Neutronic Characteristics of ENDF/B-VIII.0 Compared to ENDF/B-VII.1 for Light-Water Reactor Analysis
Abstract
:1. Introduction
2. LWR Benchmark Problems
2.1. PWR Benchmark Problems
2.2. BWR Benchmark Problems
2.2.1. VERA BWR Depletion Benchmark Problems
2.2.2. Extensive BWR Pin and Assembly Benchmark Problems
3. Results
3.1. PWR Benchmark Results
3.1.1. VERA PWR Benchmark Progression Problems
3.1.2. VERA PWR Extended Benchmark Progression Problems
3.1.3. VERA PWR Depletion Benchmark Problems
3.1.4. Extensive PWR Pin and Assembly Benchmark Problems
3.1.5. Seoul National University PWR Nonuniform Fuel Temperature Problems
3.1.6. PWR Mosteller Benchmark Problems
3.2. BWR Benchmark Results
3.2.1. BWR Depletion Benchmark Problems
3.2.2. Extensive BWR Pin and Assembly Benchmark Problems
4. Discussion
5. Conclusions
- The depletion history effect should be eliminated, where ENDF/B-VIII.0 data have shown a significant increase in burnup-dependent reactivity bias compared to ENDF/B-VII.1. Six nuclides were responsible for a bias that essentially starts at 0 pcm for fresh fuel (due to cancellation of errors among the six nuclides) and decreases linearly to -800 pcm Δρ at a burnup of 60 GWd/MTU. This underprediction of reactivity with ENDF/B-VIII.0 is noticeable in comparisons with power plant data and essentially prevents ENDF/B-VIII.0 from being endorsed for LWR simulations.
- The epithermal scattering issue should be revisited, which exists in both ENDF/B-VII.1 as well as VIII.0. A higher-fidelity physics model is not used in practice because it introduces additional bias when comparing with measured data. Although, due to compensating effects, such an occurrence is not a surprise, this particular effect should be understood better. It may be that a new high-precision measurement is required to prove unequivocally the value of the higher-fidelity epithermal scattering treatment, at which point it could be used as the default in simulations and we can turn our attention to reducing the compensating errors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, J.A.; Clarno, K.; Sieger, M.; Bartlett, R.; Collins, B.; Pawlowski, R.; Schmidt, R.; Summers, R. The Virtual Environment for Reactor Applications (VERA): Design and Architecture. J. Comput. Phys. 2016, 326, 544. [Google Scholar] [CrossRef] [Green Version]
- Consortium for Advanced Simulation of Light Water Reactors. Available online: http://www.casl.gov (accessed on 1 July 2021).
- NEAMS. NEET—Nuclear Energy Advanced Modeling & Simulation. Available online: https://www.energy.gov/ne/nuclear-reactor-technologies/advanced-modeling-simulation (accessed on 1 July 2021).
- Chadwick, M.; Herman, M.; Obložinský, P.; Dunn, M.; Danon, Y.; Kahler, A.; Smith, D.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheet 2018, 112, 2887–2996. [Google Scholar]
- Mangham, G.; Godfrey, A.; Eller, J. VERA Benchmarking of PWR Startup and Steady State Operation. In Proceedings of the CASL Technical Symposium, ANS 2020 Winter Meeting, Chicago, IL, USA, 15–19 November 2020. [Google Scholar]
- Kim, K.S.; Williams, M.L.; Wiarda, D.; Clarno, K.T. Development of the Multigroup Cross Section Library for the CASL Neutronics Simulator MPACT: Method and Procedure. Ann. Nucl. Energy 2019, 133, 46–58. [Google Scholar] [CrossRef]
- Kim, K.; Gentry, C.; Godfrey, A.; Liu, Y.; Palmtag, S. Development of the Multigroup Cross Section Library for the CASL Neutronics Simulator MPACT: Verification. Ann. Nucl. Energy 2019, 132, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kochunas, B.; Collins, B.; Stimpson, S.; Salko, R.; Jabaay, D.; Graham, A.; Liu, Y.; Kim, K.S.; Wieselquist, W.; Godfrey, A.; et al. VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion. Nucl. Sci. Eng. 2017, 185, 217–231. [Google Scholar] [CrossRef]
