Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Solvents, and Supplements
2.2. Methods
2.2.1. Modification of HA with EDA(Boc)
2.2.2. Deprotection of HA-EDA(Boc)
2.2.3. Modification of HA-EDA with DBCO-NHS
2.2.4. Synthesis of PLys with Terminal Azide Functionality
2.2.5. Synthesis of HA-g-PLys by Metal-Free Click Reaction
2.2.6. Characterization of Polymers
2.2.7. Formation of HA-g-PLys/siRNA Polyplexes
2.2.8. Physicochemical Characterization of Polyplexes
2.2.9. Study of Nucleic Acids Binding Efficacy
2.2.10. Agarose Gel Electrophoresis Assay
2.2.11. Release Study of Model siRNA from Polyplexes
2.2.12. Biological Evaluation
2.2.13. Statistics
3. Results and Discussion
3.1. HA-g-PLys Synthesis and Characterization
3.1.1. Modification of Hyaluronic Acid
3.1.2. Synthesis of Poly(L-Lysine) with Terminal Azido Groups
3.1.3. Synthesis of Graft-Copolymers by Metal-Free Click Reaction
3.2. Formation and Characterization of Empty Nanoparticles and Polyplexes with Model siRNA
3.3. Release Study
3.4. Biological Evaluation
3.4.1. Cytotoxicity
3.4.2. Gene Silencing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HA | Hyaluronic acid |
PLys | Poly(L-lysine) |
siRNA | Small interfering RNA |
DBCO | Dibenzocyclooctyne |
EDA | Ethylenediamine |
NCA | N-carboxyanhydride |
ROP | Ring-opening polymerization |
NHS | N-hydroxysuccinimide |
CuAAC | Cu-catalyzed azide-alkyne cycloaddition |
SPAAC | Strain-promoted azide-alkyne cycloaddition |
SEC | Size-exclusion chromatography |
FTIR | Fourier transform infrared spectroscopy |
PDI | Polydispersity index |
dT-dA | Oligothymidine-oligoadenine duplex |
GFP | Green fluorescent protein |
PBS | Phosphate-buffered saline |
References
- Bulaklak, K.; Gersbach, C.A. The once and future gene therapy. Nat. Commun. 2020, 11, 5820. [Google Scholar] [CrossRef] [PubMed]
- Bolhassani, A. Improvements in chemical carriers of proteins and peptides. Cell Biol. Int. 2019, 43, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Manohar, S.K.; Gowrav, M.P.; Gangadharappa, H.V. Materials for Gene Delivery Systems. In Interaction of Nanomaterials with Living Cells; Springer Nature Singapore: Singapore, 2023; pp. 411–437. [Google Scholar]
- Sung, Y.; Kim, S. Recent advances in the development of gene delivery systems. Biomater. Res. 2019, 23, 8. [Google Scholar] [CrossRef]
- Taghdiri, M.; Mussolino, C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. Int. J. Mol. Sci. 2024, 25, 7333. [Google Scholar] [CrossRef]
- Gerhardt, A.; Voigt, E.; Archer, M.; Reed, S.; Larson, E.; Van Hoeven, N.; Kramer, R.; Fox, C.; Casper, C.; Yan, Y.; et al. Non-viral vectors for RNA delivery. J. Control Release 2022, 342, 241–279. [Google Scholar]
- Wang, C.; Pan, C.; Yong, H.; Wang, F.; Bo, T.; Zhao, Y.; Ma, B.; He, W.; Li, M. Emerging non-viral vectors for gene delivery. J. Nanobiotechnology 2023, 21, 272. [Google Scholar] [CrossRef]
- De Haan, P.; Van Diemen, F.R.; Toscano, M.G. Viral gene delivery vectors: The next generation medicines for immune-related diseases. Hum. Vaccin. Immunother. 2021, 17, 14–21. [Google Scholar] [CrossRef]
