The Prevalence and Correlates of Vitamin D Deficiency and Overweight/Obesity of School-Age Children in Colombia–Findings on the Double Burden of Malnutrition from Nationally-Representative Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data
2.2. Statistical Analysis
3. Results
3.1. Prevalence of Anthropometric Indicators, Vitamin D Deficiency, and DBM in Colombian Schoolchildren (5–12 Y), ENSIN 2015
3.2. Prevalence of Double Burden of Malnutrition (DBM1) by Individual, Interpersonal, and Community-Level Factors Among Colombian Schoolchildren Aged 5–12 Years
3.3. Prevalence of Double Burden of Malnutrition (DBM2) by Individual, Interpersonal, and Community-Level Factors Among Colombian Schoolchildren Aged 5–12 Years
3.4. Prevalence of Double Burden of Malnutrition (DBM3) by Individual, Interpersonal, and Community-Level Factors Among Colombian Schoolchildren Aged 5–12 Years
3.4.1. Individual-Level Factors
3.4.2. Interpersonal-Level Factors
3.4.3. Community-Level Factors
3.5. Unadjusted and Adjusted Associations of Individual, Interpersonal, and Community-Level Factors with the Double Burden of Malnutrition (DBM1) Among Colombian Schoolchildren
3.6. Unadjusted and Adjusted Associations of Individual, Interpersonal, and Community-Level Factors with the Double Burden of Malnutrition (DBM2) Among Colombian Schoolchildren
3.7. Unadjusted and Adjusted Associations of Individual, Interpersonal, and Community-Level Factors with the Double Burden of Malnutrition (DBM3) Among Colombian Schoolchildren
3.7.1. Individual-Level Factors
3.7.2. Interpersonal-Level Factors
3.7.3. Community-Level Factors
4. Discussion
4.1. Individual-Level Factors
4.2. Interpersonal-Level Factors
4.3. Community-Level Factors
4.4. Strengths and Limitations
- The cross-sectional design limits causal inference; associations should be interpreted as correlational.
- Some DBM categories (DBM1 and DBM2) are rare, leading to unstable logistic regression estimates; sparse data may bias odds ratios. Firth’s correction or penalized approaches may improve reliability.
- Potential residual confounding may persist due to unmeasured determinants of serum 25(OH)D, including dietary vitamin D intake, supplement use, seasonal or monthly variation in sampling, latitude- and altitude-related differences in ultraviolet exposure, air pollution, and skin pigmentation. These factors could contribute to variability in vitamin D status and partially explain the observed patterns of DBM.
4.5. Implications for Policy and Practice
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 25(OH)D | 25-Hydroxyvitamin D (marker of vitamin D status) |
| ADVIA Centaur XP | A chemiluminescence antibody immunoassay analyzer from Siemens Health Care Diagnostics |
| BMI | Body Mass Index |
| C-MAFYCS | Measurement of Physical Activity and Sedentary Behavior (for children aged 3–5) |
| CDC | Centers for Disease Control and Prevention |
| CIs | Confidence Intervals |
| CV | Coefficient of variation |
| DEQAS | Vitamin D External Quality Assessment Scheme |
| DBM | Double Burden of Malnutrition |
| DBM1 | Double Burden of Malnutrition 1: BMI-for-age Z score > 1 (overweight/obese) and Vitamin D < 30 nmol/L |
| DBM2 | Double Burden of Malnutrition 2: BMI-for-age Z score > 1 (overweight/obese) and Vitamin D < 37.5 nmol/L |
| DBM3 | Double Burden of Malnutrition 3: BMI-for-age Z score > 1 (overweight/obese) and Vitamin D < 50 nmol/L |
| ENSIN | National Survey of Nutritional Situation (Encuesta Nacional de Situación Nutricional) |
| INS | National Institute of Health in Bogota |
| LC-MS/MS | Liquid Chromatography–Tandem Mass Spectrometry |
| NIST | National Institute of Standards and Technology |
| nmol/L | Nanomoles per liter |
| n | Number of cases |
| OR | Odds Ratio |
| PR | Prevalence ratio |
| Prev ± SE | Prevalence (%) ± Standard Error (%) |
| PSU | Primary Sampling Unit |
| Q1 | Lowest 25% of wealth (poorest) |
| Q2 | 25–50% of wealth (low-middle) |
| Q3 | 50–75% of wealth (high-middle) |
| Q4 | Highest 25% of wealth (richest) |
| R software | Statistical software R |
| Ref | Reference |
| SD | Standard Deviation |
| SE | Standard Error |
| SES | Socioeconomic Status |
| T2DM | Type 2 Diabetes Mellitus |
| VDSCP | Vitamin D Standardization Certification Program |
| VIF | Variance Inflation Factor |
| WHO | World Health Organization |
| y | Years (age) |
| YRBSS | Youth Risk Behavior Surveillance System |
References
- World Health Organization. The Double Burden of Malnutrition: Policy Brief; World Health Organization: Geneva, Switzerland, 2016.