- Lee, D.; Smith, K.; Rhodes, J. The impact of 238U resonance elastic scattering approximations on thermal reactor Doppler reactivity. Ann. Nucl. Engr. 2009, 36, 274–280. [Google Scholar] [CrossRef]
- Brown, D.A.; Chadwick, M.B.; Capote, R.; Kahler, A.C.; Trkov, A.; Herman, M.W.; Sonzognia, A.A.; Danond, Y.; Carlsone, A.D.; Dunn, M.; et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections. New Standards and Thermal Scattering Data. Nucl. Data Sheet 2018, 148, 1–142. [Google Scholar]
- Kim, K.S.; Wieselquist, W.A. Reactivity Underestimation of ENDF/B-VIII.0 Compared with ENDF/B-VII.1 for the Pressurized Water Reactor Depletion Analysis. Trans. Am. Nucl. Soc. 2021, 124, 520–523. [Google Scholar]
- Park, H.J.; Kang, H.; Lee, H.C.; Cho, J.Y. Comparison of ENDF/B-VIII.0 and ENDF/B-VII.1 in criticality, depletion benchmark, and uncertainty analyses by McCARD. Ann. Nucl. Energy 2019, 131, 443. [Google Scholar] [CrossRef]
- Bostelmann, F.; Holcomb, A.M.; Marshall, W.B.; Sobes, V.; Rearden, B.T. Impact of the ENDF/B-VIII.0 Library on Advanced Reactor Simulations. Trans. Am. Nucl. Soc. 2019, 121, 1369–1372. [Google Scholar]
- Wieselquist, W.A.; Lefebvre, R.A.; Jessee, M.A. (Eds.) SCALE Code System; ORNL/TM-2005/39, Version 6.2.4; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2020.
- Leppänen, J.; Pusa, M.; Viitanen, T.; Valtavirta, V.; Kaltiaisenaho, T. The Serpent Monte Carlo Code: Status, Development and Applications in 2013. Ann. Nucl. Energy 2015, 82, 142–150. [Google Scholar] [CrossRef]
- Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; et al. Initial MCNP6 Release Overview. Nucl. Tech. 2012, 180, 298–315. [Google Scholar] [CrossRef]
- Godfrey, A. VERA Core Physics Benchmark Progression Problem Specifications; CASL Report, CASL-U-2012-0131-004; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2014.
- Kim, K.S. Specifications for the VERA Depletion Benchmark Suite; CASL-X-2015-1014-000; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2015. Available online: https://info.ornl.gov/sites/publications/files/Pub61302.pdf (accessed on 1 July 2021).
- Palmtag, S. MPACT Library Verification by Comparison of Pincell Calculations to Monte Carlo Results; CASL Report, CASL-U-2016-0281-002; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2017.
- Palmtag, S. MPACT Library Verification by Comparison of Assembly Calculations to Monte Carlo Results; CASL Report, CASL-U-2016-1052-001; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2017.
- Joo, H.G.; Han, B.S.; Kim, C.H.; Kim, K.S. Implementation of Subgroup Method in Direct Whole Core Transport Calculation Involving Nonuniform Temperature Distribution. In Proceedings of the M&C 2005, Avignon, France, 12–15 September 2005. [Google Scholar]
- Mosteller, R.D. The Doppler-Defect Benchmark: Overview and Summary of Results. In Proceedings of the M&C+SNA 2007, Monterey, CA, USA, 15–19 April 2007. [Google Scholar]
- Lawing, C.; Palmtag, S.; Asgari, M. The VERA BWR Progression Problems; ORNL Technical Memo: Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, in preparation.
- Becker, B. On the Influence of the Resonance Scattering Treatment in Monte Carlo Codes on High Temperature Reactor Characteristics. Ph.D. Thesis, University Stuttgart, Stuttgart, Germany, 2010. [Google Scholar]
- Macfarlane, R.; Muir, D.W.; Boicourt, R.M.; Kahler, A.C., III; Conlin, J.L. The NJOY Nuclear Data Processing System, Version 2016; LA-UR-17-20093; Los Alasmos National Lab. (LANL): Los Alamos, NM, USA, 2017.