- Kotterman, M.A.; Chalberg, T.W.; Schaffer, D.V. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu. Rev. Biomed. Eng. 2015, 17, 63–89. [Google Scholar] [CrossRef]
- Cai, X.; Dou, R.; Guo, C.; Tang, J.; Li, X.; Chen, J.; Zhang, J. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics 2023, 15, 1502. [Google Scholar] [CrossRef]
- Pietersz, G.; Tang, C.-K.; Apostolopoulos, V. Structure and Design of Polycationic Carriers For Gene Delivery. Mini-Rev. Med. Chem. 2006, 6, 1285–1298. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, B.; Jiang, H.; Wang, B.; Ma, B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control Release 2007, 123, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, L.; Zhu, W.; Guo, R.; Sun, H.; Chen, X.; Deng, N. Barriers and Strategies of Cationic Liposomes for Cancer Gene Therapy. Mol. Ther.-Methods Clin. Dev. 2020, 18, 751–764. [Google Scholar] [CrossRef]
- Valente, J.F.A.; Pereira, P.; Sousa, A.; Queiroz, J.A.; Sousa, F. Effect of Plasmid DNA Size on Chitosan or Polyethyleneimine Polyplexes Formulation. Polymers 2021, 13, 793. [Google Scholar] [CrossRef]
- Khan, M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers 2024, 16, 2629. [Google Scholar] [CrossRef]
- Casper, J.; Schenk, S.H.; Parhizkar, E.; Detampel, P.; Dehshahri, A.; Huwyler, J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J. Control Release 2023, 362, 667–691. [Google Scholar] [CrossRef] [PubMed]
- Kichler, A.; Leborgne, C.; Coeytaux, E.; Danos, O. Polyethylenimine-mediated gene delivery: A mechanistic study. J. Gene Med. 2001, 3, 135–144. [Google Scholar] [CrossRef]
- Agarwal, S.; Zhang, Y.; Maji, S.; Greiner, A. PDMAEMA based gene delivery materials. Mater. Today 2012, 15, 388–393. [Google Scholar] [CrossRef]
- Ritt, N.; Ayaou, A.; Zentel, R. RAFT Synthesis of Reactive Multifunctional Triblock-Copolymers for Polyplex Formation. Macromol. Chem. Phys. 2021, 222, 2100122. [Google Scholar] [CrossRef]
- Kasza, K.; Elsherbeny, A.; Moloney, C.; Hardie, K.R.; Cámara, M.; Alexander, C.; Gurnani, P. Hybrid Poly(β-amino ester) Triblock Copolymers Utilizing a RAFT Polymerization Grafting-From Methodology. Macromol. Chem. Phys. 2023, 224, 2300262. [Google Scholar] [CrossRef]
- Karlsson, J.; Rhodes, K.R.; Green, J.J.; Tzeng, S.Y. Poly(beta-amino ester)s as gene delivery vehicles: Challenges and opportunities. Expert Opin. Drug Deliv. 2020, 17, 1395–1410. [Google Scholar] [CrossRef]
- Aydinlioglu, E.; Abdelghani, M.; Le Fer, G.; van Hest, J.C.M.; Sandre, O.; Lecommandoux, S. Robust Polyion Complex Vesicles (PICsomes) Based on PEO-b-poly(amino acid) Copolymers Combining Electrostatic and Hydrophobic Interactions: Formation, siRNA Loading and Intracellular Delivery. Macromol. Chem. Phys. 2023, 224, 2200306. [Google Scholar] [CrossRef]
- Kumar, D.; Sahu, B.; Banerjee, S. Amino Acid-Derived Smart and Functional Polymers for Biomedical Applications: Current Status and Future Perspectives. Macromol. Chem. Phys. 2023, 224, 2300207. [Google Scholar] [CrossRef]
- Stepanova, M.; Nikiforov, A.; Tennikova, T.; Korzhikova-Vlakh, E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023, 15, 2641. [Google Scholar] [CrossRef]
