Hyperbranched Cellulose for Dye Removal in Aqueous Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cellulose Chlorination
2.3. Synthesis of Hyperbranched Cellulose
2.4. Point of Zero Charge (pHPZC)
2.5. Characterizations
2.6. Adsorption
2.6.1. Adsorption Kinetics
2.6.2. Influence of pH on Adsorption
2.6.3. Adsorption Isotherms
3. Results and Discussion
3.1. Characterization
3.2. Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahul; Jindal, R. Efficient Removal of Toxic Dyes Malachite Green and Fuchsin Acid from Aqueous Solutions Using Pullulan/CMC Hydrogel. Polymer 2024, 307, 127203. [Google Scholar] [CrossRef]
- Cardoso, N.F.; Lima, E.C.; Pinto, I.S.; Amavisca, C.V.; Royer, B.; Pinto, R.B.; Alencar, W.S.; Pereira, S.F.P. Application of Cupuassu Shell as Biosorbent for the Removal of Textile Dyes from Aqueous Solution. J. Environ. Manag. 2011, 92, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.A.R.; Sousa, K.S.; Cavalcanti, G.R.S.; França, D.B.; Queiroga, L.N.F.; Santos, I.M.G.; Fonseca, M.G.; Jaber, M. Green Biosorbents Based on Chitosan-Montmorillonite Beads for Anionic Dye Removal. J. Environ. Chem. Eng. 2017, 5, 3309–3318. [Google Scholar] [CrossRef]
- Fabryanty, R.; Valencia, C.; Soetaredjo, F.E.; Putro, J.N.; Santoso, S.P.; Kurniawan, A.; Ju, Y.H.; Ismadji, S. Removal of Crystal Violet Dye by Adsorption Using Bentonite—Alginate Composite. J. Environ. Chem. Eng. 2017, 5, 5677–5687. [Google Scholar] [CrossRef]
- Cai, W.; Wang, M.; Yang, G.Q.; Li, J. High-Performance Nanofiltration Membranes with a Polyamide-Polyester Composite Layer and a Polydopamine Surface Layer for Desalination and Dye Pollutant Removal. Polymer 2023, 268, 125720. [Google Scholar] [CrossRef]
- Silva, L.d.S.; Carvalho, J.D.O.; Bezerra, R.D.D.S.; Silva, M.S.D.; Ferreira, F.J.L.; Osajima, J.A.; Da Silva Filho, E.C. Potential of Cellulose Functionalized with Carboxylic Acid as Biosorbent for the Removal of Cationic Dyes in Aqueous Solution. Molecules 2018, 23, 743. [Google Scholar] [CrossRef] [PubMed]
- Mu, B.; Wang, A. Adsorption of Dyes onto Palygorskite and Its Composites: A Review. J. Environ. Chem. Eng. 2016, 4, 1274–1294. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, N. Preparation of Polyamine Loofah Cellulose and Its Adsorption for Reactive Brilliant Red K–2BP. Polymer 2024, 292, 126630. [Google Scholar] [CrossRef]
- Xu, R.; Mao, J.; Peng, N.; Luo, X.; Chang, C. Chitin/Clay Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143–150. [Google Scholar] [CrossRef]
- Silva, L.S.; Ferreira, F.J.L.; Silva, M.S.; Citó, A.M.G.L.; Meneguin, A.B.; Sábio, R.M.; Barud, H.S.; Bezerra, R.D.S.; Osajima, J.A.; Silva Filho, E.C. Potential of Amino-Functionalized Cellulose as an Alternative Sorbent Intended to Remove Anionic Dyes from Aqueous Solutions. Int. J. Biol. Macromol. 2018, 116, 1282–1295. [Google Scholar] [CrossRef]
