Validation of the SCALE/Polaris−PARCS Code Procedure with the ENDF/B-VII.1 AMPX 56-Group Library: Pressurized Water Reactor †
Abstract
:1. Introduction
2. Benchmark Calculations
2.1. SCALE/Polaris−PARCS Procedure
2.2. Benchmark Calculations
2.2.1. Overview
2.2.2. PWR Critical Experiments for Pin Peaking Factor Uncertainty
- The B&W-1810 critical experiments were carried out by B&W, Duke Power, and the US Department of Energy (DOE) at B&W’s research center. The core represents a ~5 × 5 array of either the B&W-1810 15 × 15 assembly design or the C-E 14 × 14 assembly design and contains gadolinia-bearing fuel pins. Cores 1, 5, 12, 14, 18, and 20 were selected because they provide the measured fission rates [13].
2.2.3. PWR Benchmark Problems
2.2.4. Benchmark Calculations for PWR Plants
- No-BP assembly: 8 (reference case) × 2 (spacer grid) × 21 (burnup) × 45 (branch) = 15,120;
- BP assembly: 8 (reference case) × 2 (spacer grid) × 21 (burnup) × 36 (branch) = 12,096.
3. Results
3.1. Critical Experiment Benchmark Results
3.2. PWR Benchmark Results
3.2.1. Hot Zero-Power Physics Tests
3.2.2. Hot Full-Power Critical Boron Concentrations and Reactivities
3.2.3. Hot Full-Power In-Core Flux Maps
3.3. Uncertainty Evaluation
4. Discussion
- Limitation in the capability of discharging BPs such as Pyrex after a cycle.
- Different PMAX file assignment and burnups for assembly quadrants.
- Limitation on assembly rotation to consider quadrant-dependent burnups.
- PARCS does not support 2 × 2 nodes for each fuel assembly, which would limit treating the fuel assembly with asymmetric BPs and quadrant-dependent burnup because of the different surrounding fuel assemblies. The 2 × 2 node capability with different cross sections and burnups would enhance the overall accuracy of the Polaris–PARCS code procedure.
5. Conclusions
- Incomplete analysis procedure, especially for radial and axial reflector cross sections;
- Limitation of the SCALE/Polaris–PARCS modeling capability for the BP discharge after cycle;
- Lack of sufficiently reliable PWR plant design and measured data.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wieselquist, W.A.; Lefebvre, R.A. (Eds.) SCALE 6.3.1 User Manual; ORNL/TM-SCALE-6.3.1; UT-Battelle, LLC, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023. Available online: https://scale-manual.ornl.gov/ (accessed on 1 May 2024).
- Jessee, M.A.; Wieselquist, W.A.; Mertyurek, U.; Kim, K.S.; Evans, T.M.; Hamilton, S.P. Lattice physics calculations using the embedded self-shielding method in Polaris, Part I: Methods and implementation. Ann. Nucl. Energ. 2021, 150, 107829. [Google Scholar] [CrossRef]
- Mertyurek, U.; Jessee, M.A.; Betzler, B.R. Lattice Physics calculations using the embedded self-shielding method in Polaris, Part II: Benchmark assessment. Ann. Nucl. Energ. 2021, 150, 107830. [Google Scholar] [CrossRef]