- Zhao, B.; Zhou, Z.; Shen, Y. Effects of chirality on gene delivery efficiency of polylysine. Chin. J. Polym. Sci. 2016, 34, 94–103. [Google Scholar] [CrossRef]
- Conejos-Sánchez, I.; Gallon, E.; Niño-Pariente, A.; Smith, J.A.; De la Fuente, A.G.; Di Canio, L.; Pluchino, S.; Franklin, R.J.M.; Vicent, M.J. Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders. Nanoscale 2020, 12, 6285–6299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-T.; Yu, M.; Niu, Y.-J.; Liu, W.-Z.; Pang, W.-H.; Ding, J.; Wang, J.-C. Polyarginine-Mediated siRNA Delivery: A Mechanistic Study of Intracellular Trafficking of PCL-R15/siRNA Nanoplexes. Mol. Pharm. 2020, 17, 1685–1696. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J. Studies of DEAE-dextran-mediated gene transfer. Biotechnol. Appl. Biochem. 1997, 25, 47–51. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent Advances in Chitosan-Based Carriers for Gene Delivery. Mar. Drugs 2019, 17, 381. [Google Scholar] [CrossRef]
- Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control Release 2013, 172, 1075–1091. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef]
- Madkhali, O.; Mekhail, G.; Wettig, S.D. Modified gelatin nanoparticles for gene delivery. Int. J. Pharm. 2019, 554, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Schatz, C.; Louguet, S.; Le Meins, J.; Lecommandoux, S. Polysaccharide-block-polypeptide Copolymer Vesicles: Towards Synthetic Viral Capsids. Angew. Chem. Int. Ed. 2009, 48, 2572–2575. [Google Scholar] [CrossRef]
- Liu, T.; Chen, S.; Zhang, S.; Wu, X.; Wu, P.; Miao, B.; Cai, X. Transferrin-functionalized chitosan-graft-poly(L-lysine) dendrons as a high-efficiency gene delivery carrier for nasopharyngeal carcinoma therapy. J. Mater. Chem. B 2018, 6, 4314–4325. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, X.; Lu, T.; Sun, J.; Tian, H.; Hu, J.; Wang, Y.; Zhang, P.; Jing, X. Poly(L-lysine)-Graft-Chitosan Copolymers: Synthesis, Characterization, and Gene Transfection Effect. Biomacromolecules 2007, 8, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Choi, C.W.; Kim, H.W.; Kim, D.H.; Kwak, T.W.; Lee, H.M.; Kim, C.H.; Chung, C.W.; Jeong, Y.I.; Kang, D.H. Dextran-b-poly(L-histidine) copolymer nanoparticles for pH-responsive drug delivery to tumor cells. Int. J. Nanomed. 2013, 2013, 3197. [Google Scholar]
- Ferdous, A. Poly(L-lysine)-graft-dextran copolymer: Amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro). Nucleic Acids Res. 1998, 26, 3949–3954. [Google Scholar] [CrossRef]
- Pilipenko, I.; Korovkina, O.; Gubina, N.; Ekimova, V.; Ishutinova, A.; Korzhikova-Vlakh, E.; Tennikova, T.; Korzhikov-Vlakh, V. Random Copolymers of Lysine and Isoleucine for Efficient mRNA Delivery. Int. J. Mol. Sci. 2022, 23, 5363. [Google Scholar] [CrossRef]
- Korovkina, O.; Polyakov, D.; Korzhikov-Vlakh, V.; Korzhikova-Vlakh, E. Stimuli-Responsive Polypeptide Nanoparticles for Enhanced DNA Delivery. Molecules 2022, 27, 8495. [Google Scholar] [CrossRef]
- Dzhuzha, A.; Gandalipov, E.; Korzhikov-Vlakh, V.; Katernyuk, E.; Zakharova, N.; Silonov, S.; Tennikova, T.; Korzhikova-Vlakh, E. Amphiphilic Polypeptides Obtained by Post-Polymerization Modification of Poly-l-Lysine as Systems for Combined Delivery of Paclitaxel and siRNA. Pharmaceutics 2023, 15, 1308. [Google Scholar] [CrossRef]