- Davis, J.N.; Oaks, B.M.; Engle-Stone, R. The Double Burden of Malnutrition: A Systematic Review of Operational Definitions. Curr. Dev. Nutr. 2020, 4, nzaa127. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Romero, E.; Flórez-García, V.; Egede, L.E.; Yan, A. Factors Associated with the Double Burden of Malnutrition at the Household Level: A Scoping Review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6961–6972. [Google Scholar] [CrossRef]
- Herrera-González, A.; Gutierrez-Gómez, Y.Y.; Moreno-García, C.F.; Aceves-Martins, M. Obesity and Its Association With Micronutrient Deficiency Among Mexican Children and Adolescents: A Systematic Review and Meta-Analysis. Nutr. Rev. 2025, nuaf148. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, I.; Klimov, L.; Kuryaninova, V.; Nikitina, I.; Malyavskaya, S.; Dolbnya, S.; Kasyanova, A.; Atanesyan, R.; Stoyan, M.; Todieva, A.; et al. Vitamin D Insufficiency in Overweight and Obese Children and Adolescents. Front. Endocrinol. 2019, 10, 103. [Google Scholar] [CrossRef]
- Fiamenghi, V.I.; de Mello, E.D. Vitamin D Deficiency in Children and Adolescents with Obesity: A Meta-Analysis. J. Pediatr. (Rio J.) 2021, 97, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Falzone, L. Role of Vitamin D in Health and Disease: How Diet May Improve Vitamin D Absorption. Int. J. Food Sci. Nutr. 2023, 74, 121–123. [Google Scholar] [CrossRef]
- Reid, I.R.; Bolland, M.J.; Grey, A. Effects of Vitamin D Supplements on Bone Mineral Density: A Systematic Review and Meta-Analysis. Lancet 2014, 383, 146–155. [Google Scholar] [CrossRef]
- Witte, M.A.; Fischer, P.R. Severe Acute Malnutrition, Calcium and Vitamin D: Important Interactions. Public Health Nutr. 2020, 23, 3187–3189. [Google Scholar] [CrossRef]
- Wyskida, M.; Owczarek, A.; Szybalska, A.; Brzozowska, A.; Szczerbowska, I.; Wieczorowska-Tobis, K.; Puzianowska-Kuźnicka, M.; Franek, E.; Mossakowska, M.; Grodzicki, T.; et al. Socio-Economic Determinants of Vitamin D Deficiency in the Older Polish Population: Results from the PolSenior Study. Public Health Nutr. 2018, 21, 1995–2003. [Google Scholar] [CrossRef]
- Pakpoor, J.; Ramagopalan, S. Evidence for an Association Between Vitamin D and Multiple Sclerosis. Curr. Top. Behav. Neurosci. 2015, 26, 105–115. [Google Scholar] [CrossRef]
- Mokry, L.E.; Ross, S.; Ahmad, O.S.; Forgetta, V.; Smith, G.D.; Leong, A.; Greenwood, C.M.T.; Thanassoulis, G.; Richards, J.B. Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med. 2015, 12, e1001866. [Google Scholar] [CrossRef]
- Heath, A.K.; Kim, I.Y.; Hodge, A.M.; English, D.R.; Muller, D.C. Vitamin D Status and Mortality: A Systematic Review of Observational Studies. Int. J. Environ. Res. Public Health 2019, 16, 383. [Google Scholar] [CrossRef]
- Greco, E.A.; Lenzi, A.; Migliaccio, S. Role of Hypovitaminosis D in the Pathogenesis of Obesity-Induced Insulin Resistance. Nutrients 2019, 11, 1506. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Farajzadegan, Z.; Bahreynian, M. Association between Vitamin D Status and Lipid Profile in Children and Adolescents: A Systematic Review and Meta-Analysis. Int. J. Food Sci. Nutr. 2014, 65, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Rusconi, R.E.; De Cosmi, V.; Gianluca, G.; Giavoli, C.; Agostoni, C. Vitamin D Insufficiency in Obese Children and Relation with Lipid Profile. Int. J. Food Sci. Nutr. 2015, 66, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, M.; Andronis, L.; Pallan, M.; Högler, W.; Frew, E. Micronutrient Deficiencies and Health-Related Quality of Life: The Case of Children with Vitamin D Deficiency. Public Health Nutr. 2020, 23, 1165–1172. [Google Scholar] [CrossRef]
- Park, J.E.; Pichiah, P.B.T.; Cha, Y.-S. Vitamin D and Metabolic Diseases: Growing Roles of Vitamin D. J. Obes. Metab. Syndr. 2018, 27, 223–232. [Google Scholar] [CrossRef]
- Pilz, S.; Gaksch, M.; Kienreich, K.; Grübler, M.; Verheyen, N.; Fahrleitner-Pammer, A.; Treiber, G.; Drechsler, C.; Hartaigh, B.Ó.; Obermayer-Pietsch, B.; et al. Effects of Vitamin D on Blood Pressure and Cardiovascular Risk Factors: A Randomized Controlled Trial. Hypertension 2015, 65, 1195–1201. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, B.; Asemani, S.; Bao, S.; Tian, N. Corrigendum to “The Association between Vitamin D Deficiency and Childhood Obesity and Its Impact on Children’s Serum Calcium, Alkaline Phosphatase, and Bone Age”. Prostaglandins Other Lipid Mediat. 2024, 176, 106920, Prostaglandins Other Lipid Mediat. 2025, 180, 107025. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Rajan, S.; Weishaar, T.; Keller, B. Weight and Skin Colour as Predictors of Vitamin D Status: Results of an Epidemiological Investigation Using Nationally Representative Data. Public Health Nutr. 2017, 20, 1857–1864. [Google Scholar] [CrossRef]