- Downar, T.; Xu, Y.; Seker, V. PARCS NRC–v3.4.2 Volume I: Input Manual; University of Michigan: Ann Arbor, MI, USA, 2022. [Google Scholar]
- Williams, M.L.; Kim, K.S. The Embedded Self-Shielding Method. In Proceedings of the PHYSOR 2012, Knoxville, TN, USA, 15–20 April 2012. [Google Scholar]
- Ade, B.J.; Frankl, I. SCALE/TRITON Primer: A Primer for Light Water Reactor Lattice Physics Calculations; NUREG/CR-7041, ORNL/TM-2011/21; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2012. [Google Scholar]
- Ward, A.; Xu, Y.; Downar, T. GenPMAXS—v6.3.1 Release Code for Generating the PARCS Cross Section Interface File PMAXS; University of Michigan: Ann Arbor, MI, USA, 2021. [Google Scholar]
- Chadwick, M.B.; Herman, M.; Obložinský, P.; Dunn, M.E.; Danon, Y.; Kahler, A.C.; Smith, D.L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 2011, 112, 2887. Available online: https://www.sciencedirect.com/science/article/pii/S009037521100113X (accessed on 1 May 2024). [CrossRef]
- Williams, M.L.; Wiarda, D.; Kim, K.S.; Jessee, M.A. Multigroup Data Processing for the Embedded Self-Shielding Method in SCALE. In Proceedings of the PHYSOR 2016, Sun Valley, ID, USA, 1–5 May 2016. [Google Scholar]
- Kim, K.S.; Williams, M.L.; Wiarda, D.; Mertyurek, U. Automatic Coarse Energy Group Structure Optimization by Minimizing Reaction Rate Differences for the SCALE and CASL Code Systems. In Proceedings of the M&C 2017, Jeju, Republic of Korea, 16–20 April 2017. [Google Scholar]
- Gavin, P.H. Combustion Engineering Critical Experiments; PH-68-3; ABB-CE: Windsor, TN, USA, 1968. [Google Scholar]
- Kim, K.S. Evaluation of Peaking Factors Uncertainty for CASMO-3; KAERI/TR-628/96; Korea Atomic Energy Research Institute: Daejeon, Republic of Korea, 1996. [Google Scholar]
- Newman, L.W.; Wittkopf, W.A.; Pettus, W.G.; Baldwin, M.N.; Hassan, H.A.; Uotinen, V.O.; Connell, J.D.; Campbell, P.S. Urania Gadolinia: Nuclear Model Development and Critical Experiment Benchmark; BAW-1810; Babcock & Wilcox: New York, NY, USA, 1984. [Google Scholar]
- Godfrey, A.T. VERA Core Physics Benchmark Progression Problem Specifications; CASL-U-2012-0131-004; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2014. [Google Scholar]
- Kim, K.S.; Mertyurek, U.; Wieselquist, W.A. Benchmark Calculation for the Watts Bar Unit 1 Cycles 1−3 Using the SCALE 6.3/Polaris–PARCS v3.4.2 Code Package; ORNL/TM-2023/2981; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023. [Google Scholar]
- Horelik, N.; Herman, B.; Forget, B.; Smith, K. Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS), v1.0.1. In Proceedings of the M&C 2013, Sun Valley, ID, USA, 5–9 May 2013. [Google Scholar]