- Yi, A.; Sim, D.; Lee, Y.-J.; Sarangthem, V.; Park, R.-W. Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J. Nanobiotechnology 2020, 18, 15. [Google Scholar] [CrossRef]
- Bravo-Anaya, L.M.; Garbay, B.; Nando-Rodríguez, J.L.E.; Carvajal Ramos, F.; Ibarboure, E.; Bathany, K.; Xia, Y.; Rosselgong, J.; Joucla, G.; Garanger, E.; et al. Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. J. Colloid Interface Sci. 2019, 557, 777–792. [Google Scholar] [CrossRef] [PubMed]
- Osipova, O.; Zakharova, N.; Pyankov, I.; Egorova, A.; Kislova, A.; Lavrentieva, A.; Kiselev, A.; Tennikova, T.; Korzhikova-vlakh, E. Amphiphilic pH-sensitive polypeptides for siRNA delivery. J. Drug Deliv. Sci. Technol. 2022, 69, 103135. [Google Scholar] [CrossRef]
- Korzhikov-Vlakh, V.; Katernuk, I.; Pilipenko, I.; Lavrentieva, A.; Guryanov, I.; Sharoyko, V.; Manshina, A.A.; Tennikova, T.B. Photosensitive Poly-l-lysine/Heparin Interpolyelectrolyte Complexes for Delivery of Genetic Drugs. Polymers 2020, 12, 1077. [Google Scholar] [CrossRef] [PubMed]
- Casey-Power, S.; Vardar, C.; Ryan, R.; Behl, G.; McLoughlin, P.; Byrne, M.E.; Fitzhenry, L. NAD+-associated-hyaluronic acid and poly(L-lysine) polyelectrolyte complexes: An evaluation of their potential for ocular drug delivery. Eur. J. Pharm. Biopharm. 2023, 192, 62–78. [Google Scholar] [CrossRef]
- Pan, W.; Yin, D.-X.; Jing, H.-R.; Chang, H.-J.; Wen, H.; Liang, D.-H. Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path. Chin. J. Polym. Sci. 2019, 37, 36–42. [Google Scholar] [CrossRef]
- Laga, R.; Carlisle, R.; Tangney, M.; Ulbrich, K.; Seymour, L.W. Polymer coatings for delivery of nucleic acid therapeutics. J. Control Release 2012, 161, 537–553. [Google Scholar] [CrossRef]
- Korovkina, O.M.; Korzhikov-Vlakh, V.A.; Polyakov, D.S.; Solomakha, O.A.; Dzhuzha, A.Y.; Tennikova, T.B.; Korzhikova-Vlakh, E.G. Polysaccharide-g-Polypeptide Copolymers: Synthesis by Metal-Free Click Reaction and Evaluation as Gene Delivery Systems. Macromol. Chem. Phys. 2025, 226, 2400501. [Google Scholar] [CrossRef]
- García-Astrain, C.; Chen, C.; Burón, M.; Palomares, T.; Eceiza, A.; Fruk, L.; Corcuera, M.Á.; Gabilondo, N. Biocompatible Hydrogel Nanocomposite with Covalently Embedded Silver Nanoparticles. Biomacromolecules 2015, 16, 1301–1310. [Google Scholar] [CrossRef]
- Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933–2945. [Google Scholar] [CrossRef]
- Demirci, G.; Tasdelen, M.A. Synthesis and characterization of graft copolymers by photoinduced CuAAC click chemistry. Eur. Polym. J. 2015, 66, 282–289. [Google Scholar] [CrossRef]
- Degirmenci, A.; Sanyal, R.; Sanyal, A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug. Chem. 2024, 35, 433–452. [Google Scholar] [CrossRef]
- Leggate, J.; Allain, R.; Isaac, L.; Blais, B.W. Microplate fluorescence assay for the quantification of double stranded DNA using SYBR Green I dye. Biotechnol. Lett. 2006, 28, 1587–1594. [Google Scholar] [CrossRef]
- Fischer, M.J.E. Amine Coupling Through EDC/NHS: A Practical Approach. Methods Mol. Biol. 2010, 627, 55–73. [Google Scholar] [PubMed]