- Mortensen, C.; Mølgaard, C.; Hauger, H.; Kristensen, M.; Damsgaard, C.T. Sun Behaviour and Physical Activity Associated with Autumn Vitamin D Status in 4–8-Year-Old Danish Children. Public Health Nutr. 2018, 21, 3158–3167. [Google Scholar] [CrossRef]
- Piontak, J.R.; Russell, M.A.; Danese, A.; Copeland, W.E.; Hoyle, R.H.; Odgers, C.L. Violence Exposure and Adolescents’ Same-Day Obesogenic Behaviors: New Findings and a Replication. Soc. Sci. Med. 2017, 189, 145–151. [Google Scholar] [CrossRef]
- Yan, A.F.; Voorhees, C.C.; Beck, K.H.; Wang, M.Q. A Social Ecological Assessment of Physical Activity among Urban Adolescents. Am. J. Health Behav. 2014, 38, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xu, C.; Shu, Y.; Xie, Z.; Lu, C.; Mo, X. Serum 25-Hydroxyvitamin D Is Associated with Obesity and Metabolic Parameters in US Children. Public Health Nutr. 2020, 23, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-Diamond, D.; Baylin, A.; Mora-Plazas, M.; Marin, C.; Arsenault, J.E.; Hughes, M.D.; Willett, W.C.; Villamor, E. Vitamin D Deficiency and Anthropometric Indicators of Adiposity in School-Age Children: A Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1446–1451. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Hwang, J.H.; Song, M.R. The Association Between Vitamin D Deficiency and Metabolic Syndrome in Korean Adolescents. J. Pediatr. Nurs. 2018, 38, e7–e11. [Google Scholar] [CrossRef] [PubMed]
- Mellati, A.A.; Sharifi, F.; Faghihzade, S.; Mousaviviri, S.A.; Chiti, H.; Kazemi, S.A.N. Vitamin D Status and Its Associations with Components of Metabolic Syndrome in Healthy Children. J. Pediatr. Endocrinol. Metab. JPEM 2015, 28, 641–648. [Google Scholar] [CrossRef]
- Rojas, L.Z.; Quintero-Lesmes, D.C.; Gamboa-Delgado, E.M.; Guio, E.; Serrano, N.C. Prevalence of Vitamin D Status and Its Association with Overweight or Obesity in a Population of Colombian Children and Adolescents. J. Nutr. Sci. 2020, 9, e55. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, L.; He, L.; Duan, Y.; Liang, W.; Nie, Z.; Jin, Y.; Wu, X.; Fang, Y. A Meta-Analysis of the Relationship between Vitamin D Deficiency and Obesity. Int. J. Clin. Exp. Med. 2015, 8, 14977–14984. [Google Scholar]
- Jiang, S.; Zhu, Q.; Mai, M.; Yang, W.; Du, G. Vitamin B and Vitamin D as Modulators of Gut Microbiota in Overweight Individuals. Int. J. Food Sci. Nutr. 2020, 71, 1001–1009. [Google Scholar] [CrossRef]
- Pereira-Santos, M.; Costa, P.R.F.; Assis, A.M.O.; Santos, C.A.S.T.; Santos, D.B. Obesity and Vitamin D Deficiency: A Systematic Review and Meta-Analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2015, 16, 341–349. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; et al. Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased Bioavailability of Vitamin D in Obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Sempos, C.; Binkley, N. 25-Hydroxyvitamin D Assay Standardisation and Vitamin D Guidelines Paralysis. Public Health Nutr. 2020, 23, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- CDC Vitamin D Standardization-Certification Program. Available online: https://www.cdc.gov/clinical-standardization-programs/php/vitamin-d/index.html (accessed on 28 September 2025).
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine Society. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2011.
- Beer, R.J.; Herrán, O.F.; Villamor, E. Prevalence and Correlates of Vitamin D Deficiency in a Tropical Setting: Results from a Nationally Representative Survey. Am. J. Clin. Nutr. 2020, 112, 1088–1098. [Google Scholar] [CrossRef]
- Instituto Colombiano de Bienestar Familiar Encuesta Nacional de La Situación Nutricional En Colombia—ENSIN. 2015. Available online: https://www.icbf.gov.co/nutricion/ensin-encuesta-nacional-de-situacion-nutricional (accessed on 25 August 2025).
- World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; ISBN 92-4-154693-X.
