Mayo, M.J.; Carey, E.; Smith, H.T.; Mospan, A.R.; McLaughlin, M.; Thompson, A.; Morris, H.L.; Sandefur, R.; Kim, W.R.; Bowlus, C.; et al. Impact of Pruritus on Quality of Life and Current Treatment Patterns in Patients with Primary Biliary Cholangitis. Dig. Dis. Sci. 2023, 68, 995–1005. [Google Scholar] [CrossRef]
- Marenco-Flores, A.; Sierra, L.; Goyes, D.; Kahan, T.; Patwardhan, V.R.; Bonder, A. Managing Pruritus in Chronic Liver Disease: An in-Depth Narrative Review. Clin. Liver Dis. 2024, 23, e0187. [Google Scholar] [CrossRef]
- Zhou, F.-M.; Cheng, R.-X.; Wang, S.; Huang, Y.; Gao, Y.-J.; Zhou, Y.; Liu, T.-T.; Wang, X.-L.; Chen, L.-H.; Liu, T. Antioxidants Attenuate Acute and Chronic Itch: Peripheral and Central Mechanisms of Oxidative Stress in Pruritus. Neurosci. Bull. 2017, 33, 423–435. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: The Diagnosis and Management of Patients with Primary Biliary Cholangitis. J. Hepatol. 2017, 67, 145–172. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver; Clinical Practice Guidelines Panel: Chair; EASL Governing Board representative: Panel members; EASL Recommendations on Treatment of Hepatitis C: Final Update of the Series☆. J. Hepatol. 2020, 73, 1170–1218. [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Jacoby, A.; Rannard, A.; Buck, D.; Bhala, N.; Newton, J.L.; James, O.F.W.; Jones, D.E.J. Development, Validation, and Evaluation of the PBC-40, a Disease Specific Health Related Quality of Life Measure for Primary Biliary Cirrhosis. Gut 2005, 54, 1622–1629. [Google Scholar] [CrossRef]
- Boursier, J.; Zarski, J.-P.; de Ledinghen, V.; Rousselet, M.-C.; Sturm, N.; Lebail, B.; Fouchard-Hubert, I.; Gallois, Y.; Oberti, F.; Bertrais, S.; et al. Determination of Reliability Criteria for Liver Stiffness Evaluation by Transient Elastography. Hepatology 2013, 57, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Beaugrand, M.; de Ledinghen, V.; Douvin, C.; Marcellin, P.; Poupon, R.; Sandrin, L.; Miette, V. Controlled Attenuation Parameter (CAP): A Novel VCTETM Guided Ultrasonic Attenuation Measurement for the Evaluation of Hepatic Steatosis: Preliminary Study and Validation in a Cohort of Patients with Chronic Liver Disease from Various Causes. Ultrasound Med. Biol. 2010, 36, 1825–1835. [Google Scholar] [CrossRef]
- de Franchis, R.; Bosch, J.; Garcia-Tsao, G.; Reiberger, T.; Ripoll, C.; Baveno VII Faculty. Baveno VII—Renewing Consensus in Portal Hypertension. J. Hepatol. 2022, 76, 959–974. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Yoshida, D.; Shimada, H.; Park, H.; Anan, Y.; Ito, T.; Harada, A.; Suzuki, T. Development of an Equation for Estimating Appendicular Skeletal Muscle Mass in Japanese Older Adults Using Bioelectrical Impedance Analysis. Geriatr. Gerontol. Int. 2014, 14, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Kajaia, T.; Maskhulia, L.; Chelidze, K.; Akhalkatsi, V.; Mchedlidze, T. Implication of relationship between oxidative stress and antioxidant status in blood serum. Georgian Med. News 2018, 284, 71–76. [Google Scholar]