- Fu, S.; Dong, H.; Deng, X.; Zhuo, R.; Zhong, Z. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction. Carbohydr. Polym. 2017, 169, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Suzuki, Y.; Suhara, T.; Omichi, K.; Shimizu, A.; Hasegawa, K.; Kokudo, N.; Ohta, S.; Ito, T. In Situ Cross-Linkable Hydrogel of Hyaluronan Produced via Copper-Free Click Chemistry. Biomacromolecules 2013, 14, 3581–3588. [Google Scholar] [CrossRef]
- Han, S.-S.; Yoon, H.Y.; Yhee, J.Y.; Cho, M.O.; Shim, H.-E.; Jeong, J.-E.; Lee, D.-E.; Kim, K.; Guim, H.; Lee, J.H.; et al. In situ cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering. Polym. Chem. 2018, 9, 20–27. [Google Scholar] [CrossRef]
- Vlakh, E.G.; Grachova, E.V.; Zhukovsky, D.D.; Hubina, A.V.; Mikhailova, A.S.; Shakirova, J.R.; Sharoyko, V.V.; Tunik, S.P.; Tennikova, T.B. Self-assemble nanoparticles based on polypeptides containing C-terminal luminescent Pt-cysteine complex. Sci. Rep. 2017, 7, 41991. [Google Scholar] [CrossRef]
- Kar, M.; Malvi, B.; Das, A.; Panneri, S.; Gupta, S. Sen Synthesis and characterization of poly-l-lysine grafted SBA-15 using NCA polymerization and click chemistry. J. Mater. Chem. 2011, 21, 6690. [Google Scholar] [CrossRef]
- Obhi, N.K.; Peda, D.M.; Kynaston, E.L.; Seferos, D.S. Exploring the Graft-To Synthesis of All-Conjugated Comb Copolymers Using Azide–Alkyne Click Chemistry. Macromolecules 2018, 51, 2969–2978. [Google Scholar] [CrossRef]
- Savaş, B.; Öztürk, T.; Meyvacı, E.; Hazer, B. Synthesis and characterization of comb-type graft copolymers by redox polymerization and “click” chemistry method. SN Appl. Sci. 2020, 2, 181. [Google Scholar] [CrossRef]
- Savaş, B.; Öztürk, T. Poly(4-vinylbenzyl-g-β-butyrolactone) graft copolymer synthesis and characterization using ring-opening polymerization, free-radical polymerization, and “click” chemistry techniques. J. Chem. Sci. 2024, 136, 65. [Google Scholar] [CrossRef]
- Öztürk, T.; Asan, N. Synthesis and Characterization of Poly(vinyl chloride-graft-ethylene glycol) Graft Copolymers by “Click” Chemistry. Hacet. J. Biol. Chem. 2018, 1, 35–42. [Google Scholar]
- Zheng, X.; Wang, B.; Tang, X.; Mao, B.; Zhang, Q.; Zhang, T.; Zhao, J.; Cui, S.; Chen, W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr. Polym. 2023, 299, 120153. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.C.; Pereira, H.C.B.; da Silva, M.d.L.C.; Vasconcelos, A.F.D.; Celligoi, M.A.P.C. Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses. Appl. Biochem. Biotechnol. 2017, 182, 276–293. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, M.; Shoham, G. FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys. Chem. 2007, 125, 166–171. [Google Scholar] [CrossRef]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef]
- Cheraghi, R.; Alipour, M.; Nazari, M.; Hosseinkhani, S. Optimization of conditions for gene delivery system based on PEI. Nanomed. J. 2017, 4, 8–16. [Google Scholar]
- Ferrari, R.; Sponchioni, M.; Morbidelli, M.; Moscatelli, D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: The checkpoints on the road from the synthesis to clinical translation. Nanoscale 2018, 10, 22701–22719. [Google Scholar] [CrossRef]
