Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax
Abstract
:1. Introduction
- It is a natural soluble fiber;
- It is a prebiotic;
- It is non-toxic;
- It has a low calorie content;
- It has fairly high resistance to heat treatment, acidic environments, and yeast fermentation, showing stability during the entire technological process;
- It can improve the texture and organoleptic characteristics of bakery products;
- It has no smell, taste, or color; therefore, it is convenient for introduction into recipes.
2. Materials and Methods
3. Results
3.1. Results of Determining the Total Amounts of Mucus and Protein Contents for the Studied Flax Varieties
3.2. The Results from Determining the Monosaccharide Composition of Heteropolysaccharides of the Studied Flax Varieties
3.3. Results of Determining the Viscosity of the Mucilage Samples of the Studied Flax Varieties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [Green Version]
- Bulu Mohanta, B.; Sen, D.; Mahanti, B.; Nayak, A. Antioxidant potential of herbal polysaccharides: An overview on recent researches. Sens. Int. 2022, 3, 100158. [Google Scholar] [CrossRef]
- Hellebois, T.; Fortuin, J.; Xu, X.; Shaplov, A.S.; Gaiani, C.; Soukoulis, C. Structure conformation, physicochemical and rheological properties of flaxseed gums extracted under alkaline and acidic conditions. Int. J. Biol. Macromol. 2021, 192, 1217–1230. [Google Scholar] [CrossRef]
- Qian, K.-Y.; Cui, S.W.; Nikiforuk, J.; Goff, H.D. Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydr. Res. 2012, 362, 47–55. [Google Scholar] [CrossRef]
- Soukoulis, C.; Gaiani, C.; Hoffmann, L. Plant seed mucilage as emerging biopolymer in food industry applications, current opinion in food. Science 2018, 22, 28–42. [Google Scholar] [CrossRef]
- Tsyganova, T.B.; Minevich, I.E.; Zubkov, V.A.; Osipova, L. Prospects of deep processing of flax seeds. Bread Mak. Russ. 2016, 4, 12–15. (In Russian) [Google Scholar]
- Guilloux, K.; Gaillard, I.; Courtois, J.; Courtois, B.; Petit, E. Production of arabinoxylan-oligosaccharides from flaxceed (Linum usitatissimum). J. Agric. Food Chem. 2009, 57, 11308–11313. [Google Scholar] [CrossRef]
- Qian, K.-Y. Structure-Function Relationship of Flaxseed Gum from Flaxseed Hulls. Ph.D. Thesis, The University of Guelph, Guelph, ON, Canada, 2014; 107p. [Google Scholar]
- Trabelsi, I.; Slima, S.B.; Ktari, N.; Bardaa, S.; Elkaroui, K.; Abdeslam, A.; Ben Salah, R. Purifcation, composition and biological activities of a novel heteropolysaccharide extracted from Linum usitatissimum L. seeds on laser burn wound. Int. J. Biol. Macromol. 2020, 144, 781–790. [Google Scholar] [CrossRef]
- Biao, Y.; Jiannan, H.; Yaolan, C.; Shujie, C.; Dechun, H.; Mcclements, D.J.; Chongjiang, C. Identification and characterization of antioxidant and immune-stimulatory polysaccharides in flaxseed hull. Food Chem. 2020, 315, 126266. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Kim, S.R.; Lee, W.Y. Application of plant mucilage polysaccharides and their techno-functional properties’ modification for fresh produce preservation. Carbohydr. Polym. 2021, 272, 118371. [Google Scholar] [CrossRef]
- Shirke, S.S.; Shirsath, A.A. Isolation of mucilage from flaxseeds and its use as a binder in manufacturing of tablet. Int. J. Pharm. Res. Dev. (IJPRD) 2012, 4, 64–69. [Google Scholar]
- Muthusamy, S.; Udayakumar, G.P.; Narala, V.R. Recent advances in the extraction and characterization of seed polysaccharides, and their bioactivities: A review. Bioact. Carbohydr. Diet. Fibre 2021, 26, 100276. [Google Scholar] [CrossRef]