- Instituto Colombiano de Bienestar Familiar (ICBF); Ministerio de Salud y Protección Social (MSPS); Instituto Nacional de Salud (INS); Departamento Administrativo para la Prosperidad Social (DPS). Documento Metodológico de La Encuesta Nacional de La Situación Nutricional (ENSIN) 2015; ICBF: Bogotá, Colombia, 2015. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/documento-metodologico-ensin-2015.pdf (accessed on 25 August 2025).
- Freeman, J.; Sibley, P.; Parker, N.; Spears, R.; Wilson, K.S.; Levy, H.R. Standardization and Certification of the ADVIA Centaur Vitamin D Total Assay. Med. Res. Arch. 2017, 5. Available online: https://esmed.org/MRA/mra/article/view/1458 (accessed on 25 August 2025).
- Stöckl, D.; Sluss, P.M.; Thienpont, L.M. Specifications for Trueness and Precision of a Reference Measurement System for Serum/Plasma 25-Hydroxyvitamin D Analysis. Clin. Chim. Acta Int. J. Clin. Chem. 2009, 408, 8–13. [Google Scholar] [CrossRef]
- Chen, Y.; Kinney, L.; Božović, A.; Smith, H.; Tarr, H.; Diamandis, E.P.; LeBlanc, A. Performance Evaluation of Siemens ADVIA Centaur and Roche MODULAR Analytics E170 Total 25-OH Vitamin D Assays. Clin. Biochem. 2012, 45, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Bouillon, R.; Binkley, N.; Sempos, C.; Adler, R.A.; Bollerslev, J.; Dawson Hughes, B.; Ebeling, P.R.; Feldman, D.; Heijboer, A.; et al. Controversies in Vitamin D: A Statement From the Third International Conference. JBMR Plus 2020, 4, e10417. [Google Scholar] [CrossRef]
- Siemens Healthineers. (2022). Vitamin D Total (VitD)—ADVIA Centaur VitD (product insert) (10994902_EN, Rev. 08, 2022-10). Siemens Healthineers. 2022. Available online: https://doclib.siemens-healthineers.com/rest/v1/view?document-id=969692 (accessed on 25 August 2025).
- Misra, M.; Pacaud, D.; Petryk, A.; Collett-Solberg, P.F.; Kappy, M.; Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D Deficiency in Children and Its Management: Review of Current Knowledge and Recommendations. Pediatrics 2008, 122, 398–417. [Google Scholar] [CrossRef]
- Mahmudiono, T.; Segalita, C.; Rosenkranz, R.R. Socio-Ecological Model of Correlates of Double Burden of Malnutrition in Developing Countries: A Narrative Review. Int. J. Environ. Res. Public Health 2019, 16, 3730. [Google Scholar] [CrossRef]
- Odebeatu, C.C.; Darssan, D.; Revez, J.A.; Roscoe, C.; Do, P.; Reid, S.; Osborne, N.J. The Role of Greenspace in Vitamin D Status: Cross-Sectional, Observational Evidence from the UK Biobank. Int. J. Hyg. Environ. Health 2025, 264, 114502. [Google Scholar] [CrossRef]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False Discovery Rate Control Is a Recommended Alternative to Bonferroni-Type Adjustments in Health Studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S.; Daniel, R.; Pearce, N. Outcome Modelling Strategies in Epidemiology: Traditional Methods and Basic Alternatives. Int. J. Epidemiol. 2016, 45, 565–575. [Google Scholar] [CrossRef] [PubMed]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity Diagnostics of Binary Logistic Regression Model. J. Interdiscip. Math. 2010, 13, 253–267. [Google Scholar] [CrossRef]
- Puhr, R.; Heinze, G.; Nold, M.; Lusa, L.; Geroldinger, A. Firth’s Logistic Regression with Rare Events: Accurate Effect Estimates and Predictions? Stat. Med. 2017, 36, 2302–2317. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.E.; Rivera-Pasquel, M.; Valdez-Sánchez, A.; De la Cruz-Góngora, V.; Contreras-Manzano, A.; Shamah-Levy, T.; Villalpando, S. Vitamin D Status in Mexican Children 1 to 11 Years of Age: An Update from the Ensanut 2018-19. Salud Publica Mex. 2021, 63, 382–393. [Google Scholar] [CrossRef]
- Turer, C.B.; Lin, H.; Flores, G. Prevalence of Vitamin D Deficiency among Overweight and Obese US Children. Pediatrics 2013, 131, e152–e161. [Google Scholar] [CrossRef]
- Parra, D.C.; Iannotti, L.; Gomez, L.F.; Pachón, H.; Haire-Joshu, D.; Sarmiento, O.L.; Kuhlmann, A.S.; Brownson, R.C. The Nutrition Transition in Colombia over a Decade: A Novel Household Classification System of Anthropometric Measures. Arch. Public Health Arch. Belg. Sante Publique 2015, 73, 12. [Google Scholar] [CrossRef]
- Quintero-Lesmes, D.C.; Herran, O.F. Food Changes and Geography: Dietary Transition in Colombia. Ann. Glob. Health 2019, 85, 28. [Google Scholar] [CrossRef]