- Jiang, F.; Dinh, D.M.; Hsieh, Y. Lo Adsorption and Desorption of Cationic Malachite Green Dye on Cellulose Nanofibril Aerogels. Carbohydr. Polym. 2017, 173, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Wu, X.; Shi, K.; Zhao, Y.; Huang, J.; Zhou, W.; Cai, M.; Guo, L. Surface Plasma Modification of Cellulose Acetate Fiber Filter for the Adsorption of Typical Components in Smoke Components. RSC Adv. 2024, 14, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, R.D.S.; Morais, A.I.S.; Osajima, J.A.; Nunes, L.C.C.; Silva Filho, E.C. Development of New Phosphated Cellulose for Application as an Efficient Biomaterial for the Incorporation/Release of Amitriptyline. Int. J. Biol. Macromol. 2016, 86, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.Q.; Strømme, M.; Lindh, J. Preparation of Porous 2,3-Dialdehyde Cellulose Beads Crosslinked with Chitosan and Their Application in Adsorption of Congo Red Dye. Carbohydr. Polym. 2018, 181, 200–207. [Google Scholar] [CrossRef] [PubMed]
- De Castro Silva, F.; Da Silva, M.M.F.; Lima, L.C.B.; Osajima, J.A.; Da Silva Filho, E.C. Integrating Chloroethyl Phosphate with Biopolymer Cellulose and Assessing Their Potential for Absorbing Brilliant Green Dye. J. Environ. Chem. Eng. 2016, 4, 3348–3356. [Google Scholar] [CrossRef]
- Xie, K.; Zhao, W.; He, X. Adsorption Properties of Nano-Cellulose Hybrid Containing Polyhedral Oligomeric Silsesquioxane and Removal of Reactive Dyes from Aqueous Solution. Carbohydr. Polym. 2011, 83, 1516–1520. [Google Scholar] [CrossRef]
- Musyoka, S.M.; Ngila, J.C.; Moodley, B.; Petrik, L.; Kindness, A. Synthesis, Characterization, and Adsorption Kinetic Studies of Ethylenediamine Modified Cellulose for Removal of Cd and Pb. Anal. Lett. 2011, 44, 1925–1936. [Google Scholar] [CrossRef]
- Silva Filho, E.C.; Lima, L.C.B.; Silva, F.C.; Sousa, K.S.; Fonseca, M.G.; Santana, S.A.A. Immobilization of Ethylene Sulfide in Aminated Cellulose for Removal of the Divalent Cations. Carbohydr. Polym. 2013, 92, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.S.; Silva, M.S.; Ferreira, F.J.L.; Lima, L.C.B.; Bezerra, R.D.S.; Citó, A.M.G.L.; Osajima, J.A.; Silva Filho, E.C. Effective Removal of the Remazol Yellow GR Dye Using Cellulose Functionalized by Basic Groups. Water Air Soil. Pollut. 2018, 229, 1–16. [Google Scholar] [CrossRef]
- Schüll, C.; Frey, H. Grafting of Hyperbranched Polymers: From Unusual Complex Polymer Topologies to Multivalent Surface Functionalization. Polymer 2013, 54, 5443–5455. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, L.; Liao, Q.; Chen, X.; Qian, Z.; Shen, J.; Liang, J.; Yao, J. Functionalization of Cellulose with Hyperbranched Polyethylenimine for Selective Dye Adsorption and Separation. Cellulose 2016, 23, 3785–3797. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Kim, K.H. Hyperbranched Polymers as Superior Adsorbent for the Treatment of Dyes in Water. Adv. Colloid. Interface Sci. 2022, 302, 102633. [Google Scholar] [CrossRef] [PubMed]
- Vatanpour, V.; Jouyandeh, M.; Akhi, H.; Mousavi Khadem, S.S.; Ganjali, M.R.; Moradi, H.; Mirsadeghi, S.; Badiei, A.; Esmaeili, A.; Rabiee, N.; et al. Hyperbranched Polyethylenimine Functionalized Silica/Polysulfone Nanocomposite Membranes for Water Purification. Chemosphere 2022, 290, 133363. [Google Scholar] [CrossRef]
