Body Composition and Bone Status Through Lifespan in a Greek Adult Population: Establishing Reference Curves
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject and Design
Participants and Inclusion/Exclusion Criteria
2.2. Measurements
2.2.1. Physical Activity
2.2.2. Anthropometrics
2.2.3. Body Composition and Bone Status Analysis
2.3. Statistical Analysis
2.4. Reference Curves Creation
3. Results
3.1. Body Composition
3.2. Bone Status
3.3. Percentiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, S.S.; Zeller, C.; Chumlea, W.C.; Siervogel, R.M. Aging, Body Composition, and Lifestyle: The Fels Longitudinal Study2. Am. J. Clin. Nutr. 1999, 70, 405–411. [Google Scholar] [CrossRef]
- Wang, Z.M.; Pierson, R.N.; Heymsfield, S.B. The Five-Level Model: A New Approach to Organizing Body-Composition Research. Am. J. Clin. Nutr. 1992, 56, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N. Body Composition in Healthy Aging. Ann. N. Y. Acad. Sci. 2000, 904, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Rogol, A.D.; Roemmich, J.N.; Clark, P.A. Growth at Puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.; Connaughton, C.; McCabe, M.P.; Tatangelo, G. Better with Age: A Health Promotion Program for Men at Midlife. Psychol. Men Masculinity 2017, 18, 40–49. [Google Scholar] [CrossRef]
- Haapanen, M.J.; Kananen, L.; Mikkola, T.M.; Jylhävä, J.; Wasenius, N.S.; Eriksson, J.G.; von Bonsdorff, M.B. Frailty in Midlife as a Predictor of Changes in Body Composition from Midlife into Old Age: A Longitudinal Birth Cohort Study. Gerontology 2024, 70, 831–841. [Google Scholar] [CrossRef]
- Sowers, M.-F.; Crutchfield, M.; Jannausch, M.L.; Russell-Aulet, M. Longitudinal Changes in Body Composition in Women Approaching the Midlife. Ann. Hum. Biol. 1996, 23, 253–265. [Google Scholar] [CrossRef]
- Holloway, D. An Overview of the Menopause: Assessment and Management. Nurs. Stand. 2011, 25, 47–57. [Google Scholar] [CrossRef]
- Morley, J.E.; Baumgartner, R.N.; Roubenoff, R.; Mayer, J.; Nair, K.S. Sarcopenia. J. Lab. Clin. Med. 2001, 137, 231–243. [Google Scholar] [CrossRef]
- Narici, M.V.; Maffulli, N. Sarcopenia: Characteristics, Mechanisms and Functional Significance. Br. Med. Bull. 2010, 95, 139–159. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Sarcopenia: Origins and Clinical Relevance. Clin. Geriatr. Med. 2011, 27, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Buch, A.; Carmeli, E.; Boker, L.K.; Marcus, Y.; Shefer, G.; Kis, O.; Berner, Y.; Stern, N. Muscle Function and Fat Content in Relation to Sarcopenia, Obesity and Frailty of Old Age—An Overview. Exp. Gerontol. 2016, 76, 25–32. [Google Scholar] [CrossRef] [PubMed]
- von Haehling, S.; Morley, J.E.; Anker, S.D. From Muscle Wasting to Sarcopenia and Myopenia: Update 2012. J. Cachexia Sarcopenia Muscle 2012, 3, 213–217. [Google Scholar] [CrossRef]
- Pillard, F.; Laoudj-Chenivesse, D.; Carnac, G.; Mercier, J.; Rami, J.; Rivière, D.; Rolland, Y. Physical Activity and Sarcopenia. Clin. Geriatr. Med. 2011, 27, 449–470. [Google Scholar] [CrossRef]