- Ferraioli, G.; Barr, R.G.; Berzigotti, A.; Sporea, I.; Wong, V.W.-S.; Reiberger, T.; Karlas, T.; Thiele, M.; Cardoso, A.C.; Ayonrinde, O.T.; et al. WFUMB Guideline/Guidance on Liver Multiparametric Ultrasound: Part 1. Update to 2018 Guidelines on Liver Ultrasound Elastography. Ultrasound Med. Biol. 2024, 50, 1071–1087. [Google Scholar] [CrossRef]
- Corpechot, C.; El Naggar, A.; Poujol-Robert, A.; Ziol, M.; Wendum, D.; Chazouillères, O.; de Lédinghen, V.; Dhumeaux, D.; Marcellin, P.; Beaugrand, M.; et al. Assessment of Biliary Fibrosis by Transient Elastography in Patients with PBC and PSC. Hepatology 2006, 43, 1118–1124. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Marcellin, P.; Ziol, M.; Bedossa, P.; Douvin, C.; Poupon, R.; de Lédinghen, V.; Beaugrand, M. Non-Invasive Assessment of Liver Fibrosis by Stiffness Measurement in Patients with Chronic Hepatitis B. Liver Int. 2009, 29, 242–247. [Google Scholar] [CrossRef]
- Ziol, M.; Handra-Luca, A.; Kettaneh, A.; Christidis, C.; Mal, F.; Kazemi, F.; de Lédinghen, V.; Marcellin, P.; Dhumeaux, D.; Trinchet, J.-C.; et al. Noninvasive Assessment of Liver Fibrosis by Measurement of Stiffness in Patients with Chronic Hepatitis C. Hepatology 2005, 41, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Damiano, S.; Muscariello, E.; La Rosa, G.; Di Maro, M.; Mondola, P.; Santillo, M. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? Int. J. Mol. Sci. 2019, 20, 3815. [Google Scholar] [CrossRef]
- Westerblad, H.; Allen, D.G. Emerging Roles of ROS/RNS in Muscle Function and Fatigue. Antioxid. Redox Signal. 2011, 15, 2487–2499. [Google Scholar] [CrossRef]
- Tantai, X.; Liu, Y.; Yeo, Y.H.; Praktiknjo, M.; Mauro, E.; Hamaguchi, Y.; Engelmann, C.; Zhang, P.; Jeong, J.Y.; van Vugt, J.L.A.; et al. Effect of Sarcopenia on Survival in Patients with Cirrhosis: A Meta-Analysis. J. Hepatol. 2022, 76, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhou, H.; Wei, J.; Mo, W.; Li, Q.; Lv, X. The Signaling Pathways and Therapeutic Potential of Itaconate to Alleviate Inflammation and Oxidative Stress in Inflammatory Diseases. Redox Biol. 2022, 58, 102553. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C. From Oxidative Stress to Inflammation: Redox Balance and Immune System. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef]
- Dallio, M.; Sangineto, M.; Romeo, M.; Villani, R.; Romano, A.D.; Loguercio, C.; Serviddio, G.; Federico, A. Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. Int. J. Mol. Sci. 2021, 22, 436. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 Myokine Signaling in Skeletal Muscle: A Double-Edged Sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef]