- Voit, B.I. Hyperbranched Polymers: A Chance and a Challenge. Comptes Rendus Chimie 2003, 6, 821–832. [Google Scholar] [CrossRef]
- Barakat, M.A.; Ramadan, M.H.; Alghamdi, M.A.; Algarny, S.S.; Woodcock, H.L.; Kuhn, J.N. Remediation of Cu(II), Ni(II), and Cr(III) Ions from Simulated Wastewater by Dendrimer/Titania Composites. J. Environ. Manag. 2013, 117, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, Y.; Wu, M.; Zhang, L.; Wang, L.; Ni, H. Surface Functionalization of Cellulose with Hyperbranched Polyamide for Efficient Adsorption of Organic Dyes and Heavy Metals. J. Clean. Prod. 2019, 232, 774–783. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Luo, Z.; Shen, J.; Ni, Q.; Yao, J. Facile Preparation of a Cellulose-Based Bioadsorbent Modified by HPEI in Heterogeneous System for High-Efficiency Removal of Multiple Types of Dyes. React. Funct. Polym. 2018, 125, 77–83. [Google Scholar] [CrossRef]
- Qin, W.H.; Li, M.X.; Zhang, Y.B.; Li, W.; Jia, R.; Xiong, Y.S.; Lu, H.Q.; Zhang, S.Y. High Capacity and Selective Adsorption of Congo Red by Cellulose-Based Aerogel with Mesoporous Structure: Adsorption Properties and Statistical Data Simulation. Int. J. Biol. Macromol. 2024, 259, 129137. [Google Scholar] [CrossRef] [PubMed]
- Ee, L.Y.; Chia, S.Y.R.; Xue, K.; Chin, S.Y.; Cho, C.A.H.; Tan, X.Y.; Li, S.F.Y. Hyperbranched Nanocellulose Enabling Rapid Boron Removal from Aqueous Environment. Chem. Eng. J. 2023, 454, 140218. [Google Scholar] [CrossRef]
- Mahdavi, H.; Shahalizade, T. Preparation, Characterization and Performance Study of Cellulose Acetate Membranes Modified by Aliphatic Hyperbranched Polyester. J. Memb. Sci. 2015, 473, 256–266. [Google Scholar] [CrossRef]
- Silva, L.S.; Lima, L.C.B.; Silva, F.C.; Matos, J.M.E.; Santos, M.R.M.C.; Santos Júnior, L.S.; Sousa, K.S.; da Silva Filho, E.C. Dye Anionic Sorption in Aqueous Solution onto a Cellulose Surface Chemically Modified with Aminoethanethiol. Chem. Eng. J. 2013, 218, 89–98. [Google Scholar] [CrossRef]
- Vieira, A.P.; Santana, S.A.A.; Bezerra, C.W.B.; Silva, H.A.S.; de Melo, J.C.P.; Filho, E.C.d.S.; Airoldi, C. Copper Sorption from Aqueous Solutions and Sugar Cane Spirits by Chemically Modified Babassu Coconut (Orbignya Speciosa) Mesocarp. Chem. Eng. J. 2010, 161, 99–105. [Google Scholar] [CrossRef]
- Teixeira, T.P.F.; Pereira, S.I.; Aquino, S.F.; Dias, A. Calcined Layered Double Hydroxides for Decolorization of Azo Dye Solutions: Equilibrium, Kinetics, and Recycling Studies. Environ. Eng. Sci. 2012, 29, 685–692. [Google Scholar] [CrossRef]