- Müller, M.J.; Lagerpusch, M.; Enderle, J.; Schautz, B.; Heller, M.; Bosy-Westphal, A. Beyond the Body Mass Index: Tracking Body Composition in the Pathogenesis of Obesity and the Metabolic Syndrome. Obes. Rev. 2012, 13, 6–13. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Jacquet, J.; Solinas, G.; Montani, J.-P.; Schutz, Y. Body Composition Phenotypes in Pathways to Obesity and the Metabolic Syndrome. Int. J. Obes. 2010, 34, S4–S17. [Google Scholar] [CrossRef]
- Hartz, A.J.; Rupley, D.C.; Kalkhoff, R.D.; Rimm, A.A. Relationship of Obesity to Diabetes: Influence of Obesity Level and Body Fat Distribution. Prev. Med. 1983, 12, 351–357. [Google Scholar] [CrossRef]
- Jura, M.; Kozak, L.P. Obesity and Related Consequences to Ageing. Age 2016, 38, 23. [Google Scholar] [CrossRef]
- Jensen, M.D. Role of Body Fat Distribution and the Metabolic Complications of Obesity. J. Clin. Endocrinol. Metab. 2008, 93, s57–s63. [Google Scholar] [CrossRef]
- Downey, P.; Siegel, M.I. Bone Biology and the Clinical Implications for Osteoporosis. Phys. Ther. 2006, 86, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, C.-Y. Osteoporosis: The Result of an ‘Aged’ Bone Microenvironment. Trends Mol. Med. 2016, 22, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.L.; Varacallo, M. Osteoporosis; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Yong, E.; Logan, S. Menopausal Osteoporosis: Screening, Prevention and Treatment. Singap. Med. J. 2021, 62, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Kannus, P. Preventing Osteoporosis, Falls, and Fractures among Elderly People. Promotion of Lifelong Physical Activity Is Essential. BMJ 1999, 318, 205–206. [Google Scholar] [CrossRef]
- Howe, T.E.; Shea, B.; Dawson, L.J.; Downie, F.; Murray, A.; Ross, C.; Harbour, R.T.; Caldwell, L.M.; Creed, G. Exercise for Preventing and Treating Osteoporosis in Postmenopausal Women. Cochrane Database Syst. Rev. 2011, 2011, CD000333. [Google Scholar] [CrossRef]
- Siegrist, M. Role of physical activity in the prevention of osteoporosis. Med. Monatsschrift Pharm. 2008, 31, 259–264. [Google Scholar]
- WHO Scientific Group on the Prevention and Management of Osteoporosis. Prevention and Management of Osteoporosis: Report of a WHO Scientific Group; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2003; p. 921. ISBN 92-4-120921-6. [Google Scholar]
- Ferrari, S.L. Osteoporosis: A Complex Disorder of Aging with Multiple Genetic and Environmental Determinants. World Rev. Nutr. Diet. 2005, 95, 35–51. [Google Scholar] [CrossRef]
- Händel, M.N.; Jørgensen, N.R.; Bybjerg-Grauholm, J.; Jansen, R.B.; Eiken, P.; Tofteng, C.L.; Hermann, A.P.; Bach-Mortensen, P.; Heitmann, B.L.; Rubin, K.H.; et al. Early Life Determinants of Skeletal Maturation, Body Composition and Endocrine Health in Young Adults (EPIPEAK): Protocol for a Nationwide Birth Cohort Study. BMJ Open 2025, 15, e101632. [Google Scholar] [CrossRef]
- Nagy, P.; Kovacs, E.; Moreno, L.A.; Veidebaum, T.; Tornaritis, M.; Kourides, Y.; Siani, A.; Lauria, F.; Sioen, I.; Claessens, M.; et al. Percentile Reference Values for Anthropometric Body Composition Indices in European Children from the IDEFICS Study. Int. J. Obes. 2014, 38, S15–S25. [Google Scholar] [CrossRef]