- Eggelbusch, M.; Shi, A.; Broeksma, B.C.; Vázquez-Cruz, M.; Soares, M.N.; de Wit, G.M.J.; Everts, B.; Jaspers, R.T.; Wüst, R.C.I. The NLRP3 Inflammasome Contributes to Inflammation-Induced Morphological and Metabolic Alterations in Skeletal Muscle. J. Cachexia Sarcopenia Muscle 2022, 13, 3048–3061. [Google Scholar] [CrossRef]
- Dasarathy, S.; Merli, M. Sarcopenia from Mechanism to Diagnosis and Treatment in Liver Disease. J. Hepatol. 2016, 65, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Terbah, R.; Testro, A.; Gow, P.; Majumdar, A.; Sinclair, M. Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis-Pathogenesis, Implications and Therapeutic Opportunities. Nutrients 2023, 16, 35. [Google Scholar] [CrossRef]
- Medina-Morales, E.; Barba Bernal, R.; Gerger, H.; Goyes, D.; Trivedi, H.D.; Ferrigno, B.; Patwardhan, V.; Bonder, A. Pharmacological Therapy of Pruritus in Primary Biliary Cholangitis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Gastroenterol. 2023, 57, 143–152. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Pingitore, A.; Lima, G.P.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and Oxidative Stress: Potential Effects of Antioxidant Dietary Strategies in Sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Jiang, T.; Ning, Y.; Guo, Y.; Liu, H.; Lyu, X.; Li, M. Dietary Diversity, Diet Quality, and Oxidative Stress in Older Adults. Geriatr. Nurs. 2022, 48, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D: Production, Metabolism and Mechanisms of Action. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Chascsa, D.M.; Lindor, K.D. Antimitochondrial Antibody-Negative Primary Biliary Cholangitis: Is It Really the Same Disease? Clin. Liver Dis. 2018, 22, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D Bioavailability: State of the Art. Crit. Rev. Food Sci. Nutr. 2015, 55, 1193–1205. [Google Scholar] [CrossRef]
- Drapkina, O.M.; Bueverova, E.L. Ursodeoxycholic acid: A therapeutic niche in an internist’s practice. Ter. Arkh. 2015, 87, 84–90. [Google Scholar] [CrossRef]
Demographic Data | |||||||
---|---|---|---|---|---|---|---|
PBC (a) (n: 41) | MASLD (b) (n: 40) | HBV (c) (n: 52) | HCV (d) (n: 50) | p*/** (a)(b) | p*/** (a)(c) | p*/** (a)(d) | |
Gender—male (number and %) | 2 (0.048%) | 20 (50%) | 18 (34.62%) | 21 (42%) | <0.0001 | <0.0001 | <0.0001 |
Gender—female (number and %) | 39 (95.12%) | 20 (50%) | 34 (65.38%) | 29 (58%) | |||
Age (mean ± SD) | 58.61 ± 11.26 | 54.30 ± 11.21 | 52.40 ± 8.22 | 56.44 ± 7.79 | n.s. | n.s. | n.s. |
Anthropometric variables | |||||||
Variables (mean ± SD) | PBC (a) (n: 41) | MASLD (b) (n: 40) | HBV (c) (n: 52) | HCV (d) (n: 50) | p* (a)(b) | p* (a)(c) | p* (a)(d) |