- Quiroga-Padilla, P.J.; Gaete, P.V.; Nieves-Barreto, L.D.; Montaño, A.; Betancourt, E.C.; Mendivil, C.O. Social Inequalities Shape Diet Composition among Urban Colombians: The Colombian Nutritional Profiles Cross-Sectional Study. Public Health Nutr. 2022, 25, 2842–2854. [Google Scholar] [CrossRef]
- Khan, S.R.; Claeson, M.; Khan, A.; Neale, R.E. The Effect of Physical Activity on Vitamin D: A Systematic Review and Meta-Analysis of Intervention Studies in Humans. Public Health Pract. 2024, 7, 100495. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.; Li, Q.; Liu, Z.; Yin, Y. The Relationship between Physical Activity Levels and Serum Vitamin D Levels Varies among Children and Adolescents in Different Age Groups. Front. Nutr. 2024, 11, 1435396. [Google Scholar] [CrossRef] [PubMed]
- Devulapalli, C.S. Physical Activity and Vitamin D in Children: A Review of Impacts on Bone Health and Fitness. J. Pediatr. Endocrinol. Metab. JPEM 2025, 38, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Ganmaa, D.; Bromage, S.; Khudyakov, P.; Erdenenbaatar, S.; Delgererekh, B.; Martineau, A.R. Influence of Vitamin D Supplementation on Growth, Body Composition, and Pubertal Development Among School-Aged Children in an Area With a High Prevalence of Vitamin D Deficiency: A Randomized Clinical Trial. JAMA Pediatr. 2023, 177, 32–41. [Google Scholar] [CrossRef]
- González, S.A.; Triana, C.A.; Abaunza, C.; Aldana, L.; Arias-Gómez, L.F.; Bermúdez, J.; Lemos, D.M.C.; Cuya, J.C.; Cohen, D.D.; Correa-Bautista, J.E.; et al. Results from Colombia’s 2018 Report Card on Physical Activity for Children and Youth. J. Phys. Act. Health 2018, 15, S335–S337. [Google Scholar] [CrossRef]
- Das, R.K.; Bahrani, E. Recreational Screen Time and Vitamin D Deficiency among Children and Adolescents in the US. Pediatr. Res. 2024, 98, 52–53. [Google Scholar] [CrossRef]
- Ghasemirad, M.; Ketabi, L.; Fayyazishishavan, E.; Hojati, A.; Maleki, Z.H.; Gerami, M.H.; Moradzadeh, M.; Fernandez, J.H.O.; Akhavan-Sigari, R. The Association between Screen Use and Central Obesity among Children and Adolescents: A Systematic Review and Meta-Analysis. J. Health Popul. Nutr. 2023, 42, 51. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Uday, S. Vitamin D Deficiency in Chronic Childhood Disorders: Importance of Screening and Prevention. Nutrients 2023, 15, 2805. [Google Scholar] [CrossRef]
- Zou, Y.; Huang, L.; Zhao, D.; He, M.; Han, D.; Su, D.; Xu, P.; Zhang, R. Vitamin D Nutritional Status and the Influencing Factors among Children and Adolescents. Front. Public Health 2025, 13, 1553077. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Duan, X.; Zhao, Y.; Zhou, J.; Ye, L.; Wang, D.; Pei, L. The Contribution of the Underlying Factors to Socioeconomic Inequalities in Obesity: A Life Course Perspective. Int. J. Public Health 2024, 69, 1606378. [Google Scholar] [CrossRef]
- Cronin, F.M.; Hurley, S.M.; Buckley, T.; Mancebo Guinea Arquez, D.; Lakshmanan, N.; O’Gorman, A.; Layte, R.; Stanistreet, D. Mediators of Socioeconomic Differences in Overweight and Obesity among Youth in Ireland and the UK (2011–2021): A Systematic Review. BMC Public Health 2022, 22, 1585. [Google Scholar] [CrossRef]
- Drieskens, S.; Charafeddine, R.; Vandevijvere, S.; De Pauw, R.; Demarest, S. Rising Socioeconomic Disparities in Childhood Overweight and Obesity in Belgium. Arch. Public Health 2024, 82, 98. [Google Scholar] [CrossRef]
- Autret, K.; Bekelman, T.A. Socioeconomic Status and Obesity. J. Endocr. Soc. 2024, 8, bvae176. [Google Scholar] [CrossRef]
- Lee, J.S.; Jin, M.H.; Lee, H.J. Global Relationship between Parent and Child Obesity: A Systematic Review and Meta-Analysis. Clin. Exp. Pediatr. 2021, 65, 35–46. [Google Scholar] [CrossRef]
- Gilbert, A. Latin America: The Suburb Is the City. In The Suburban Land Question: A Global Survey; Harris, R., Lehrer, U., Eds.; University of Toronto Press: Toronto, ON, Canada, 2018; pp. 214–239. [Google Scholar]
- Hernandez, E.D.; Guzman, C.A.; Seron, P. Interventions Based on Environmental Determinants for Nutritional and Physical Activity Behaviours in Colombia: A Scoping Review. BMJ Open 2022, 12, e060085. [Google Scholar] [CrossRef]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the Double Burden of Malnutrition and the Changing Nutrition Reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, G. Play, Urban Spaces and Children’s Capabilities: A Pilot Study in the Neighbourhood of La Candelaria in Cartagena, Colombia. Available online: http://biblioteca.utb.edu.co/notas/tesis/0069844.pdf (accessed on 25 August 2025).