- Rajabi, M.; Bagheri-Roochi, M.; Asghari, A. Effect of Electrolyte Nature on Kinetics of Remazol Yellow g Removal by Electrocoagulation. Russ. J. Phys. Chem. A 2011, 85, 1820–1824. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Lazaridis, N.K.; Kostoglou, M. On the Simultaneous Adsorption of a Reactive Dye and Hexavalent Chromium from Aqueous Solutions onto Grafted Chitosan. J. Colloid. Interface Sci. 2013, 407, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.O.; de Lourdes Nascimento Santos, M.; Costa, J.A.S.; de Jesus, R.A.; Navickiene, S.; Sussuchi, E.M.; de Mesquita, M.E. Investigating the Potential of Functionalized MCM-41 on Adsorption of Remazol Red Dye. Environ. Sci. Pollut. Res. 2013, 20, 5028–5035. [Google Scholar] [CrossRef] [PubMed]
- Indhu, S.; Muthukumaran, K. Removal and Recovery of Reactive Yellow 84 Dye from Wastewater and Regeneration of Functionalised Borassus Flabellifer Activated Carbon. J. Environ. Chem. Eng. 2018, 6, 3111–3121. [Google Scholar] [CrossRef]
- Gong, R.; Ding, Y.; Li, M.; Yang, C.; Liu, H.; Sun, Y. Utilization of Powdered Peanut Hull as Biosorbent for Removal of Anionic Dyes from Aqueous Solution. Dye. Pigment. 2005, 64, 187–192. [Google Scholar] [CrossRef]
- Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. Prot. 1998, 76, 183–191. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J. Franklin Inst. 1917, 183, 102–105. [Google Scholar] [CrossRef]
- Herbert Freundlich, V. Über Die Adsorption in Lösungen. Zeitschrift Für Physikalische Chemie 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Temkin, M.J.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochim. U.R.S.S 1940, 12, 217–222. [Google Scholar]
- Satoh, T.; Kinugawa, Y.; Tamaki, M.; Kitajyo, Y.; Sakai, R.; Kakuchi, T. Synthesis, Structure, and Characteristics of Hyperbranched Polyterpene Alcohols. Macromolecules 2008, 41, 5265–5271. [Google Scholar] [CrossRef]
- Sun, M.; Li, J.; Li, B.; Fu, Y.; Bo, Z. Toward High Molecular Weight Triphenylamine-Based Hyperbranched Polymers. Macromolecules 2005, 38, 2651–2658. [Google Scholar] [CrossRef]
- Silva, L.S.; Lima, L.C.B.; Ferreira, F.J.L.; Silva, M.S.; Osajima, J.A.; Bezerra, R.D.S.; Silva Filho, E.C. Sorption of the Anionic Reactive Red RB Dye in Cellulose: Assessment of Kinetic, Thermodynamic, and Equilibrium Data. Open Chem. 2015, 13, 801–812. [Google Scholar] [CrossRef]
- Sadare, O.O.; Nkosi, N.A.; Moothi, K. Preparation and Characterization of Hexadecyl Trimethyl Ammonium Bromide (HDTMA-Br)-Modified Cellulose Nanocrystals (CNCs) Derived from South African Waste Agricultural Residue (Corncobs). Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, S.; Fan, K.; He, H.; Qin, Z. Preparation and Adsorption Properties of Green Cellulose-Based Composite Aerogel with Selective Adsorption of Methylene Blue. Polymer 2022, 258, 125320. [Google Scholar] [CrossRef]
- Da Silva Filho, E.C.; Santana, S.A.A.; Melo, J.C.P.; Oliveira, F.J.V.E.; Airoldi, C. X-Ray Diffraction and Thermogravimetry Data of Cellulose, Chlorodeoxycellulose and Aminodeoxycellulose. J. Therm. Anal. Calorim. 2010, 100, 315–321. [Google Scholar] [CrossRef]