- Willing, M.C.; Torner, J.C.; Burns, T.L.; Janz, K.F.; Marshall, T.A.; Gilmore, J.; Warren, J.J.; Levy, S.M. Percentile Distributions of Bone Measurements in Iowa Children. J. Clin. Densitom. 2005, 8, 39–47. [Google Scholar] [CrossRef]
- Gabel, L.; Macdonald, H.M.; Nettlefold, L.A.; McKay, H.A. Sex-, Ethnic-, and Age-Specific Centile Curves for pQCT- and HR-pQCT-Derived Measures of Bone Structure and Strength in Adolescents and Young Adults. J. Bone Miner. Res. 2018, 33, 987–1000. [Google Scholar] [CrossRef]
- Xiao, Z.; Guo, B.; Gong, J.; Tang, Y.; Shang, J.; Cheng, Y.; Xu, H. Sex- and Age-Specific Percentiles of Body Composition Indices for Chinese Adults Using Dual-Energy X-Ray Absorptiometry. Eur. J. Nutr. 2017, 56, 2393–2406. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.A.; Mundstock, E.; Scarpatto, C.H.; Cañon-Montañez, W.; Mattiello, R. Reference Percentiles for Bioimpedance Body Composition Parameters of Healthy Individuals: A Cross-Sectional Study. Clinics 2022, 77, 100078. [Google Scholar] [CrossRef] [PubMed]
- Larsson, I.; Lissner, L.; Samuelson, G.; Fors, H.; Lantz, H.; Näslund, I.; Carlsson, L.M.S.; Sjöström, L.; Bosaeus, I. Body Composition through Adult Life: Swedish Reference Data on Body Composition. Eur. J. Clin. Nutr. 2015, 69, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Krassas, G.E.; Papadopoulou, F.G.; Doukidis, D.; Konstantinidis, T.; Kalothetou, K. Age-Related Changes in Bone Density among Healthy Greek Males. J. Endocrinol. Investig. 2001, 24, 326–333. [Google Scholar] [CrossRef]
- Theodorou, S.J.; Theodorou, D.J.; Kigka, V.; Gkiatas, I.; Fotopoulos, A. Age-Related Variations in Trunk Composition and Patterns of Regional Bone and Soft Tissue Changes in Adult Caucasian Women by DXA. Rheumatol. Int. 2024, 44, 349–356. [Google Scholar] [CrossRef]
- Theodorou, S.J.; Theodorou, D.J.; Kigka, V.; Gkiatas, I.; Fotopoulos, A. DXA-Based Appendicular Composition Measures in Healthy Aging Caucasian Greek Women: A Cross-Sectional Study. Rheumatol. Int. 2024, 44, 1715–1723. [Google Scholar] [CrossRef]
- Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. Exercise and Physical Activity for Older Adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical Activity and Public Health in Older Adults. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, Y.-C.; Tseng, Y.-C.; Tsai, S.; Tseng, Y.-H. Physical Activity and Successful Aging among Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Cohort Studies. Aging 2020, 12, 7704–7716. [Google Scholar] [CrossRef]
- Ross, R.; Chaput, J.-P.; Giangregorio, L.M.; Janssen, I.; Saunders, T.J.; Kho, M.E.; Poitras, V.J.; Tomasone, J.R.; El-Kotob, R.; McLaughlin, E.C.; et al. Canadian 24-Hour Movement Guidelines for Adults Aged 18–64 Years and Adults Aged 65 Years or Older: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl. Physiol. Nutr. Metab. 2020, 45, S57–S102. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An Update of Activity Codes and MET Intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Fan, B.; Lu, Y.; Wu, X.P.; Wacker, W.K.; Ergun, D.L.; Levine, M.A. A Multinational Study to Develop Universal Standardization of Whole-Body Bone Density and Composition Using GE Healthcare Lunar and Hologic DXA Systems. J. Bone Miner. Res. 2012, 27, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Liu, X.; Jia, G.; Geng, B.; Xia, Y. The Association between Body Fat Distribution and Bone Mineral Density: Evidence from the US Population. BMC Endocr. Disord. 2022, 22, 170. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Linden, K.; Mayr, A.; Schultz, T.; Welchowski, T.; Breuer, J.; Herberg, U. RefCurv: A Software for the Construction of Pediatric Reference Curves. Softw. Impacts 2020, 6, 100040. [Google Scholar] [CrossRef]
- United States Department of Health and Human Services; Centers for Disease Control and Prevention; National Center for Health Statistics. National Health and Nutrition Examination Survey I: Epidemiologic Follow-Up Study, 1992; ICPSR Data Hold: Ann Arbor, MI, USA, 1997. [Google Scholar] [CrossRef]
- Williamson, D.F. Descriptive Epidemiology of Body Weight and Weight Change in U.S. Adults. Ann. Intern. Med. 1993, 119, 646–649. [Google Scholar] [CrossRef]
- Ambikairajah, A.; Walsh, E.; Tabatabaei-Jafari, H.; Cherbuin, N. Fat Mass Changes during Menopause: A Metaanalysis. Am. J. Obstet. Gynecol. 2019, 221, 393–409.e50. [Google Scholar] [CrossRef]
- Gray, A.; Feldman, H.A.; McKinlay, J.B.; Longcope, C. Age, Disease, and Changing Sex Hormone Levels in Middle-Aged Men: Results of the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 1991, 73, 1016–1025. [Google Scholar] [CrossRef]
- Hagberg, J.M.; Zmuda, J.M.; McCole, S.D.; Rodgers, K.S.; Wilund, K.R.; Moore, G.E. Determinants of Body Composition in Postmenopausal Women. J. Gerontol. Ser. A 2000, 55, M607–M612. [Google Scholar] [CrossRef][Green Version]
- Bosy-Westphal, A.; Eichhorn, C.; Kutzner, D.; Illner, K.; Heller, M.; Müller, M.J. The Age-Related Decline in Resting Energy Expenditure in Humans Is Due to the Loss of Fat-Free Mass and to Alterations in Its Metabolically Active Components. J. Nutr. 2003, 133, 2356–2362. [Google Scholar] [CrossRef]
- Hughes, V.A.; Frontera, W.R.; Roubenoff, R.; Evans, W.J.; Singh, M.A.F. Longitudinal Changes in Body Composition in Older Men and Women: Role of Body Weight Change and Physical Activity 1–4. Am. J. Clin. Nutr. 2002, 76, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Mastaglia, S.R.; Solis, F.; Bagur, A.; Mautalen, C.; Oliveri, B. Increase in Android Fat Mass with Age in Healthy Women with Normal Body Mass Index. J. Clin. Densitom. 2012, 15, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Muller, F.L.; Lustgarten, M.S.; Jang, Y.; Richardson, A.; Van Remmen, H. Trends in Oxidative Aging Theories. Free Radic. Biol. Med. 2007, 43, 477–503. [Google Scholar] [CrossRef]
- Elahi, M.M.; Kong, Y.X.; Matata, B.M. Oxidative Stress as a Mediator of Cardiovascular Disease. Oxidative Med. Cell. Longev. 2009, 2, 920580. [Google Scholar] [CrossRef]