Case | Description | Number of Cases | Reference |
---|---|---|---|
A | VERA core physics progression problems | 26 | [7,17] |
B | Extended VERA progression problems | 15 | [7] |
C | VERA depletion problems | 24 | [7,18] |
D | Extensive PWR pin and assembly problems | 1620 | [7,19,20] |
E | Nonuniform fuel temperature problems | 14 | [21] |
F | Mosteller benchmark problems | 21 | [22] |
No. | Fuel | Type | Pellet Radius (cm) | 235U wt % | Temperature (K) | Void (%) | Power Density (w/gU) | ||
---|---|---|---|---|---|---|---|---|---|
Fuel | Clad | Mod. | |||||||
1A | Pin | PB2_7×7 | 0.60579 | 3.1 | 600 | 600 | 600 | 0 | 40 |
1B | Pin | PB2_7×7 | 0.60579 | 3.1 | 900 | 600 | 600 | 0 | 40 |
1C | Pin | PB2_7×7 | 0.60579 | 3.1 | 1200 | 600 | 600 | 0 | 40 |
1D | Pin | PB2_7×7 | 0.60579 | 2.1 | 900 | 600 | 600 | 0 | 40 |
1E | Pin | PB2_7×7 | 0.60579 | 3.6 | 900 | 600 | 600 | 0 | 40 |
1F | Pin | PB2_7×7 | 0.60579 | 4.6 | 900 | 600 | 600 | 0 | 40 |
1G | Pin | PB2_7×7 | 0.60579 | 3.1 | 900 | 600 | 600 | 50 | 40 |
1H | Pin | PB2_7×7 | 0.60579 | 3.1 | 900 | 600 | 600 | 70 | 40 |
Category | Case | Specification | Cases | Total | Remarks |
---|---|---|---|---|---|
Fuel types, fuel radius/pitch (cm) | PB Type-6 | 0.52070/1.62560 | 4 | 156 | - |
GE9 | 0.53213/1.62560 | ||||
GE14 | 0.43800/1.30000 | ||||
PB2 7 × 7 | 0.60579/1.87452 | ||||
Moderator/fuel temperatures (K) | CZP a | 293/293 | 4 | Zero burnup | |
HZP b | 600/600 | ||||
HFP c-1 | 600/900 | ||||
HFP-2 | 600/1200 | ||||
235U enrichment (wt %) | - | 2.1/3.1/4.1 | 3 | - | |
Void fraction (%) | - | 0/50/70/90 | 4 | 0% void only for CZP | |
Burnup (MWD/kgU) | - | 10/20/40/60 | 4 | 64 | 3.1 wt%, HFP-1, all voids and all fuel types |
All | - | - | - | 220 | - |
Category | Case | Specification | Cases | Total | Remarks |
---|---|---|---|---|---|
Fuel types, fuel radius/pitch (cm) | PB-T6 | 0.52070/1.62560 | 4 | 320 | - |
GE-09 | 0.53213/1.62560 | ||||
GE-14 | 0.43800/1.30000 | ||||
GE-14v | 0.60579/1.87452 | ||||
235U enrichment (wt %) | - | Mixed/2.1/3.1/4.1 | 4 | - | |
Control rods | - | Out/In | 2 | - | |
Moderator/fuel temperatures (K) | CZP a | 293/293 | 4 | - | |
HZP b | 600/600 | ||||
HFP c-1 | 600/900 | ||||
HFP-2 | 600/1200 | ||||
Void fraction (%) | - | 0/40/80 | 3 | 0% void only for CZP | |
All | - | - | - | 320 | - |
Case | KENO with DBRC | KENO without DBRC | ||||
---|---|---|---|---|---|---|
keff * | (2–1) Δρ (pcm) | keff * | (2–1) Δρ (pcm) | |||
VII.1 (1) | VIII.0 (2) | VII.1 (1) | VIII.0 (2) | |||
1A | 1.18569 | 1.18521 | −34 | 1.18700 | 1.18667 | −24 |
1B | 1.18065 | 1.18002 | −45 | 1.18214 | 1.18126 | −63 |
1C | 1.16895 | 1.16853 | −31 | 1.17144 | 1.17116 | −21 |