- Sridhar, G.R.; Gumpeny, L. Built Environment and Childhood Obesity. World J. Clin. Pediatr. 2024, 13, 93729. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Griffiths, L.J.; Pouliou, T.; Bailey, R.; Fry, R.; Lyons, R.A.; Stratton, G.; Mizen, A. Cumulative Residential Greenness and Childhood Body Mass Index. Environ. Epidemiol. 2025, 9, e421. [Google Scholar] [CrossRef] [PubMed]
| Level | Variables |
|---|---|
| Individual | Age Biological Sex Ethnicity Meets the Minimum of Physical Activity Excessive Exposure to Screens |
| Interpersonal | Wealth Quartiles Household Size Type of Family Biological Sex of Head of Household Education Level of Head of Household Maternal Education Level |
| Community | Region Urbanicity Degree of Urbanization Living in Neighborhood with Playgrounds |
| Characteristics | n | Weighted n | Prev ± SE (95% CI) |
|---|---|---|---|
| Underweight | 79 | 90,066 | 1.6 ± 0.4 (0.8–2.4) |
| Normal | 4565 | 4,111,243 | 73.9 ± 1.2 (71.5–76.4) |
| Overweight | 1012 | 947,533 | 17.0 ± 1.1 (14.9–19.2) |
| Obesity | 407 | 410,912 | 7.4 ± 0.8 (5.9–8.9) |
| Vitamin D Level < 30 nmol/L | 126 | 138,754 | 2.5 ± 0.5 (1.5–3.5) |
| Vitamin D Level < 37.5 nmol/L | 595 | 587,918 | 10.6 ± 1.5 (7.6–13.6) |
| Vitamin D Level < 50 nmol/L | 1290 | 1,254,375 | 22.6 ± 3.0 (16.7–28.4) |
| * DBM1 | 40 | 41,088 | 0.7 ± 0.2 (0.4–1.1) |
| ** DBM2 | 188 | 201,464 | 3.6 ± 0.7 (2.2–5.0) |
| *** DBM3 | 381 | 384,778 | 6.9 ± 1.2 (4.6–9.3) |
| Characteristics | n | Weighted n | Prev ± SE (95% CI) | p-Value | p-Value FDR |
|---|---|---|---|---|---|
| Individual Level | |||||
| Age (Years) | |||||
| 5 | 69 | 38,020 | 6.3 ± 2 (2.4, 10.3) | 0.502 | 0.543 |
| 6 | 40 | 56,073 | 7.9 ± 1.7 (4.7, 11.1) | ||
| 7 | 37 | 45,272 | 5.5 ± 1.9 (1.8, 9.2) | ||
| 8 | 49 | 54,861 | 7.9 ± 1.9 (4.1, 11.6) | ||
| 9 | 45 | 48,388 | 7 ± 2 (2.9, 11) | ||
| 10 | 48 | 50,756 | 7.6 ± 1.6 (4.5, 10.6) | ||
| 11 | 52 | 56,692 | 8.4 ± 1.8 (5, 11.9) | ||
| 12 | 41 | 34,717 | 5 ± 1 (3.1, 7) | ||
| Biological Sex | |||||
| Male | 192 | 185,085 | 6.5 ± 1.1 (4.4, 8.5) | 0.250 | 0.332 |
| Female | 189 | 199,693 | 7.4 ± 1.5 (4.5, 10.4) | ||
| Ethnicity | |||||
| Black | 33 | 23,610 | 4.3 ± 2 (0.4, 8.2) | 0.174 | 0.249 |
| Indigenous | 37 | 11,874 | 3.6 ± 1.6 (0.6, 6.7) | ||
| Without Ethnicity | 311 | 349,294 | 7.5 ± 1.3 (4.9, 10) | ||
| Meets the Minimum of Physical Activity | |||||
| No | 283 | 290,250 | 7.5 ± 1.2 (5.1–10) | 0.020 | 0.040 |
| Yes | 96 | 88,361 | 5.2 ± 1.1 (3.1–7.4) | ||
| Missing | 2 | 6168 | - | ||
| Excessive Exposure to Screens | |||||
| Yes | 256 | 281,328 | 7.8 ± 1.3 (5.2–10.5) | <0.001 | <0.001 |
| No | 124 | 97,378 | 5 ± 0.8 (3.3–6.6) | ||
| Missing | 1 | 6072 | - |
| Characteristics | n | Weighted n | Prev ± SE (95% CI) | p-Value | p-Value FDR |
|---|---|---|---|---|---|
| Wealth Index, Quartiles | |||||
| Q1 | 157 | 95,236 | 4.2 ± 0.6 (2.9, 5.5) | <0.0001 | <0.0001 |
| Q2 | 119 | 112,902 | 7.7 ± 1.3 (5.1, 10.2) | ||
| Q3 | 64 | 82,925 | 7.9 ± 1.8 (4.4, 11.5) | ||
| Q4 | 41 | 93,714 | 12.1 ± 2.8 (6.6, 17.6) | ||
| Household Size | |||||