- Lang, T.; Streeper, T.; Cawthon, P.; Baldwin, K.; Taaffe, D.R.; Harris, T.B. Sarcopenia: Etiology, Clinical Consequences, Intervention, and Assessment. Osteoporos. Int. 2010, 21, 543–559. [Google Scholar] [CrossRef]
- Toth, M.J.; Tchernof, A.; Sites, C.K.; Poehlman, E.T. Menopause-Related Changes in Body Fat Distribution. Ann. N. Y. Acad. Sci. 2000, 904, 502–506. [Google Scholar] [CrossRef]
- Parks, S.E.; Housemann, R.A.; Brownson, R.C. Differential Correlates of Physical Activity in Urban and Rural Adults of Various Socioeconomic Backgrounds in the United States. J. Epidemiol. Community Health 2003, 57, 29. [Google Scholar] [CrossRef]
- Martin, S.L.; Kirkner, G.J.; Mayo, K.; Matthews, C.E.; Durstine, J.L.; Hebert, J.R. Urban, Rural, and Regional Variations in Physical Activity. J. Rural Health 2005, 21, 239–244. [Google Scholar] [CrossRef]
- Zacur, H.A. Hormonal Changes Throughout Life in Women. Headache J. Head Face Pain 2006, 46, S50–S55. [Google Scholar] [CrossRef]
- Harman, S.M.; Metter, E.J.; Tobin, J.D.; Pearson, J.; Blackman, M.R. Longitudinal Effects of Aging on Serum Total and Free Testosterone Levels in Healthy Men. J. Clin. Endocrinol. Metab. 2001, 86, 724–731. [Google Scholar] [CrossRef]
- Walls, H.L.; Wolfe, R.; Haby, M.M.; Magliano, D.J.; de Courten, M.; Reid, C.M.; McNeil, J.J.; Shaw, J.; Peeters, A. Trends in BMI of Urban Australian Adults, 1980–2000. Public Health Nutr. 2010, 13, 631–638. [Google Scholar] [CrossRef]
- Orpana, H.M.; Tremblay, M.S.; Finès, P. Trends in Weight Change among Canadian Adults. Health Rep. 2007, 18, 9–16. [Google Scholar] [PubMed]
- Flegal, K.M. Waist Circumference of Healthy Men and Women in the United States. Int. J. Obes. 2007, 31, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Li, C.; Zhao, G.; Tsai, J. Trends in Obesity and Abdominal Obesity among Adults in the United States from 1999–2008. Int. J. Obes. 2011, 35, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, H.; Miyatani, M.; Azuma, K.; Kuno, S.; Fukunaga, T. Influences of Age and Sex on Abdominal Muscle and Subcutaneous Fat Thickness. Eur. J. Appl. Physiol. 2004, 91, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.S.; Shuman, W.P.; Bradbury, V.L.; Cain, K.C.; Fellingham, G.W.; Beard, J.C.; Kahn, S.E.; Stratton, J.R.; Cerqueira, M.D.; Abrass, I.B. Body Fat Distribution in Healthy Young and Older Men. J. Gerontol. 1990, 45, M181–M185. [Google Scholar] [CrossRef]
- Iannuzzi-Sucich, M.; Prestwood, K.M.; Kenny, A.M. Prevalence of Sarcopenia and Predictors of Skeletal Muscle Mass in Healthy, Older Men and Women. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M772–M777. [Google Scholar] [CrossRef]
- Lau, E.M.C.; Lynn, H.S.H.; Woo, J.W.; Kwok, T.C.Y.; Melton, L.J. Prevalence of and Risk Factors for Sarcopenia in Elderly Chinese Men and Women. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 213–216. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q.; He, C.; Chen, J.; Deng, D.; Lu, W.; Wang, Y. Prevalence of Sarcopenia Was Higher in Women than in Men: A Cross-Sectional Study from a Rural Area in Eastern China. PeerJ 2022, 10, e13678. [Google Scholar] [CrossRef]