BMI (Kg/m2) | 28.51 ± 3.96 | 32.3 ± 2.21 | 27.56 ± 2.61 | 26.58 ± 3.41 | 0.03 | n.s. | n.s. |
Weight (Kg) | 73.68 ± 13.08 | 82.75 ± 14.06 | 67.58 ± 12.01 | 72.43 ± 11.05 | 0.04 | n.s. | n.s. |
Height (cm) | 158.7 ± 10.71 | 153.7 ± 12.41 | 161.3 ± 11.64 | 159.2 ± 9.62 | n.s. | n.s. | n.s. |
Biochemical data | |||||||
Variables (mean ± SD) | PBC (a) (n: 41) | MASLD (b) (n: 40) | HBV (c) (n: 52) | HCV (d) (n: 50) | p* (a)(b) | p* (a)(c) | p* (a)(d) |
AST (IU/L) | 31.39 ± 13.20 | 34.38 ± 36.62 | 42.65 ± 4.46 | 40.68 ± 5.56 | n.s. | 0.002 | 0.02 |
ALT (IU/L) | 32.68 ± 16.55 | 31.98 ± 19.39 | 46.88 ± 3.97 | 46.08 ± 5.36 | n.s. | 0.008 | 0.006 |
GGT (IU/L) | 194.5 ± 69.65 | 86.93 ± 23.80 | 87.15 ± 6.11 | 93.60 ± 10.27 | <0.0001 | <0.0001 | <0.0001 |
ALP (IU/L) | 192.1 ± 94.99 | 81.63 ± 44.94 | 134.9 ± 15.89 | 105.3 ± 8.81 | <0.0001 | <0.0001 | <0.0001 |
PLT (103/mm3) | 179.4 ± 18.3 | 174.8 ± 97.99 | 175 ± 12.36 | 170.3 ± 14.25 | n.s. | n.s. | n.s. |
Total bilirubin (mg/dL) | 2.06 ± 0.68 | 1.09 ± 0.79 | 1.08 ± 0.65 | 1.14 ± 0.92 | 0.006 | 0.002 | 0.002 |
Albumin (g/L) | 3.89 ± 0.42 | 4.21 ± 0.54 | 3.99 ± 0.61 | 3.85 ± 0.22 | n.s. | n.s. | n.s. |
INR | 1.18 ± 0.29 | 1.08 ± 0.56 | 0.96 ± 0.37 | 1.01 ± 0.54 | n.s. | n.s. | n.s. |
Non-invasive tool evaluating liver disease progression status | |||||||
Variables (mean ± SD) | PBC (a) (n: 41) | MASLD (b) (n: 40) | HBV (c) (n: 52) | HCV (d) (n: 50) | p* (a)(b) | p* (a)(c) | p* (a)(d) |
LSM (kPa) | 10.28 ± 6.02 | 10.47 ± 6.45 | 9.94 ± 4.63 | 9.88 ± 5.05 | n.s. | n.s. | n.s. |
CAP (dB/m) | 275.1 ± 25.83 | 274.2 ± 21.65 | 274.8 ± 29.01 | 278 ± 28.63 | n.s. | n.s. | n.s. |
BIA-Assessed Parameters | |||||||
---|---|---|---|---|---|---|---|
Variables (Mean ± SD) | PBC (a) (n: 41) | MASLD (b) (n: 40) | HBV (c) (n: 52) | HCV (d) (n: 50) | p* (a)(b) | p* (a)(c) | p* (a)(d) |
FFM (Kg) | 54.88 ± 9.28 | 58.30 ± 8.72 | 62.94 ± 8.77 | 63.52 ± 7.34 | 0.003 | 0.001 | 0.001 |
FFM (%) | 68.59 ± 3.93 | 70.14 ± 5.99 | 80.08 ± 3.81 | 79.70 ± 4.39 | 0.041 | >0.001 | >0.001 |
FM (Kg) | 68.72 ± 3.37 | 74.97 ± 3.16 | 70.58 ± 3.08 | 67.22 ± 4.13 | 0.002 | n.s. | n.s. |
FM (%) | 32.41 ± 3.93 | 39.86 ± 5.99 | 30.93 ± 3.08 | 31.30 ± 4.39 | 0.001 | n.s. | n.s. |
BCM (Kg) | 26.35 ± 4.07 | 25.58 ± 5.30 | 26.55 ± 4.19 | 27.08 ± 3.51 | n.s. | n.s. | n.s. |
BCM (%) | 34.46 ± 2.96 | 32.03 ± 4.69 | 34.30 ± 3.71 | 35.32 ± 2.68 | n.s. | n.s. | n.s. |
ECM (Kg) | 31.53 ± 6.63 | 30.73 ± 6.15 | 31.39 ± 6.52 | 31.40 ± 5.08 | n.s. | n.s. | n.s. |
ECM (%) | 33.13 ± 4.88 | 32.11 ± 5.27 | 33.78 ± 5.09 | 32.27 ± 4.61 | n.s. | n.s. | n.s. |
TBW | 40.88 ± 9.28 | 39.26 ± 8.62 | 41.95 ± 6.41 | 40.37 ± 5.36 | n.s. | n.s. | n.s. |
SMM (Kg) | 20.01 ± 4.17 | 23.21 ± 5.923 | 28.93 ± 4.08 | 30.12 ± 3.71 | 0.003 | >0.001 | >0.001 |
SMMI (Kg/m2) | 7.08 ± 1.42 | 8.98 ± 2.21 | 10.19 ± 1.01 | 10.46 ± 1.13 | 0.046 | 0.002 | 0.002 |