1D | 1.15885 | 1.15866 | −14 | 1.16258 | 1.16249 | −7 |
1E | 0.77082 | 0.77359 | 465 | 0.77127 | 0.77437 | 519 |
2A | 1.18081 | 1.18076 | −3 | 1.18187 | 1.18167 | −14 |
2B | 1.18190 | 1.18177 | −9 | 1.18323 | 1.18302 | −15 |
2C | 1.17125 | 1.17143 | 13 | 1.17362 | 1.17354 | −6 |
2D | 1.16189 | 1.16222 | 24 | 1.16556 | 1.16567 | 8 |
2E | 1.06829 | 1.06901 | 63 | 1.06953 | 1.07001 | 42 |
2F | 0.97462 | 0.97579 | 123 | 0.97569 | 0.97670 | 107 |
2G | 0.84674 | 0.84809 | 188 | 0.84766 | 0.84896 | 181 |
2H | 0.78705 | 0.78800 | 153 | 0.78793 | 0.78852 | 95 |
2I | 1.17865 | 1.17864 | 0 | 1.17962 | 1.17951 | −8 |
2J | 0.97378 | 0.97513 | 142 | 0.97496 | 0.97630 | 141 |
2K | 1.01864 | 1.01930 | 64 | 1.01977 | 1.02029 | 50 |
2L | 1.01760 | 1.01912 | 147 | 1.01868 | 1.02017 | 143 |
2M | 0.93778 | 0.94003 | 255 | 0.93855 | 0.94090 | 266 |
2N | 0.86840 | 0.87043 | 268 | 0.86944 | 0.87133 | 250 |
2O | 1.04613 | 1.04738 | 114 | 1.04717 | 1.04822 | 96 |
2P | 0.92566 | 0.92771 | 239 | 0.92670 | 0.92862 | 223 |
Case | KENO with DBRC | KENO without DBRC | ||||
---|---|---|---|---|---|---|
keff | (2–1) Δρ (pcm) | keff | (2–1) Δρ (pcm) | |||
VII.1 (1) | VIII.0 (2) | VII.1 (1) | VIII.0 (2) | |||
1B-21 | 1.06871 | 1.06994 | 108 | 1.07002 | 1.07163 | 140 |
1B-26 | 1.13385 | 1.13415 | 23 | 1.13548 | 1.13560 | 9 |
1B-31 | 1.18048 | 1.18019 | −21 | 1.18211 | 1.18170 | −29 |
1B-36 | 1.21951 | 1.21855 | −65 | 1.22096 | 1.21980 | −78 |
1B-41 | 1.25125 | 1.24909 | −138 | 1.25244 | 1.25044 | −128 |
1B-46 | 1.27712 | 1.27472 | −147 | 1.27871 | 1.27595 | −169 |
1C-00-3a | 1.24435 | 1.24341 | −61 | 1.24720 | 1.24587 | −86 |
1C-10-3a | 1.08484 | 1.08479 | −4 | 1.08738 | 1.08699 | −33 |
1C-20-3a | 1.00059 | 1.00113 | 54 | 1.00297 | 1.00292 | −5 |
1C-40-3a | 0.88112 | 0.88135 | 30 | 0.88297 | 0.88318 | 27 |
1C-60-3a | 0.80711 | 0.80721 | 15 | 0.80869 | 0.80886 | 26 |
1C-10-1h | 1.17128 | 1.17082 | −34 | 1.17394 | 1.17320 | −54 |
1C-20-1h | 1.11417 | 1.11401 | −13 | 1.11647 | 1.11657 | 8 |
1C-40-1h | 1.03382 | 1.03463 | 76 | 1.03614 | 1.03682 | 63 |
1C-60-1h | 0.98625 | 0.98725 | 103 | 0.98849 | 0.98941 | 94 |
Reactivity Differences between ENDF/B-VIII.0 and VII.1 (pcm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
KENO with DBRC | KENO without DBRC | Counts | ||||||||
Average | S. Dev. | Min. | Max. | Average | S. Dev. | Min. | Max. | |||
Total | All | −56 | 114 | −206 | 194 | −66 | 119 | −215 | 206 | 360 |
Hot | −51 | 113 | −206 | 194 | −62 | 118 | −215 | 206 | 324 | |
Cold | −105 | 122 | −199 | 35 | −108 | 126 | −209 | 50 | 36 | |
Hot | ||||||||||
235U (wt %) | 2.1 | 61 | 94 | −47 | 194 | 50 | 86 | −60 | 206 | 108 |