- Newman, A.B.; Lee, J.S.; Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Nevitt, M.; Harris, T.B. Weight Change and the Conservation of Lean Mass in Old Age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, D.R. Role of IGF-I in Skeletal Muscle Mass Maintenance. Trends Endocrinol. Metab. 2009, 20, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Yarasheski, K.E. Growth Hormone Effects on Metabolism, Body Composition, Muscle Mass, and Strength. Exerc. Sport Sci. Rev. 1994, 22, 285–312. [Google Scholar] [CrossRef] [PubMed]
- Toth, M.; Tchernof, A. Lipid Metabolism in the Elderly. Eur. J. Clin. Nutr. 2000, 54, S121–S125. [Google Scholar] [CrossRef]
- Chedraui, P.; Pérez-López, F.R. Nutrition and Health during Mid-Life: Searching for Solutions and Meeting Challenges for the Aging Population. Climacteric 2013, 16, 85–95. [Google Scholar] [CrossRef]
- Pirlich, M.; Lochs, H. Nutrition in the Elderly. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 869–884. [Google Scholar] [CrossRef]
- Rodan, G.A. Introduction to Bone Biology. Bone 1992, 13, S3–S6. [Google Scholar] [CrossRef]
- Wojtys, E.M. Bone Health. Sports Health Multidiscip. Approach 2020, 12, 423–424. [Google Scholar] [CrossRef]
- Mussolino, M.E.; Madans, J.H.; Gillum, R.F. Bone Mineral Density and Mortality in Women and Men: The NHANES I Epidemiologic Follow-up Study. Ann. Epidemiol. 2003, 13, 692–697. [Google Scholar] [CrossRef]
- Riggs, B.L.; Melton, L.J.; Robb, R.A.; Camp, J.J.; Atkinson, E.J.; McDaniel, L.; Amin, S.; Rouleau, P.A.; Khosla, S. A Population-Based Assessment of Rates of Bone Loss at Multiple Skeletal Sites: Evidence for Substantial Trabecular Bone Loss in Young Adult Women and Men. J. Bone Miner. Res. 2008, 23, 205–214. [Google Scholar] [CrossRef]
- Cai, Q.; Wu, H.; Wang, Z.; Hou, L.; Tan, Z.; Zeng, C.; Lu, Y.; Cheng, Y.; Shang, J.; Tang, Y.; et al. Age-Related Bone Mass and Body Composition Dynamics in Female Cynomolgus Monkeys: Dual-Energy X-Ray Absorptiometry Insights for Osteoporosis Etiology. Quant. Imaging Med. Surg. 2025, 15, 12823–12835. [Google Scholar] [CrossRef]
- Burger, H.; van Daele, P.L.A.; Algra, D.; van den Ouweland, F.A.; Grobbee, D.E.; Hofman, A.; van Kuijk, C.; Schütte, H.E.; Birkenhäger, J.C.; Pols, H.A.P. The Association between Age and Bone Mineral Density in Men and Women Aged 55 Years and over: The Rotterdam Study. Bone Miner. 1994, 25, 1–13. [Google Scholar] [CrossRef]
- Hernandez, C.J.; Beaupré, G.S.; Carter, D.R. A Theoretical Analysis of the Relative Influences of Peak BMD, Age-Related Bone Loss and Menopause on the Development of Osteoporosis. Osteoporos. Int. 2003, 14, 843–847. [Google Scholar] [CrossRef]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the Skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef]
- Raisz, L.G. Pathogenesis of Osteoporosis: Concepts, Conflicts, and Prospects. J. Clin. Investig. 2005, 115, 3318–3325. [Google Scholar] [CrossRef]
- Wolff, J. Concept of the Law of Bone Remodelling. In The Law of Bone Remodelling; Springer: Berlin/Heidelberg, Germany, 1986; p. 1. [Google Scholar]