- Carlson, R.W. Reactor Core Physics Design and Operating Data for Cycles 1, 2, and 3 of Surry Unit 1 PWR Power Plant; EPRI NP-79-2-LD; Electric Power Research Institute: Palo Alto, CA, USA, 1979. [Google Scholar]
- Nuclear Associates International Corporation. Reactor Core Physics Design and Operating Data for Cycles 1, 2, and 3 of Turkey Point Unit 3 PWR Power Plant; EPRI NP-827; Electric Power Research Institute: Palo Alto, CA, USA, 1978. [Google Scholar]
- Kim, K.S.; Jessee, M.A.; Wieselquist, W.A. Pin Peaking Factor Uncertainty of the SCALE 6.3/Polaris through Benchmarking the LWR Critical Experiments; ORNL/TM-2023/2979; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023. [Google Scholar]
- Kim, K.S.; Wieselquist, W.A. Benchmark Calculation for the BEAVRS Cycles 1−2 Using the SCALE 6.3/Polaris–PARCS v3.4.2 Code Package; ORNL/TM-2023/2977; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023. [Google Scholar]
- Jeon, B.K.; Kim, K.S.; Wieselquist, W.A. Benchmark Calculation for the Surry Unit 1 Cycles 1−3 Using the SCALE 6.3/Polaris–PARCS v3.4.2 Code Package; ORNL/TM-2023/3039; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023. [Google Scholar]
- Jeon, B.K.; Kim, K.S.; Wieselquist, W.A. Benchmark Calculation for the Turkey Point Unit 3 Cycles 1−3 Using the SCALE 6.3/Polaris–PARCS v3.4.2 Code Package; ORNL/TM-2023/3061; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023. [Google Scholar]
- Owen, D.B. Factors for One-Sided Tolerance Limits for Variables Sampling Plans; SCR-607; Sandia Corporation: Albuquerque, NM, USA, 1963. [Google Scholar]
- Kochunas, B.; Collins, B.; Stimpson, S.; Salko, R.; Jabaay, D.; Graham, A.; Liu, Y.; Kim, K.S.; Wieselquist, W.; Godfrey, A.; et al. VERA core simulator methodology for PWR cycle depletion. Nucl. Sci. Eng. 2017, 185, 217–231. [Google Scholar] [CrossRef]
Parameter | Watts Bar Unit 1 | BEAVRS | Surry Unit 1 | Turkey Point 3 |
---|---|---|---|---|
Core power (MWth) | 3411 | 3411 | 2441 | 2200 |
Operating pressure (psia) | 2250 | 2250 | 2250 | 2250 |
Core flow rate (106 kg/h) | 59.738 | 61.5 | 45.8 | 44.0 |
Inlet temperature (°C) | 291.85 | 292.89 | 293.33 | 282.22 |
Number of assemblies | 193 | 193 | 157 | 157 |
Initial core loading (MTU) | 88.8 | 81.8 | 70.0 | 70.4 |
Pin lattice configuration | 17 × 17 | 17 × 17 | 15 × 15 | 15 × 15 |
Active fuel length (cm) | 365.76 | 365.76 | 366.903 | 365.76 |
Number of fuel rods | 264 | 264 | 204 | 204 |
Number of spacer grids | 6 Zr-4, 2 Inc-718 | 6 Zr-4, 2 Inc-718 | 7 Inc-718 | 7 Inc-718 |
Assembly pitch (cm) | 21.50 | 21.50364 | 21.50364 | 21.50364 |
Pin pitch (cm) | 1.26 | 1.25984 | 1.43 | 1.43 |
Fuel pellet radius (cm) | 0.4096 | 0.39218 | 0.46469 | 0.46469 |
Cladding inner/outer radius (cm) | 0.4180/0.4570 | 0.40005/0.45720 | 0.47422/0.53594 | 0.47422/0.53594 |
Number of control banks | 57 | 57 | 53 | 53 |