3.1 | −69 | 85 | −149 | 38 | −81 | 95 | −157 | 13 | 108 | |
4.1 | −145 | 149 | −206 | 0 | −154 | 158 | −215 | 0 | 108 | |
Boron PPM | 0 | −111 | 131 | −206 | 7 | −122 | 140 | −215 | 0 | 108 |
600 | −53 | 100 | −165 | 101 | −63 | 106 | −179 | 80 | 108 | |
1300 | 11 | 105 | −132 | 194 | 1 | 103 | −145 | 206 | 108 | |
Density (g/cm3) | 0.7408 | −46 | 113 | −205 | 194 | −57 | 118 | −212 | 172 | 108 |
0.7032 | −50 | 111 | −198 | 177 | −62 | 117 | −203 | 206 | 108 | |
0.6560 | −56 | 114 | −206 | 188 | −66 | 119 | −215 | 164 | 108 | |
Fuel temp. (K) | 600 | −60 | 115 | −206 | 162 | −69 | 121 | −212 | 172 | 108 |
900 | −52 | 113 | −194 | 185 | −60 | 115 | −205 | 164 | 108 | |
1200 | −41 | 110 | −200 | 194 | −55 | 117 | −215 | 206 | 108 | |
Cold | ||||||||||
235U (wt %) | 2.1 | −44 | 65 | −102 | 35 | −45 | 70 | −115 | 50 | 12 |
3.1 | −112 | 118 | −160 | 0 | −116 | 121 | −173 | 0 | 12 | |
4.1 | −160 | 164 | −199 | 0 | −164 | 167 | −209 | 0 | 12 | |
Boron PPM | 0 | −150 | 155 | −199 | 0 | −156 | 161 | −209 | 0 | 12 |
600 | −108 | 119 | −171 | 0 | −108 | 118 | −171 | 0 | 12 | |
1300 | −57 | 82 | −150 | 35 | −60 | 87 | −136 | 50 | 12 |
Reactivity Differences between ENDF/B-VIII.0 and VII.1 (pcm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
KENO with DBRC | KENO without DBRC | Counts | ||||||||
Average | S. Dev. | Min. | Max. | Average | S. Dev. | Min. | Max. | |||
Total | All | 32 | 154 | −198 | 554 | 18 | 150 | −214 | 545 | 1260 |
Hot | 43 | 158 | −198 | 554 | 28 | 154 | −214 | 545 | 1134 | |
Cold | −65 | 104 | −196 | 183 | −72 | 107 | −201 | 239 | 126 | |
Hot | ||||||||||
235U (wt %) | 2.1 | 178 | 227 | −39 | 554 | 160 | 213 | −52 | 545 | 378 |
3.1 | 21 | 108 | −135 | 301 | 7 | 106 | −161 | 297 | 378 | |
4.1 | −71 | 109 | −198 | 190 | −84 | 119 | −214 | 132 | 378 | |
Boron PPM | 0 | −24 | 134 | −198 | 407 | −38 | 137 | −214 | 372 | 378 |
600 | 40 | 148 | −154 | 488 | 26 | 142 | −181 | 469 | 378 | |
1300 | 111 | 188 | −125 | 554 | 96 | 179 | −134 | 545 | 378 | |
Density (g/cm3) | 0.7408 | 46 | 159 | −197 | 536 | 32 | 154 | −209 | 545 | 378 |
0.7032 | 43 | 158 | −198 | 554 | 27 | 153 | −213 | 519 | 378 | |
0.6560 | 39 | 158 | −198 | 524 | 25 | 154 | −214 | 508 | 378 | |
Fuel temp. (K) | 600 | 30 | 149 | −198 | 507 | 19 | 148 | −209 | 520 | 378 |
900 | 44 | 160 | −190 | 554 | 28 | 153 | −214 | 545 | 378 | |
1200 | 54 | 165 | −198 | 550 | 36 | 159 | −209 | 510 | 378 | |
Cold | ||||||||||
235U (wt %) | 2.1 | −1 | 75 | −109 | 183 | −10 | 78 | −116 | 239 | 42 |
3.1 | −71 | 95 | −161 | 154 | −78 | 97 | −173 | 59 | 42 | |
4.1 | −124 | 134 | −196 | 38 | −128 | 137 | −201 | 16 | 42 | |
Boron PPM | 0 | −118 | 132 | −196 | 59 | −126 | 138 | −201 | 73 | 42 |