| <4 People | 234 | 255,390 | 9.3 ± 1.4 (6.5, 12.2) | <0.0001 | <0.0001 |
| >4 People | 147 | 129,388 | 4.6 ± 1 (2.6, 6.6) | ||
| Type of Family | |||||
| Nuclear | 224 | 221,949 | 7.2 ± 1.2 (4.7, 9.6) | 0.576 | 0.599 |
| Extended | 157 | 162,829 | 6.6 ± 1.4 (4, 9.3) | ||
| Biological Sex of the Head of Household | |||||
| Male | 236 | 238,686 | 6.9 ± 1.2 (4.5, 9.2) | 0.879 | 0.879 |
| Female | 145 | 146,093 | 7 ± 1.4 (4.3, 9.7) | ||
| Education Level of Head of Household (Years) | |||||
| 0–4 | 77 | 77,239 | 5.2 ± 1.1 (3, 7.4) | 0.037 | 0.059 |
| 5–10 | 135 | 131,464 | 6.8 ± 1.1 (4.7, 9) | ||
| 11–15 | 146 | 159,323 | 8.8 ± 1.9 (5, 12.6) | ||
| 16–24 | 22 | 16,570 | 5.2 ± 1.7 (1.9, 8.5) | ||
| Missing | 1 | 183 | - | ||
| Maternal Education Level (Years) | |||||
| 0–4 | 45 | 39,997 | 5.2 ± 1.6 (2.1–8.3) | <0.0001 | <0.0001 |
| 5–10 | 115 | 96,234 | 5 ± 0.9 (3.3–6.7) | ||
| 11–15 | 171 | 206,201 | 9.5 ± 1.6 (6.4–12.7) | ||
| 16–24 | 34 | 33,645 | 9.6 ± 2.7 (4.3–15) | ||
| Missing | 16 | 8701 | - |
| Characteristics | n | Weighted n | Prev ± SE (95% CI) | p-Value | p-Value FDR |
|---|---|---|---|---|---|
| Region | |||||
| Atlantico | 31 | 26,483 | 1.9 ± 0.7 (0.6, 3.3) | <0.0001 | <0.0001 |
| Oriental | 74 | 83,110 | 8.5 ± 1.7 (5.1–11.9) | ||
| Orinoquia and Amazonia | 99 | 8926 | 4.8 ± 0.7 (3.4–6.2) | ||
| Bogota | 44 | 106,137 | 13.4 ± 2.7 (8.1–18.8) | ||
| Central | 71 | 83,121 | 6.5 ± 1.2 (4–8.9) | ||
| Pacifico | 62 | 77,002 | 8 ± 2.8 (2.5–13.6) | ||
| Urbanicity | |||||
| Urban | 310 | 312,857 | 7.4 ± 1.5 (4.5, 10.3) | 0.257 | 0.332 |
| Rural | 71 | 71,922 | 5.5 ± 1 (3.5, 7.4) | ||
| Degree of Urbanization (Population Size) | |||||
| Major Metropolitan Cities | 70 | 160,755 | 10.8 ± 2.6 (5.7, 15.9) | 0.032 | 0.059 |
| Large Urban Areas | 78 | 86,496 | 5.7 ± 1.4 (3, 8.4) | ||
| Small Urban Areas | 233 | 137,527 | 5.4 ± 0.8 (3.9, 6.9) | ||
| Living In Neighborhood with Playgrounds | |||||
| Yes | 229 | 247,329 | 7.5 ± 1.3 (4.9–10) | <0.0001 | <0.0001 |
| No | 151 | 131,377 | 5.9 ± 1 (4–7.8) | ||
| Missing | 1 | 6072 | - |
| Characteristics | Category | Unadjusted Model | p-Value | Adjusted Model |
|---|---|---|---|---|
| Individual-Level | OR (95% CI) | OR (95% CI) | ||
| Age | Per year increase | 1.00 (0.92, 1.09) | 0.952 | 1.04 (0.99, 1.08) |
| Biological Sex | Male (Ref) | 1 | 0.250 | 1 |
| Female | 1.16 (0.90, 1.51) | 1.08 (0.87, 1.34) | ||
| Ethnicity | Indigenous (Ref) | 1 | 0.181 | 1 |
| Black | 1.18 (0.32, 4.33) | 0.82 (0.47, 1.43) | ||
| Without Ethnicity | 2.13 (0.80, 5.70) | 0.89 (0.60, 1.36) | ||
| Meets the Minimum of Physical Activity | Yes (Ref) | 1 | 1 | |
| No | 1.47 (1.04, 2.08) | 0.058 | 1.19 (0.93, 1.54) | |
| Excessive Exposure to Screens | No (Ref) | 1 | 1 | |
| Yes | 1.63 (1.22, 2.19) | 0.001 | 1.10 (0.87, 1.40) |
| Characteristics | Category | Unadjusted Model | p-Value | Adjusted Model |
|---|---|---|---|---|
| Interpersonal Level | OR (95% CI) | OR (95% CI) | ||
| Wealth Index, Quartiles | Q1 (Ref) | 1 | <0.001 | 1 |
| Q2 | 1.90 (1.20, 3.00) | 1.47 (1.10, 1.96) | ||
| Q3 | 1.97 (1.23, 3.17) | 1.23 (0.85, 1.78) | ||