- da Silva Filho, E.C.; da Silva, L.S.; Lima, L.C.B.; de Santos, L.S.; de Santos, M.R.M.C.; de Matos, J.M.E.; Airoldi, C. Thermodynamic Data of 6-(4′-Aminobutylamino)-6-Deoxycellulose Sorbent for Cation Removal from Aqueous Solutions. Sep. Sci. Technol. 2011, 46, 2566–2574. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Al-Bogami, A.S. Influence of Mo(VI) Immobilization and Temperature on As(V) Sorption onto Magnetic Separable Poly p-Phenylenediamine-Thiourea-Formaldehyde Polymer. J. Hazard. Mater. 2018, 342, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Košak, A.; Bauman, M.; Padežnik-Gomilšek, J.; Lobnik, A. Lead (II) Complexation with 3-Mercaptopropyl-Groups in the Surface Layer of Silica Nanoparticles: Sorption, Kinetics and EXAFS/XANES Study. J. Mol. Liq. 2017, 229, 371–379. [Google Scholar] [CrossRef]
- Subbaiah, M.V.; Kim, D.S. Adsorption of Methyl Orange from Aqueous Solution by Aminated Pumpkin Seed Powder: Kinetics, Isotherms, and Thermodynamic Studies. Ecotoxicol. Environ. Saf. 2016, 128, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, J.D.; Berillo, D.; Purkis, J.M.; Byrne, M.L.; Tribolet, A.D.C.C.M.; Warwick, P.E.; Cundy, A.B. Effective 137Cs+ and 90Sr2+ Immobilisation from Groundwater by Inorganic Polymer Resin Clevasol® Embedded within a Macroporous Cryogel Host Matrix. Mater. Today Sustain. 2022, 19, 100190. [Google Scholar] [CrossRef]
- Akköz, Y.; Coşkun, R. Cellulose-Supported Bioadsorbent from Natural Hemp Fiber for Removal of Anionic Dyes from Aqueous Solution. Int. J. Biol. Macromol. 2023, 252, 126447. [Google Scholar] [CrossRef] [PubMed]
- Patra, R.; Panda, P.K.; Lin, T.H.; Wu, M.C.; Yang, P.C. Graphitic Carbon Nitride Nanosheet and Ferroelectric PbTiO3 Nanoplates S-Scheme Heterostructure for Enhancing Hydrogen Production and Textile Dye Degradation. Chem. Eng. Sci. 2024, 295, 120133. [Google Scholar] [CrossRef]
- Leal, A.N.R.; De Lima, A.d.C.A.; Azevedo, M.G.F.d.A.; Santos, D.K.D.d.N.; Zaidan, L.E.M.C.; De Lima, V.F.; Cruz Filho, I.J. Removal of Remazol Black B Dye Using Bacterial Cellulose as an Adsorbent. Scientia Plena 2021, 17, 034201. [Google Scholar] [CrossRef]
- Huang, X.Y.; Mao, X.Y.; Bu, H.T.; Yu, X.Y.; Jiang, G.B.; Zeng, M.H. Chemical Modification of Chitosan by Tetraethylenepentamine and Adsorption Study for Anionic Dye Removal. Carbohydr. Res. 2011, 346, 1232–1240. [Google Scholar] [CrossRef]
- Meas, A.; Wi, E.; Chang, M.; Hwang, H.S. Carboxylmethyl Cellulose Produced from Wood Sawdust for Improving Properties of Sodium Alginate Hydrogel in Dye Adsorption. Sep. Purif. Technol. 2024, 341, 126906. [Google Scholar] [CrossRef]
- Jabli, M.; Sebeia, N.; El-Ghoul, Y.; Soury, R.; Al-Ghamdi, Y.O.; Saleh, T.A. Chemical Modification of Microcrystalline Cellulose with Polyethyleneimine and Hydrazine: Characterization and Evaluation of Its Adsorption Power toward Anionic Dyes. Int. J. Biol. Macromol. 2023, 229, 210–223. [Google Scholar] [CrossRef]
- Furlan, F.R.; de Melo da Silva, L.G.; Morgado, A.F.; de Souza, A.A.U.; Guelli Ulson de Souza, S.M.A. Removal of Reactive Dyes from Aqueous Solutions Using Combined Coagulation/Flocculation and Adsorption on Activated Carbon. Resour. Conserv. Recycl. 2010, 54, 283–290. [Google Scholar] [CrossRef]