| Group 1 (18–30) | Group 2 (1–40) | Group 3 (41–50) | Group 4 (51.1–80) | |
|---|---|---|---|---|
| N = 91 | N = 68 | N = 55 | N = 61 | |
| Age (years) | 22.3 ± 2.4 | 36.4 ± 2.7 | 44.9 ± 2.6 | 58.3 ± 5.5 |
| Height (cm) | 179.3 ± 6.0 | 179.4 ± 6.2 | 179.5 ± 6.3 | 177.7 ± 7.7 |
| BM (kg) | 77.93 ± 12.0 | 88.02 ± 13.9 | 90.55 ± 12.5 | 90.77 ± 15.1 |
| BF (%) | 20.7 ± 7.7 | 28.2 ± 8.1 | 30.0 ± 5.9 | 30.8 ± 6.2 |
| Group 1 (18–30) | Group 2 (31–40) | Group 3 (41–50) | Group 4 (51–60) | Group 5 (61–80) | |
|---|---|---|---|---|---|
| N = 77 | N = 64 | N = 81 | N = 74 | N = 66 | |
| Age (years) | 22.58 ± 3.3 | 37.07 ± 2.7 | 45.75 ± 3.2 | 55.64 ± 2.7 | 67.76 ± 4.7 |
| Height (cm) | 165.19 ± 5.0 | 164.44 ± 5.4 | 165.86 ± 6.6 | 163.05 ± 5.5 | 158.02 ± 6.4 |
| BM (kg) | 60.16 ± 6.7 | 71.39 ± 17.19 | 71.99 ± 13.3 | 72.74 ± 12.4 | 71.98 ± 13.9 |
| BF (%) | 32.21 ± 7.2 | 38.62 ± 10.8 | 41.16 ± 8.6 | 43.45 ± 6.4 | 44.57 ± 6.4 |
| Measurement | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | F(4,361) | p-Value |
|---|---|---|---|---|---|---|---|
| BM (kg) | 60.16 ± 6.67 | 71.39 ± 17.19 a | 71.99 ± 13.26 a | 72.74 ± 12.43 a | 71.98 ± 13.93 a | 12.858 | 0.000 |
| BF (%) | 32.21 ± 7.21 | 38.62 ± 10.80 a | 41.16 ± 8.63 a | 43.45 ± 6.38 a,b | 44.57 ± 6.44 a,b | 27.747 | 0.000 |
| BFM (kg) | 19.64 ± 5.89 | 29.12 ± 14.26 a | 30.48 ± 10.71 a | 32.16 ± 9.44 a | 32.03 ± 11.04 a | 18.724 | 0.000 |
| BMD (g/cm2) | 1.05 ± 0.08 | 1.07 ± 0.10 | 1.05 ± 0.09 | 1.02 ± 0.10 b | 0.99 ± 0.11 a,b,c | 8.019 | 0.000 |
| BMC (g) | 2086 ± 303 | 2128 ± 316 | 2162 ± 335 | 1993 ± 321 c | 1846 ±309 a,b,c | 11.109 | 0.000 |
| TLM (kg) | 37.37 ± 3.94 | 39.11 ± 4.63 | 38.33 ± 4.52 | 37.61 ± 4.44 | 36.37 ± 4.42 b | 3.681 | 0.006 |
| TL (%) | 62.55 ± 7.05 | 56.81 ± 10.27 a | 54.34 ± 8.24 a | 52.41 ± 6.11 a,b | 51.37 ± 6.19 a,b | 24.911 | 0.000 |
| BMI (kg/m2) | 22.03 ± 2.12 | 26.56 ± 7.02 a | 26.19 ± 4.62 a | 27.41 ± 4.76 a | 28.82 ± 5.33 a,c | 19.642 | 0.000 |
| FFMI (kg/m2) | 14.84 ± 1.28 | 15.66 ± 2.02 | 15.08 ± 1.39 | 15.25 ± 1.50 | 15.98 ± 3.17 a | 3.920 | 0.004 |
| AFM (kg) | 1.28 ± 0.58 | 2.24 ± 1.46 a | 2.39 ± 1.06 a | 2.72 ± 1.01 a | 2.77 ± 0.91 a,b | 25.659 | 0.000 |
| AF (%) | 34.44 ± 10.44 | 41.04 ± 14.34 a | 45.28 ± 11.07 a | 48.48 ± 8.33 a,b | 50.04 ± 7.28 a,b | 26.176 | 0.000 |
| ALM (kg) | 2.30 ± 0.27 | 2.72 ± 0.51 a | 2.65 ± 0.40 a | 2.77 ± 0.68 a | 2.66 ± 0.46 a | 11.099 | 0.000 |
| AL (%) | 65.56 ± 10.44 | 58.96 ± 14.34 a | 54.72 ± 11.07 a | 51.52 ± 8.33 a,b | 49.96 ± 7.28 a,b | 26.176 | 0.000 |
| GFM (kg) | 4.35 ± 1.01 | 5.74 ± 2.23 a | 6.03 ± 1.76 a | 5.85 ± 1.39 a | 5.71 ± 1.81 a | 12.577 | 0.000 |
| GF (%) | 43.53 ± 6.71 | 48.42 ± 10.11 a | 50.79 ± 7.09 a | 51.70 ± 4.98 a | 51.02 ± 5.82 a | 16.943 | 0.000 |
| GLM (kg) | 5.55 ± 0.67 | 5.69 ± 0.76 | 5.64 ± 0.80 | 5.37 ± 0.77 | 5.30 ± 0.82 b | 3.365 | 0.010 |
| GL (%) | 56.47 ± 6.71 | 51.58 ± 10.11 a | 49.21 ± 7.09 a | 48.30 ± 4.98 a | 48.98 ± 5.82 a | 16.943 | 0.000 |
| Measurement | Group 1 | Group 2 | Group 3 | Group 4 | F(3,274) | p-Value |
|---|---|---|---|---|---|---|
| BM (kg) | 77.93 ± 11.95 | 88.02 ± 13.93 a | 90.55 ± 12.50 a | 90.77 ± 15.12 a | 16.412 | <0.001 |