- Zhu, Z.; He, J.; Liu, G.; Barba, F.J.; Koubaa, M.; Ding, L.; Bals, O.; Grimi, N.; Vorobiev, E. Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innov. Food Sci. Emerg. Technol. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Chemat, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 2015, 34, 17–23. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Jiao, S.; Zheng, J.; Fan, Y.; Chen, L.; Zhang, Z. Ultrasonic frequency effect on corn starch and its cavitation. LWT-Food Sci. Technol. 2015, 60, 941–947. [Google Scholar] [CrossRef]
- Jovanovic-Malinovska, R.; Kuzmanova, S. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrason. Sonochem. 2015, 22, 446. [Google Scholar] [CrossRef]
- Kit, Y.; Fan-Chiang, L.; Changa, Y. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Review. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Fua, X.; Belwala, T.; Cravotto, G. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Review. Ultrason. Sonochem. 2020, 60, 104726. [Google Scholar] [CrossRef]
- Ozhimkova, E.V.; Sidorov, A.I.; Plaschina, I.G.; Martirosova, E.I.; Uschapovsky, I.V.; Danilenko, A.N. Low-frequency ultrasonic extraction of glycans from Linum usitatissimum. Fine Chem. Technol. 2009, 4, 70–74. (In Russian) [Google Scholar]
- Vile, F.J.; Silverman, L. Determination of starch and cellulose with anthrone. Anal. Chem. 1949, 31, 950–953. [Google Scholar] [CrossRef]
- Smith, P.E.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Protein determination with bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Scherz, H.; Boon, G. Analytical Chemistry of Carbohygidrates; Georg Thieme: Stuttgart, Germany; New York, NY, USA, 1998; pp. 33–34. [Google Scholar]
- Luo, J.; Li, Y.; Mai, Y.; Gao, L.; Ou, S.; Wang, Y.; Liu, L.; Peng, X. Flaxseed gum reduces body weight by regulating gut microbiota. J. Funct. Foods 2018, 47, 136–142. [Google Scholar] [CrossRef]
- Cui, W.; Kenaschuk, E.; Mazza, G. Influence of genotype on chemical composition and rheological properties of flaxseed gums. Food Hydrocoll. 1996, 10, 221–227. [Google Scholar] [CrossRef]
- Liu, J.; Shen, J.; Shim, Y.Y.; Reaney, M.J.T. Carboxymethyl derivatives of flaxseed (Linum usitatissimum L.) gum: Characterisation and solution rheology. Int. J. Food Sci. Technol. 2016, 51, 530–541. [Google Scholar] [CrossRef]
Variety Name | Humidity, % | Weight of 1000 Seeds, g | Seed Color |
---|---|---|---|
Regina | 5.06 | 7.23 | brown |
Lenok | 5.07 | 4.77 | brown |
Novotorzhsky | 5.42 | 7.35 | brown |
Alpha | 4.98 | 6.77 | brown |
Rosinka | 5.12 | 4.36 | brown |
Zheltyj (Yellow) | 5.54 | 4.56 | yellow |
Norlin | 5.23 | 7.09 | brown |
Voronezhskij | 4.97 | 7.41 | brown |
Korichnevyj | 5.07 | 7.42 | brown |
Flanders | 5.11 | 6.90 | brown |
Variety Name | Mucus, mg/mL | Reducing Sugars, mg/g | Proteins, % |
---|---|---|---|
Regina | 18.73 ± 0.01 | 9.54 ± 0.01 | 6.45 ± 0.02 |
Lenok | 15.32 ± 0.01 | 9.12 ± 0.01 | 4.02 ± 0.02 |
Novotorzhsky | 23.52 ± 0.01 | 6.42 ± 0.01 | 6.44 ± 0.02 |
Alpha | 16.34 ± 0.01 | 7.91 ± 0.01 | 4.12 ± 0.02 |
Rosinka | 19.61 ± 0.01 | 8.51 ± 0.01 | 4.07 ± 0.02 |
Variety Name | Mucus, mg/mL | Reducing Sugars, mg/g | Proteins, % |
---|---|---|---|
Zheltyj | 18.31 ± 0.01 | 18.81 ± 0.01 | 7.12 ± 0.02 |
Norlin | 19.21 ± 0.01 | 9.42 ± 0.01 | 7.15 ± 0.02 |
Voronezhskij | 19.32 ± 0.01 | 5.61 ± 0.01 | 3.06 ± 0.02 |
Korichnevyj | 20.91 ± 0.01 | 13.03 ± 0.01 | 4.12 ± 0.02 |
Flanders | 19.91 ± 0.01 | 9.93 ± 0.01 | 3.03 ± 0.02 |