- Homagai, P.L.; Poudel, R.; Poudel, S.; Bhattarai, A. Adsorption and Removal of Crystal Violet Dye from Aqueous Solution by Modified Rice Husk. Heliyon 2022, 8, e09261. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, J.T.; Dlamini, M.L.; Nuapia, Y.; Etale, A. Synthesis and Application of Cationized Cellulose for Adsorption of Anionic Dyes. Mater. Today Proc. 2022, 62, S133–S140. [Google Scholar] [CrossRef]
- Iqbal, D.; Ullah, R.; Zhao, R.; Dou, Y.; Yan, D.; Ning, X. Dye Adsorption and Antimicrobial Performances of Composite Nanofiber Membranes Containing Cuprammonium Cellulose. Sep. Purif. Technol. 2024, 339, 126677. [Google Scholar] [CrossRef]
- Jin, L.; Li, W.; Xu, Q.; Sun, Q. Amino-Functionalized Nanocrystalline Cellulose as an Adsorbent for Anionic Dyes. Cellulose 2015, 22, 2443–2456. [Google Scholar] [CrossRef]
Material | ||||
---|---|---|---|---|
Cl-Cel | NS-Cel | N2S-Cel | N4S-Cel | |
Cl (%) | 17.58 ± 0.10 | 2.51 ± 0.14 | 2.62 ± 0.01 | 1.61 ± 0.15 |
N (%) | - | 1.79 ± 0.05 | 2.22 ± 0.09 | 2.68 ± 0.04 |
nN (mmol g−1) | - | 1.28 ± 0.02 | 1.59 ± 0.03 | 1.91 ± 0.02 |
S (%) | - | 23.92 ± 0.05 | 26.80 ± 0.05 | 37.89 ± 0.03 |
nS (mmol g−1) | - | 7.48 ± 0.01 | 8.38 ± 0.02 | 11.84 ± 0.01 |
nS/nN | - | 5.84 | 5.27 | 6.20 |
Cel | NS-Cel | N2S-Cel | N4S-Cel | ||||
---|---|---|---|---|---|---|---|
Yellow | Yellow | Red | Yellow | Red | Yellow | Red | |
Pseudo-First-Order Model | |||||||
qe,exp (mg g−1) | 0.46 | 21.99 | 25.39 | 17.33 | 40.17 | 18.87 | 33.45 |
K1 (min−1) | 0.031 | 0.031 | 0.048 | 0.011 | 0.0185 | 0.018 | 0.0105 |
qe,cal (mg g−1) | 0.31 | 13.13 | 76.35 | 5.12 | 17.66 | 28.52 | 2.31 |
R2 | 0.668 | 0.685 | 0.475 | 0.901 | 0.945 | 0.921 | 0.690 |
Pseudo-Second-Order Model | |||||||
qe,exp (mg g−1) | 0.46 | 21.99 | 25.39 | 17.33 | 40.17 | 18.87 | 33.45 |
K2 (min−1) | 0.065 | 0.002 | 0.008 | 0.0049 | 0.0021 | 0.0004 | 0.0124 |
qe,cal (mg g−1) | 0.55 | 24.64 | 25.54 | 17.90 | 41.74 | 27.76 | 33.62 |
R2 | 0.951 | 0.994 | 0.998 | 0.998 | 0.998 | 0.981 | 0.999 |
h | 0.02 | 1.50 | 5.16 | 1.57 | 3.74 | 0.31 | 13.99 |
Adsorbent | Dye | Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|
Carboxymethyl cellulose in sodium alginate microgel | Trypan blur | 141.48 | [59] |
Polyethyleneimine cellulose | Calmagite | 104.00 | [60] |
Activated carbon derived from coconut shell | Orange 16 | 99.70 | [61] |
Biochar from rice husk | Crystal violet | 90.02 | [62] |
N4S-Cel | Remazol yellow GR | 87.70 | Present work |
Cationic cellulose | Methyl orange | 76.90 | [63] |
Nanofiber membrane composite containing cuprammonium cellulose | Congo red | 41.00 | [64] |
Cel | NS-Cel | N2S-Cel | N4S-Cel | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
298 K | 308 K | 318 K | 298 K | 308 K | 318 K | 298 K | 308 K | 318 K | 298 K | 308 K | 318 K | |
Langmuir | ||||||||||||
qm (mg g−1) | 9.01 | 5.96 | 3.78 | 51.23 | 53.16 | 68.57 | 32.10 | 42.75 | 52.46 | 80.64 | 69.39 | 89.76 |
KL (L mg−1) | 0.002 | 0.002 | 0.024 | 0.020 | 0.041 | 0.084 | 0.02 | 0.02 | 0.04 | 0.02 | 0.05 | 0.10 |