- Williams, J. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J. Control Release 2003, 91, 167–172. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.-X. Lipid Nanoparticles for Drug Delivery. Adv. NanoBiomed Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Zipper, H. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 2004, 32, e103. [Google Scholar] [CrossRef] [PubMed]
- González Ferreiro, M.; Tillman, L.; Hardee, G.; Bodmeier, R. Characterization of alginate/poly-l-lysine particles as antisense oligonucleotide carriers. Int. J. Pharm. 2002, 239, 47–59. [Google Scholar] [CrossRef]
- Jia, J.; Yang, J.; Qian, L.; Zhou, B.; Tang, X.; Liu, S.; Wu, L.; Chen, J.; Kuang, Y. Controlled siRNA Release of Nanopolyplex for Effective Targeted Anticancer Therapy in Animal Model. Int. J. Nanomed. 2024, 19, 1145–1161. [Google Scholar] [CrossRef] [PubMed]
- Osipova, O.; Sharoyko, V.; Zashikhina, N.; Zakharova, N.; Tennikova, T.; Urtti, A.; Korzhikova-Vlakh, E. Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells. Pharmaceutics 2020, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Salma-Ancane, K.; Sceglovs, A.; Tracuma, E.; Wychowaniec, J.K.; Aunina, K.; Ramata-Stunda, A.; Nikolajeva, V.; Loca, D. Effect of crosslinking strategy on the biological, antibacterial and physicochemical performance of hyaluronic acid and ɛ-polylysine based hydrogels. Int. J. Biol. Macromol. 2022, 208, 995–1008. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, X.; Liu, Z.; Meng, R.; Chen, X.; Guo, N. Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination. Food Nutr. Res. 2016, 60, 31891. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Tapeinos, C.; Torrieri, G.; Känkänen, V.; El-Sayed, N.; Python, A.; Hirvonen, J.T.; Santos, H.A. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv. Drug Deliv. Rev. 2021, 174, 576–612. [Google Scholar] [CrossRef]
- Alameh, M.; Lavertu, M.; Tran-Khanh, N.; Chang, C.-Y.; Lesage, F.; Bail, M.; Darras, V.; Chevrier, A.; Buschmann, M.D. siRNA Delivery with Chitosan: Influence of Chitosan Molecular Weight, Degree of Deacetylation, and Amine to Phosphate Ratio on in Vitro Silencing Efficiency, Hemocompatibility, Biodistribution, and in Vivo Efficacy. Biomacromolecules 2018, 19, 112–131. [Google Scholar] [CrossRef]
- Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 2010, 62, 12–27. [Google Scholar] [CrossRef]
- Lechanteur, A.; Sanna, V.; Duchemin, A.; Evrard, B.; Mottet, D.; Piel, G. Cationic Liposomes Carrying siRNA: Impact of Lipid Composition on Physicochemical Properties, Cytotoxicity and Endosomal Escape. Nanomaterials 2018, 8, 270. [Google Scholar] [CrossRef]
- Hanafy, M.S.; Dao, H.M.; Xu, H.; Koleng, J.J.; Sakran, W.; Cui, Z. Effect of the amount of cationic lipid used to complex siRNA on the cytotoxicity and proinflammatory activity of siRNA-solid lipid nanoparticles. Int. J. Pharm. X 2023, 6, 100197. [Google Scholar] [CrossRef]