Variety Name | Composition of Heteropolysaccharides, % | ||||||
---|---|---|---|---|---|---|---|
Xylose | Galactose | Arabinose | Fucose | Galacturonic Acid | Rhamnose | Glucose | |
Regina | 53.41 ± 0.01 | 6.72 ± 0.01 | 12.02 ± 0.01 | 2.31 ± 0.01 | 23.91 ± 0.01 | 18.14 ± 0.01 | 2.02 ± 0.01 |
Lenok | 54.41 ± 0.01 | 2.41 ± 0.01 | 8.75 ± 0.01 | 1.82 ± 0.01 | 24.91 ± 0.01 | 11.13 ± 0.01 | 1.76 ± 0.01 |
Novotorzhsky | 51.82 ± 0.01 | 2.72 ± 0.01 | 7.43 ± 0.01 | 1.21 ± 0.01 | 28.70 ± 0.01 | 10.81 ± 0.01 | 1.34 ± 0.01 |
Alpha | 57.71 ± 0.01 | 2.81 ± 0.01 | 6.38 ± 0.01 | 2.41 ± 0.01 | 25.91 ± 0.01 | 14.11 ± 0.01 | 1.56 ± 0.01 |
Rosinka | 59.73 ± 0.01 | 2.72 ± 0.01 | 8.91 ± 0.01 | 3.43 ± 0.01 | 23.90 ± 0.01 | 19.75 ± 0.01 | 2.41 ± 0.01 |
Variety Name | Composition of Heteropolysaccharides, % | ||||||
---|---|---|---|---|---|---|---|
Xylose | Galactose | Arabinose | Fucose | Galacturonic Acid | Rhamnose | Glucose | |
Zheltyj | 27.32 ± 0.01 | 2.42 ± 0.01 | 16.21 ± 0.01 | 1.51 ± 0.01 | 29.42 ± 0.01 | 10.15 ± 0.01 | 1.32 ± 0.01 |
Norlin | 22.31 ± 0.01 | 2.14 ± 0.01 | 26.13 ± 0.01 | 2.72 ± 0.01 | 24.02 ± 0.01 | 14.83 ± 0.01 | 3.11 ± 0.01 |
Voronezhskij | 24.52 ± 0.01 | 1.73 ± 0.01 | 23.81 ± 0.01 | 2.13 ± 0.01 | 28.61 ± 0.01 | 10.92 ± 0.01 | 1.21 ± 0.01 |
Korichnevyj | 28.32 ± 0.01 | 1.11 ± 0.01 | 24.14 ± 0.01 | 2.92 ± 0.01 | 28.73 ± 0.01 | 4.81 ± 0.01 | 1.73 ± 0.01 |
Flanders | 56.31 ± 0.01 | 2.41 ± 0.01 | 7.62 ± 0.01 | 1.81 ± 0.01 | 24.71 ± 0.01 | 5.72 ± 0.01 | 2.31 ± 0.01 |
Variety Name | Ratio of Monosaccharides | |||||
---|---|---|---|---|---|---|
Arabinose/ Xylose | Galactose/ Xylose | Glucose/ Xylose | Galactose/ Rhamnose | Fucose/ Rhamnose | Rhamnose/ Xylose | |
Regina | 0.22 | 0.13 | 0.03 | 0.37 | 0.13 | 0.34 |
Lenok | 0.16 | 0.04 | 0.03 | 0.22 | 0.16 | 0.20 |
Novotorzhsky | 0.14 | 0.05 | 0.03 | 0.25 | 0.11 | 0.21 |
Alpha | 0.11 | 0.05 | 0.03 | 0.19 | 0.17 | 0.24 |
Rosinka | 0.14 | 0.04 | 0.04 | 0.14 | 0.17 | 0.33 |
Variety Name | Ratio of Monosaccharides | |||||
---|---|---|---|---|---|---|
Arabinose/ Xylose | Galactose/ Xylose | Glucose/ Xylose | Galactose/ Rhamnose | Fucose/ Rhamnose | Rhamnose/ Xylose | |
Zheltyj | 0.59 | 0.08 | 0.04 | 0.24 | 0.15 | 0.37 |
Norlin | 1.17 | 0.09 | 0.13 | 0.14 | 0.18 | 0.66 |
Voronezhskij | 0.97 | 0.07 | 0.04 | 0.15 | 0.19 | 0.44 |
Korichnevyj | 0.85 | 0.03 | 0.06 | 0.23 | 0.60 | 0.17 |
Flanders | 0.14 | 0.04 | 0.04 | 0.42 | 0.32 | 0.10 |
Variety Name | Viscosity, η × 10−3 MPa*s |
---|---|
Regina | 65.23 ± 1.24 |
Lenok | 47.24 ± 2.04 |
Novotorzhsky | 76.12 ± 1.14 |
Alpha | 43.23 ± 2.33 |
Rosinka | 49.77 ± 1.64 |
Zheltyj (Yellow) | 97.96 ± 1.71 |
Norlin | 78.45 ± 1.04 |
Voronezhskij | 56.45 ± 2.25 |
Korichnevyj | 52.67 ± 1.46 |
Flanders | 42.33 ± 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozhimkova, E.; Uschapovsky, I.; Manaenkov, O. Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax. Polysaccharides 2023, 4, 78-87. https://doi.org/10.3390/polysaccharides4010006
Ozhimkova E, Uschapovsky I, Manaenkov O. Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax. Polysaccharides. 2023; 4(1):78-87. https://doi.org/10.3390/polysaccharides4010006
Chicago/Turabian StyleOzhimkova, Elena, Igor Uschapovsky, and Oleg Manaenkov. 2023. "Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax" Polysaccharides 4, no. 1: 78-87. https://doi.org/10.3390/polysaccharides4010006
APA StyleOzhimkova, E., Uschapovsky, I., & Manaenkov, O. (2023). Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax. Polysaccharides, 4(1), 78-87. https://doi.org/10.3390/polysaccharides4010006