RL | 0.554 | 0.459 | 0.109 | 0.095 | 0.063 | 0.033 | 0.09 | 0.08 | 0.05 | 0.10 | 0.05 | 0.02 |
R2 | 0.423 | 0.730 | 0.987 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.997 | 0.998 | 0.998 |
Freundlich | ||||||||||||
nF | 1.221 | 1.601 | 6.721 | 6.03 | 10.08 | 11.21 | 6.23 | 6.42 | 11.92 | 6.42 | 10.65 | 10.88 |
KF (L g−1) | 0.028 | 0.063 | 1.401 | 16.38 | 27.09 | 38.42 | 10.60 | 14.61 | 29.48 | 27.12 | 37.06 | 49.92 |
R2 | 0.852 | 0.820 | 0.474 | 0.915 | 0.850 | 0.740 | 0.909 | 0.869 | 0.950 | 0.919 | 0.838 | 0.747 |
Temkin | ||||||||||||
nT | 0.601 | 0.669 | 2.386 | 0.148 | 0.218 | 0.186 | 0.20 | 0.19 | 0.26 | 0.10 | 0.17 | 0.14 |
KT (L mg−1) | 0.021 | 0.015 | 3.272 | 1.77 | 118.18 | 509.70 | 0.58 | 2.85 | 701.5 | 2.62 | 213.06 | 444.85 |
R2 | 0.933 | 0.836 | 0.488 | 0.920 | 0.862 | 0.940 | 0.937 | 0.911 | 0.955 | 0.913 | 0.831 | 0.754 |
NS-Cel | N2S-Cel | N4S-Cel | |||||||
---|---|---|---|---|---|---|---|---|---|
298 K | 308 K | 318 K | 298 K | 308 K | 318 K | 298 K | 308 K | 318 K | |
Langmuir | |||||||||
qm (mg g−1) | 58.89 | 57.21 | 58.58 | 23.36 | 23.10 | 23.33 | 58.58 | 56.09 | 57.60 |
KL (L mg−1) | 0.032 | 0.084 | 0.063 | 0.031 | 0.013 | 0.021 | 0.063 | 0.044 | 0.503 |
RL | 0.065 | 0.015 | 0.016 | 0.058 | 0.080 | 0.048 | 0.016 | 0.035 | 0.005 |
R2 | 0.998 | 0.999 | 0.999 | 0.998 | 0.997 | 0.999 | 0.999 | 0.999 | 0.999 |
Freundlich | |||||||||
nF | 7.94 | 12.78 | 16.58 | 6.115 | 5.325 | 6.799 | 16.58 | 10.046 | 58.927 |
KF (L g−1) | 24.90 | 34.16 | 38.67 | 7.524 | 6.095 | 8.356 | 38.67 | 28.582 | 51.587 |
R2 | 0.917 | 0.754 | 0.937 | 0.746 | 0.948 | 0.921 | 0.937 | 0.912 | 0.595 |
Temkin | |||||||||
nT | 0.162 | 0.255 | 0.310 | 0.348 | 0.308 | 0.364 | 0.310 | 0.208 | 1.053 |
KT (L mg−1) | 13.9 | 2852.7 | 74310.3 | 2.861 | 0.863 | 4.098 | 74310.3 | 123.92 | 3.238 |
R2 | 0.916 | 0.773 | 0.939 | 0.779 | 0.968 | 0.948 | 0.939 | 0.922 | 0.593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, L.C.B.; Silva, L.d.S.; Silva, F.d.C.; Ferreira, F.J.L.; da Fonseca, M.G.; Osajima, J.A.; Filho, E.C.d.S. Hyperbranched Cellulose for Dye Removal in Aqueous Medium. Polysaccharides 2024, 5, 399-421. https://doi.org/10.3390/polysaccharides5030025
Lima LCB, Silva LdS, Silva FdC, Ferreira FJL, da Fonseca MG, Osajima JA, Filho ECdS. Hyperbranched Cellulose for Dye Removal in Aqueous Medium. Polysaccharides. 2024; 5(3):399-421. https://doi.org/10.3390/polysaccharides5030025
Chicago/Turabian StyleLima, Luciano Clécio Brandão, Lucinaldo dos Santos Silva, Fabrícia de Castro Silva, Francisco José Lustosa Ferreira, Maria Gardênnia da Fonseca, Josy Anteveli Osajima, and Edson Cavalcanti da Silva Filho. 2024. "Hyperbranched Cellulose for Dye Removal in Aqueous Medium" Polysaccharides 5, no. 3: 399-421. https://doi.org/10.3390/polysaccharides5030025
APA StyleLima, L. C. B., Silva, L. d. S., Silva, F. d. C., Ferreira, F. J. L., da Fonseca, M. G., Osajima, J. A., & Filho, E. C. d. S. (2024). Hyperbranched Cellulose for Dye Removal in Aqueous Medium. Polysaccharides, 5(3), 399-421. https://doi.org/10.3390/polysaccharides5030025