Control rod material | B4C/AgInCd | B4C/AgInCd | AgInCd | AgInCd |
Burnable poison material | Pyrex, IFBA a, WABA b | Pyrex | Pyrex | Pyrex |
In-core detector | Fission chamber | Fission chamber | Fission chamber | Fission chamber |
Critical Experiments | Sd | Fd | Sm | Fm | Sc | Fc | |
---|---|---|---|---|---|---|---|
C12 | CE12 | 0.947 | 21 | 1.040 | 19 | – | – |
C32 | CE32 | 1.076 | 21 | 0.661 | 19 | 0.849 | 10 |
C43 | CE43 | 0.900 | 21 | 0.867 | 19 | 0.240 | 2 |
C53 | CE53 | 0.616 | 21 | 0.988 | 19 | – | – |
C56 | CE56 | 0.679 | 21 | 0.594 | 19 | 0.329 | 3 |
CE All | 0.861 | 0.861 | 0.848 | 95 | 0.699 | 15 | |
B01 | B&W01 | 0.504 | 25 | 0.168 | 64 | 0.475 | 20 |
B05 | B&W05 | 0.637 | 25 | 0.381 | 64 | 0.510 | 11 |
B12 | B&W12 | 0.730 | 25 | 0.435 | 64 | 0.587 | 11 |
B14 | B&W14 | 1.026 | 25 | 0.491 | 64 | 0.900 | 15 |
B18 | B&W18 | 1.012 | 28.5 | 0.772 | 64 | 0.655 | 6 |
B20 | B&W20 | 1.152 | 28.5 | 0.584 | 64 | 0.993 | 16 |
BAW All | 0.886 | 157 | 0.507 | 384 | 0.728 | 79 | |
Sp (All) | 0.876 | 262 | 0.590 | 479 | 0.724 | 94 | |
K95×95 | 1.811 | 1.766 | 1.937 | ||||
K95×95Sp | 1.586 | 1.043 | 1.402 |
Reactor | Case | Critical Boron (ppm) | Control Bank Worth (pcm) | ITC (pcm/°F) | Boron Worth (pcm/ppm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M a | C b | C-M | M | C | C-M | M | C | C-M | M | C | C-M | ||
WBN1 | ARO c | 1291 | 1281 | −10 | −2.17 | −3.39 | −1.22 | −10.77 | −10.18 | 0.59 | |||
A | 843 | 977 | 134 | ||||||||||
B | 879 | 840 | −39 | ||||||||||
C | 951 | 1031 | 80 | ||||||||||
D | 1342 | 1450 | 108 | ||||||||||
SA | 435 | 421 | −14 | ||||||||||
SB | 1056 | 1077 | 21 | ||||||||||
SC | 480 | 458 | −22 | ||||||||||
SD | 480 | 458 | −22 | ||||||||||
All | 6466 | 6713 | 247 | ||||||||||
BEAVRS | ARO | 975 | 958 | −17 | −1.75 | −2.03 | −0.28 | ||||||
D (ARO) | 902 | 896 | −6 | 788 | 794 | 6 | −4.65 | −3.49 | 1.16 | ||||
C (D in) | 810 | 795 | −15 | 1203 | 1276 | 73 | −8.01 | −8.27 | −0.26 | ||||
B (D+C in) | 703 | 1171 | 1213 | 42 | |||||||||
A (D+C+B in) | 686 | 655 | −31 | 548 | 615 | 67 | |||||||
SE (D+C+B+A in) | 613 | 461 | 526 | 65 | |||||||||
SD (D+C+B+A+SE in) | 552 | 772 | 756 | −16 | |||||||||
SC (D+C+B+A+SE+SD in) | 508 | 464 | −44 | 1099 | 1112 | 13 | |||||||
TP3 | ARO | 1168 | |||||||||||
D (ARO) | 1089 | 894 | 898 | 4 | −14.1 | −11.4 | 2.7 | ||||||
C (D in) | 963 | 1496 | 1435 | −61 | −12.0 | −11.9 | 0.1 | ||||||
B (C+D in) | 885 | 1055 | 935 | −120 | −15.4 | −13.5 | 1.9 | ||||||
A (B+C+D in) | 732 | 1856 | 1775 | −81 | −12.1 | −12.2 | −0.1 |
Method | Item | Pin Peaking Factor (%) | HZP | HFP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rod Worth (%) | ITC (pcm/°F) | Boron Worth (%) | Boron (ppm) | Δρ (pcm) | Flux Map (%) | |||||
3D | 2D | 1D | ||||||||
Parametric statistics (difference) | Sd | − | − | − | − | − | − | 5.20 | 2.29 | 4.17 |