- Choi, K.Y.; Saravanakumar, G.; Park, J.H.; Park, K. Hyaluronic acid-based nanocarriers for intracellular targeting: Interfacial interactions with proteins in cancer. Colloids Surf. B Biointerfaces 2012, 99, 82–94. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, S.; Hu, H.; Wu, G.; Feng, M.; Zhang, W.; Luo, X. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: Effects of PEG molecular weight and PEGylation degree. J. Biomed. Mater. Res. Part A 2008, 84A, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.K.; Kai, D.; Tu, G.X.E.; Deen, G.R.; Too, H.P.; Loh, X.J. Enhanced transfection of a macromolecular lignin-based DNA complex with low cellular toxicity. Biosci. Rep. 2018, 38, BSR20181021. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shi, H.; Chu, X.; Zhou, X.; Sun, P. A rapid and efficient polyethylenimine-based transfection method to prepare lentiviral or retroviral vectors: Useful for making iPS cells and transduction of primary cells. Biotechnol. Lett. 2016, 38, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Wang, C.; Huang, Y.; Shi, Q.; Fernandes, J.C.; Dai, K.; Tang, G.; Zhang, X. Polyethylenimine600-beta-cyclodextrin: A promising nanopolymer for nonviral gene delivery of primary mesenchymal stem cells. Int. J. Nanomed. 2013, 2013, 1935. [Google Scholar] [CrossRef]
- Lehner, R.; Wang, X.; Hunziker, P. Plasmid linearization changes shape and efficiency of transfection complexes. Eur. J. Nanomed. 2013, 5, 28. [Google Scholar] [CrossRef]
Modification of HA with EDA | Modification of HA-EDA with DBCO | |||
---|---|---|---|---|
[EDA(Boc)]/ [-COOH Groups of HA] | Substitution Degree a (%) | [DBCO-NHS Ester]/ [-NH2 Groups of HA-EDA] | EDA Modification Efficacy b (%) | Substitution Degree c (%) |
1/1 | 7 | 2/1 | 98 | 7 |
3/1 | 14 | 2/1 | 52 | 7 |
4/1 | 99 | 14 |
Nanoparticles | N/P | DH (nm) | PDI | Zeta-Potential (mV) |
---|---|---|---|---|
HA-g-PLys-1 a | - | 540 | 0.52 | 38.7 ± 0.8 |
HA-g-PLys-2 b | - | 365 | 0.29 | 38.9 ± 1.0 |
HA-g-PLys-1@dT-dA | 50 | 262 | 0.29 | 22.5 ± 0.4 |
HA-g-PLys-2@dT-dA | 50 | 210 | 0.27 | 23.2 ± 0.7 |
HA-g-PLys-1@dT-dA | 10 | 185 | 0.28 | 10.5 ± 0.6 |
HA-g-PLys-2@dT-dA | 10 | 173 | 0.25 | 10.9 ± 0.5 |
HA-g-PLys-2@DNA | 50 | 185 | 0.22 | 25.0 ± 1.1 |
HA-g-PLys-2@DNA | 10 | 160 | 0.21 | 15.2 ± 1.3 |
HA/PLys@DNA c | 50 | 291 | 0.24 | 24.4 ± 1.5 |
HA/PLys@DNA c | 10 | 243 | 0.25 | 14.4 ± 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzhikov-Vlakh, V.; Teterina, P.; Gubina, N.; Dzhuzha, A.; Tennikova, T.; Korzhikova-Vlakh, E. Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System. Polysaccharides 2025, 6, 60. https://doi.org/10.3390/polysaccharides6030060
Korzhikov-Vlakh V, Teterina P, Gubina N, Dzhuzha A, Tennikova T, Korzhikova-Vlakh E. Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System. Polysaccharides. 2025; 6(3):60. https://doi.org/10.3390/polysaccharides6030060
Chicago/Turabian StyleKorzhikov-Vlakh, Viktor, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova, and Evgenia Korzhikova-Vlakh. 2025. "Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System" Polysaccharides 6, no. 3: 60. https://doi.org/10.3390/polysaccharides6030060
APA StyleKorzhikov-Vlakh, V., Teterina, P., Gubina, N., Dzhuzha, A., Tennikova, T., & Korzhikova-Vlakh, E. (2025). Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System. Polysaccharides, 6(3), 60. https://doi.org/10.3390/polysaccharides6030060