DIMENSIONS (I-II-III) DEFINING “SARCOPENIA” | |||||||
Muscle Quantity (I) | |||||||
Variables (mean ± SD) | PBC (a) (n: 41) | MASLD (b) (n: 40) | HBV (c) (n: 52) | HCV (d) (n: 50) | p* (a)(b) | p* (a)(c) | p* (a)(d) |
ASM/h2 (Kg/m2) | 6.39 ± 0.68 | 7.52 ± 0.89 | 7.46 ± 1.04 | 7.28 ± 1.58 | 0.001 | 0.001 | 0.001 |
Muscle Strength (II) | |||||||
HGT (Kg) | 22.13 ± 2.68 | 27.51 ± 4.58 | 28.52 ± 1.86 | 31.78 ± 1.09 | <0.001 | <0.001 | <0.001 |
Chair stand (s) | 16.88 ± 1.62 | 15.84 ± 2.89 | 15.01 ± 2.24 | 15.18 ± 0.71 | n.s. | n.s. | n.s. |
Physical Performance (III) | |||||||
SPBB (total score) | 5.15 ± 1.63 | 5.27 ± 1.06 | 6.42 ± 0.93 | 6.51 ± 0.95 | n.s. | n.s. | n.s. |
TUG (s) | 16.15 ± 1.22 | 15.11 ± 3.13 | 16.37 ± 2.24 | 15.33 ± 2.19 | n.s. | n.s. | n.s. |
Gait speed test (m/s) | 0.66 ± 0.16 | 0.72 ± 0.19 | 0.71 ± 0.05 | 0.72 ± 0.14 | n.s. | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallio, M.; Romeo, M.; Di Nardo, F.; Napolitano, C.; Vaia, P.; Ventriglia, L.; Coppola, A.; Olivieri, S.; Niosi, M.; Federico, A. Systemic Oxidative Stress Correlates with Sarcopenia and Pruritus Severity in Primary Biliary Cholangitis (PBC): Two Independent Relationships Simultaneously Impacting the Quality of Life—Is the Low Absorption of Cholestasis-Promoted Vitamin D a Puzzle Piece? Livers 2024, 4, 656-676. https://doi.org/10.3390/livers4040045
Dallio M, Romeo M, Di Nardo F, Napolitano C, Vaia P, Ventriglia L, Coppola A, Olivieri S, Niosi M, Federico A. Systemic Oxidative Stress Correlates with Sarcopenia and Pruritus Severity in Primary Biliary Cholangitis (PBC): Two Independent Relationships Simultaneously Impacting the Quality of Life—Is the Low Absorption of Cholestasis-Promoted Vitamin D a Puzzle Piece? Livers. 2024; 4(4):656-676. https://doi.org/10.3390/livers4040045
Chicago/Turabian StyleDallio, Marcello, Mario Romeo, Fiammetta Di Nardo, Carmine Napolitano, Paolo Vaia, Lorenzo Ventriglia, Annachiara Coppola, Simone Olivieri, Marco Niosi, and Alessandro Federico. 2024. "Systemic Oxidative Stress Correlates with Sarcopenia and Pruritus Severity in Primary Biliary Cholangitis (PBC): Two Independent Relationships Simultaneously Impacting the Quality of Life—Is the Low Absorption of Cholestasis-Promoted Vitamin D a Puzzle Piece?" Livers 4, no. 4: 656-676. https://doi.org/10.3390/livers4040045
APA StyleDallio, M., Romeo, M., Di Nardo, F., Napolitano, C., Vaia, P., Ventriglia, L., Coppola, A., Olivieri, S., Niosi, M., & Federico, A. (2024). Systemic Oxidative Stress Correlates with Sarcopenia and Pruritus Severity in Primary Biliary Cholangitis (PBC): Two Independent Relationships Simultaneously Impacting the Quality of Life—Is the Low Absorption of Cholestasis-Promoted Vitamin D a Puzzle Piece? Livers, 4(4), 656-676. https://doi.org/10.3390/livers4040045