Average | − | − | − | − | − | − | − | − | − | |
cases | − | − | − | − | − | − | 120,552 | 4014 | 2600 | |
K95×95 | − | − | − | − | − | − | 1.645 | 1.687 | 1.696 | |
K95×95Sd | − | − | − | − | − | − | ±8.5 | ±3.9 | ±7.1 | |
Parametric statistics (measurement) | Sm | − | − | − | − | − | − | 1.67 | 0.75 | − |
Average | − | − | − | − | − | − | − | − | − | |
cases | − | − | − | − | − | − | 83,644 | 2811 | − | |
K95×95 | − | − | − | − | − | − | 1.645 | 1.694 | − | |
K95×95Sm | − | − | − | − | − | − | ±2.7 | ±1.3 | − | |
Parametric statistics (calculation) | Sc | 0.886 | 7.4 | 1.0 | 11.7 | 20.3 | 219 | 4.92 | 2.17 | − |
Average | − | 1.9 | −0.15 | −7.4 | −9.9 | −100 | − | − | − | |
cases | 273 | 20 | 4 | 5 | 299 | 299 | 98,471 | 3257 | − | |
K95×95 | 1.811 | 2.423 | − | − | 1.800 | 1.800 | 1.645 | 1.691 | − | |
K95×95Sc | ±1.586 | ±18.0 | − | − | ±37 | ±393 | ±8.1 | ±3.7 | − | |
Nonparametric statistics | Upper | 1.57 | − | − | − | 28 | 306 | − | − | − |
Lower | −1.90 | − | − | − | −41 | −440 | − | − | − | |
KSnon | ±1.90 | − | − | − | ±41 | ±440 | − | − | − | |
Bound | Maximum | − | 15.9 | 1.16 | 0.8 | − | − | − | − | − |
Minimum | − | −11.4 | −1.22 | −19.1 | − | − | − | − | − | |
KS | − | ±15.9 | ±1.22 | ±19.1 | − | − | − | − | − | |
Final | KS | ±1.90% | ±18.0 | ±1.22 | ±19.1 | ±41 | ±440 | ±8.1 | ±3.7 | ±7.1 |
Cycle | VERA RMS % | Polaris−PARCS RMS % | ||||
---|---|---|---|---|---|---|
3D | 2D | 1D | 3D | 2D | 1D | |
1 | 3.0 | 1.3 | 1.8 | 4.0 | 1.3 | 2.9 |
2 | 3.2 | 1.9 | 1.4 | 4.6 | 2.1 | 3.0 |
3 | 3.3 | 1.5 | 2.4 | 4.9 | 1.5 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.S.; Jeon, B.-K.; Ward, A.; Mertyurek, U.; Jessee, M.; Wieselquist, W. Validation of the SCALE/Polaris−PARCS Code Procedure with the ENDF/B-VII.1 AMPX 56-Group Library: Pressurized Water Reactor. J. Nucl. Eng. 2024, 5, 246-259. https://doi.org/10.3390/jne5030017
Kim KS, Jeon B-K, Ward A, Mertyurek U, Jessee M, Wieselquist W. Validation of the SCALE/Polaris−PARCS Code Procedure with the ENDF/B-VII.1 AMPX 56-Group Library: Pressurized Water Reactor. Journal of Nuclear Engineering. 2024; 5(3):246-259. https://doi.org/10.3390/jne5030017
Chicago/Turabian StyleKim, Kang Seog, Byoung-Kyu Jeon, Andrew Ward, Ugur Mertyurek, Matthew Jessee, and William Wieselquist. 2024. "Validation of the SCALE/Polaris−PARCS Code Procedure with the ENDF/B-VII.1 AMPX 56-Group Library: Pressurized Water Reactor" Journal of Nuclear Engineering 5, no. 3: 246-259. https://doi.org/10.3390/jne5030017
APA StyleKim, K. S., Jeon, B. -K., Ward, A., Mertyurek, U., Jessee, M., & Wieselquist, W. (2024). Validation of the SCALE/Polaris−PARCS Code Procedure with the ENDF/B-VII.1 AMPX 56-Group Library: Pressurized Water Reactor. Journal of Nuclear Engineering, 5(3), 246-259. https://doi.org/10.3390/jne5030017