| BF (%) | 20.65 ± 6.53 | 28.23 ± 8.06 a | 29.97 ± 5.88 a | 30.80 ± 6.22 a | 37.228 | <0.001 |
| BFM (kg) | 16.62 ± 7.70 | 25.66 ± 9.22 a | 27.52 ± 8.06 a | 28.67 ± 9.22 a | 29.539 | <0.001 |
| BMD (g/cm2) | 1.21 ± 0.12 | 1.20 ± 0.13 | 1.20 ± 0.11 | 1.19 ± 0.11 | 0.224 | 0.880 |
| BMC (g) | 2842 ± 388 | 2856 ± 469 | 2904 ± 345 | 2815 ± 449 | 0.468 | 0.705 |
| TLM (kg) | 57.75 ± 6.29 | 58.83 ± 6.22 | 59.30 ± 7.13 | 58.52 ± 6.74 | 0.729 | 0.535 |
| TL (%) | 74.76 ± 6.46 | 67.75 ± 8.07 a | 65.89 ± 5.96 a | 65.20 ± 6.04 a | 33.516 | <0.001 |
| BMI (kg/m2) | 24.18 ± 3.05 | 27.31 ± 3.87 a | 28.08 ± 3.57 a | 28.60 ± 3.40 a | 25.990 | <0.001 |
| FFMI (kg/m2) | 19.04 ± 1.59 | 19.36 ± 1.57 | 19.53 ± 1.78 | 19.62 ± 1.31 | 2.005 | 0.114 |
| AFM (kg) | 1.44 ± 0.86 | 2.57 ± 1.24 a | 2.92 ± 0.98 a | 3.18 ± 1.14 a,b | 41.210 | <0.001 |
| AF (%) | 27.51 ± 10.18 | 37.89 ± 11.36 a | 41.90 ± 7.48 a | 42.60 ± 7.13 a,b | 42.646 | <0.001 |
| ALM (kg) | 3.50 ± 0.46 | 3.82 ± 0.58 a | 3.90 ± 0.61 a | 4.08 ± 0.65 a | 14.488 | <0.001 |
| AL (%) | 72.49 ± 10.18 | 62.11 ± 11.36 a | 58.10 ± 7.48 a | 57.40 ± 7.13 a,b | 42.646 | <0.001 |
| GFM (kg) | 3.40 ± 1.54 | 4.45 ± 1.59 a | 4.38 ± 1.15 a | 4.39 ± 1.43 a | 9.716 | <0.001 |
| GF (%) | 27.22 ± 7.83 | 33.08 ± 8.01 a | 33.19 ± 5.86 a | 33.13 ± 6.12 a | 13.798 | <0.001 |
| GLM (kg) | 8.73 ± 1.14 | 8.69 ± 1.15 | 8.70 ± 1.17 | 8.59 ± 1.13 | 0.176 | 0.913 |
| GL (%) | 72.78 ± 7.83 | 66.92 ± 8.01 a | 66.81 ± 5.86 a | 66.87 ± 6.12 a | 13.798 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Balampanos, D.; Pantazis, D.; Avloniti, A.; Stampoulis, T.; Kokkotis, C.; Gkachtsou, A.; Kallidis, S.; Protopapa, M.; Retzepis, N.-O.; Emmanouilidou, M.; et al. Body Composition and Bone Status Through Lifespan in a Greek Adult Population: Establishing Reference Curves. Obesities 2026, 6, 7. https://doi.org/10.3390/obesities6010007
Balampanos D, Pantazis D, Avloniti A, Stampoulis T, Kokkotis C, Gkachtsou A, Kallidis S, Protopapa M, Retzepis N-O, Emmanouilidou M, et al. Body Composition and Bone Status Through Lifespan in a Greek Adult Population: Establishing Reference Curves. Obesities. 2026; 6(1):7. https://doi.org/10.3390/obesities6010007
Chicago/Turabian StyleBalampanos, Dimitrios, Dimitrios Pantazis, Alexandra Avloniti, Theodoros Stampoulis, Christos Kokkotis, Anastasia Gkachtsou, Stavros Kallidis, Maria Protopapa, Nikolaos-Orestis Retzepis, Maria Emmanouilidou, and et al. 2026. "Body Composition and Bone Status Through Lifespan in a Greek Adult Population: Establishing Reference Curves" Obesities 6, no. 1: 7. https://doi.org/10.3390/obesities6010007
APA StyleBalampanos, D., Pantazis, D., Avloniti, A., Stampoulis, T., Kokkotis, C., Gkachtsou, A., Kallidis, S., Protopapa, M., Retzepis, N.-O., Emmanouilidou, M., Liu, J., Ioannou, D., Kyriazidis, S., Zaras, N., Draganidis, D., Fatouros, I., Kambas, A., Michalopoulou, M., & Chatzinikolaou, A. (2026). Body Composition and Bone Status Through Lifespan in a Greek Adult Population: Establishing Reference Curves. Obesities, 6(1), 7. https://doi.org/10.3390/obesities6010007