| Q4 | 3.15 (1.85, 5.39) | 1.36 (0.86, 2.13) | ||
| Household Size | >4 people (Ref) | 1 | 1 | |
| <4 people | 2.13 (1.59, 2.86) | <0.001 | 1.61 (1.28, 2.03) | |
| Type of Family | Extended (Ref) | 1 | 0.577 | - |
| Nuclear | 1.09 (0.80, 1.47) | - | ||
| Biological Sex of Head of Household | Male (Ref) | 1 | 0.879 | - |
| Female | 1.02 (0.78–1.33) | - | ||
| Education of Head of Household (Years) | 11–15 (Ref) | 1 | 0.016 | 1 |
| 0–4 | 0.57 (0.35, 0.92) | 0.96 (0.67, 1.37) | ||
| 5–10 | 0.76 (0.51, 1.14) | 1.13 (0.84, 1.52) | ||
| 16–24 | 0.57 (0.29, 1.10) | 0.73 (0.42, 1.23) | ||
| Maternal Education (Years) | 0–4 (Ref) | 1 | 1 | |
| 5–10 | 0.96 (0.50, 1.84) | <0.001 | 0.91 (0.62, 1.34) | |
| 11–15 | 1.92 (1.08, 3.41) | 1.21 (0.81, 1.82) | ||
| 16–24 | 1.94 (0.80, 4.69) | 2.29 (1.26, 4.12) |
| Characteristics | Category | Unadjusted Model | p-Value | Adjusted Model |
|---|---|---|---|---|
| Community level | OR (95% CI) | OR (95% CI) | ||
| Region | Bogota (Ref) | 1 | <0.001 | 1 |
| Atlantico | 0.13 (0.06, 0.27) | 0.52 (0.28, 0.93) | ||
| Oriental | 0.60 (0.38, 0.94) | 1.25 (0.68, 2.26) | ||
| Orinoquia and Amazonia | 0.33 (0.24, 0.44) | 0.90 (0.49, 1.63) | ||
| Central | 0.45 (0.30, 0.67) | 0.76 (0.43, 1.34) | ||
| Pacifico | 0.56 (0.26, 1.21) | 1.34 (0.76, 2.31) | ||
| Urbanicity | Urban (Ref) | 1 | 0.259 | - |
| Rural | 0.72 (0.41, 1.28) | |||
| Degree of Urbanization | Major Metropolitan Cities | 1 | 0.057 | 1 |
| Large Urban Areas | 0.50 (0.23, 1.10) | 0.64 (0.40, 1.06) | ||
| Small Urban Areas | 0.47 (0.25, 0.87) | 0.70 (0.43, 1.15) | ||
| Living in Neighborhood with Playgrounds | No (Ref) | 1 | 0.004 | 1 |
| Yes | 1.29 (0.99–1.69) | 1.00 (0.79, 1.26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara-Romero, E.; Florez-Garcia, V.; Ogungbe, F.; Harley, A.; Yan, A. The Prevalence and Correlates of Vitamin D Deficiency and Overweight/Obesity of School-Age Children in Colombia–Findings on the Double Burden of Malnutrition from Nationally-Representative Data. Obesities 2025, 5, 76. https://doi.org/10.3390/obesities5040076
Guevara-Romero E, Florez-Garcia V, Ogungbe F, Harley A, Yan A. The Prevalence and Correlates of Vitamin D Deficiency and Overweight/Obesity of School-Age Children in Colombia–Findings on the Double Burden of Malnutrition from Nationally-Representative Data. Obesities. 2025; 5(4):76. https://doi.org/10.3390/obesities5040076
Chicago/Turabian StyleGuevara-Romero, Edwin, Victor Florez-Garcia, Faith Ogungbe, Amy Harley, and Alice Yan. 2025. "The Prevalence and Correlates of Vitamin D Deficiency and Overweight/Obesity of School-Age Children in Colombia–Findings on the Double Burden of Malnutrition from Nationally-Representative Data" Obesities 5, no. 4: 76. https://doi.org/10.3390/obesities5040076
APA StyleGuevara-Romero, E., Florez-Garcia, V., Ogungbe, F., Harley, A., & Yan, A. (2025). The Prevalence and Correlates of Vitamin D Deficiency and Overweight/Obesity of School-Age Children in Colombia–Findings on the Double Burden of Malnutrition from Nationally-Representative Data. Obesities, 5(4), 76. https://doi.org/10.3390/obesities5040076