600 | −67 | 94 | −160 | 117 | −74 | 95 | −167 | 102 | 42 | |
1300 | −11 | 80 | −111 | 183 | −16 | 79 | −124 | 239 | 42 |
Reactivity Differences between ENDF/B-VIII.0 and VII.1 (pcm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Single pins | Assemblies | ||||||||||||
Average | S. Dev. | Min. | Max. | Counts | Average | S. Dev. | Min. | Max. | Counts | ||||
Total | All | −10 | 157 | −215 | 509 | 220 | Total | All | 35 | 119 | −132 | 474 | 320 |
235U (wt %) | 235U (wt %) | Mixed | 166 | 187 | −58 | 474 | 80 | ||||||
2.1 | 79 | 188 | −113 | 509 | 52 | 2.1 | 94 | 103 | −24 | 187 | 80 | ||
3.1 | −20 | 119 | −174 | 411 | 116 | 3.1 | −23 | 33 | −71 | 78 | 80 | ||
4.1 | −78 | 192 | −215 | 363 | 52 | 4.1 | −96 | 98 | −132 | −15 | 80 | ||
Void (%) | 0 | −65 | 100 | −211 | 74 | 112 | Void (%) | 0 | 0 | 0 | 0 | 0 | 0 |
50 | −106 | 130 | −215 | 34 | 36 | 40 | 40 | 40 | 40 | 40 | 40 | ||
70 | −44 | 91 | −160 | 118 | 36 | 80 | 80 | 80 | 80 | 80 | 80 | ||
90 | 291 | 306 | 134 | 509 | 36 | - | - | - | - | - | - | ||
Burnup (MWD/kgU) | 0 | −8 | 184 | −215 | 509 | 156 | Control rod | Out | 23 | 105 | −132 | 239 | 160 |
10 | −59 | 63 | −102 | 0 | 16 | In | 48 | 131 | −127 | 474 | 160 | ||
20 | −9 | 24 | −52 | 31 | 16 | - | - | - | - | - | - | ||
40 | 12 | 38 | −43 | 74 | 16 | - | - | - | - | - | - | ||
60 | −8 | 39 | −70 | 58 | 16 | - | - | - | - | - | - | ||
Fuel temp. (K) | 293 | −92 | 112 | −204 | 35 | 28 | Fuel temp. (K) | 293 | −27 | 56 | −112 | 122 | 32 |
600 | −6 | 155 | −211 | 422 | 64 | 600 | 36 | 123 | −130 | 474 | 96 | ||
900 | 3 | 165 | −215 | 479 | 64 | 900 | 44 | 125 | −132 | 439 | 96 | ||
1200 | 9 | 166 | −203 | 509 | 64 | 1200 | 47 | 123 | −129 | 276 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-S.; Wieselquist, W.A. Neutronic Characteristics of ENDF/B-VIII.0 Compared to ENDF/B-VII.1 for Light-Water Reactor Analysis. J. Nucl. Eng. 2021, 2, 318-335. https://doi.org/10.3390/jne2040026
Kim K-S, Wieselquist WA. Neutronic Characteristics of ENDF/B-VIII.0 Compared to ENDF/B-VII.1 for Light-Water Reactor Analysis. Journal of Nuclear Engineering. 2021; 2(4):318-335. https://doi.org/10.3390/jne2040026
Chicago/Turabian StyleKim, Kang-Seog, and William A. Wieselquist. 2021. "Neutronic Characteristics of ENDF/B-VIII.0 Compared to ENDF/B-VII.1 for Light-Water Reactor Analysis" Journal of Nuclear Engineering 2, no. 4: 318-335. https://doi.org/10.3390/jne2040026
APA StyleKim, K. -S., & Wieselquist, W. A. (2021). Neutronic Characteristics of ENDF/B-VIII.0 Compared to ENDF/B-VII.1 for Light-Water Reactor Analysis. Journal of Nuclear Engineering, 2(4), 318-335. https://doi.org/10.3390/jne2040026