Balanced Choices: Examining the Impact of Dietary Diversity on BMI, Health Risks, and Rising Rates of Obesity in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Measurement Strategy: Demand for Diet Diversity
2.3. Empirical Implementation
3. Results and Discussion
3.1. Summary Statistics
3.2. Demand for Food Diversity
3.3. Diet Diversity and BMI
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary Habits, Lipoprotein Metabolism and Cardiovascular Disease: From Individual Foods to Dietary Patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar]
- Neupane, S.; Prakash, K.C.; Doku, D.T. Overweight and Obesity among Women: Analysis of Demographic and Health Survey Data from 32 Sub-Saharan African Countries. BMC Public Health 2015, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Pauw, K.; Ecker, O.; Thurlow, J.; Comstock, A.R. Measuring Changes in Diet Deprivation: New Indicators and Methods. Food Policy 2023, 117, 102471. [Google Scholar] [CrossRef]
- Zemene, M.A.; Anley, D.T.; Gebeyehu, N.A.; Adella, G.A.; Kassie, G.A.; Mengstie, M.A.; Seid, M.A.; Abebe, E.C.; Gesese, M.M.; Tesfa, N.A.; et al. Concurrent Stunting and Overweight or Obesity among Under-Five Children in Sub-Saharan Africa: A Multilevel Analysis. Arch. Public Health 2023, 81, 119. [Google Scholar] [CrossRef]
- Development Initiative. 2021 Global Nutrition Report: The State of Global Nutrition; Development Initiative: Bristol, UK, 2021. [Google Scholar]
- WHO Malnutrition. World Health Organization. Fact Sheets; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Brouwer, I.D.; van Liere, M.J.; de Brauw, A.; Dominguez-Salas, P.; Herforth, A.; Kennedy, G.; Lachat, C.; Omosa, E.B.; Talsma, E.F.; Vandevijvere, S. Reverse Thinking: Taking a Healthy Diet Perspective towards Food Systems Transformations. Food Secur. 2021, 13, 1497–1523. [Google Scholar] [CrossRef]
- Ecker, O.; Comstock, A.R.; Pauw, K. A Healthy Diet Is Costly, but Even with Limited Income Kenyans Can Eat Better; International Food Policy Research Institute: Washington, DC, USA, 2023. [Google Scholar]
- Shekar, M.; Popkin, B. Obesity: Health and Economic Consequences of an Impending Global Challenge; World Bank Publications: Herndon, VA, USA, 2020; ISBN 1-4648-1492-9. [Google Scholar]
- Singh, M.; Thrimawithana, T.; Shukla, R.; Adhikari, B. Managing Obesity through Natural Polyphenols: A Review. Future Foods 2020, 1, 100002. [Google Scholar] [CrossRef]
- Erokhin, V.; Diao, L.; Gao, T.; Andrei, J.-V.; Ivolga, A.; Zong, Y. The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 7356. [Google Scholar] [CrossRef]
- McCullough, E.B.; Lu, M.; Nouve, Y.; Arsenault, J.; Zhen, C. Nutrient Adequacy for Poor Households in Africa Would Improve with Higher Income but Not Necessarily with Lower Food Prices. Nat. Food 2024, 5, 171–181. [Google Scholar] [CrossRef]
- Leroy, J.L.; Ruel, M.; Frongillo, E.A.; Harris, J.; Ballard, T.J. Measuring the Food Access Dimension of Food Security: A Critical Review and Mapping of Indicators. Food Nutr. Bull. 2015, 36, 167–195. [Google Scholar] [CrossRef]
- Ruel, M.T. Operationalizing Dietary Diversity: A Review of Measurement Issues and Research Priorities. J. Nutr. 2003, 133, 3911S–3926S. [Google Scholar] [CrossRef] [PubMed]
- Trijsburg, L.; Talsma, E.F.; De Vries, J.H.; Kennedy, G.; Kuijsten, A.; Brouwer, I.D. Diet Quality Indices for Research in Low-and Middle-Income Countries: A Systematic Review. Nutr. Rev. 2019, 77, 515–540. [Google Scholar] [CrossRef]
- Vadiveloo, M.; Dixon, L.B.; Mijanovich, T.; Elbel, B.; Parekh, N. Development and Evaluation of the US Healthy Food Diversity Index. Br. J. Nutr. 2014, 112, 1562–1574. [Google Scholar] [CrossRef]
- Verger, E.O.; Le Port, A.; Borderon, A.; Bourbon, G.; Moursi, M.; Savy, M.; Mariotti, F.; Martin-Prevel, Y. Dietary Diversity Indicators and Their Associations with Dietary Adequacy and Health Outcomes: A Systematic Scoping Review. Adv. Nutr. 2021, 12, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Moraeus, L.; Lindroos, A.K.; Warensjö Lemming, E.; Mattisson, I. Diet Diversity Score and Healthy Eating Index in Relation to Diet Quality and Socio-Demographic Factors: Results from a Cross-Sectional National Dietary Survey of Swedish Adolescents. Public Health Nutr. 2020, 23, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Schneeman, B.O. Evolution of Dietary Guidelines. J. Am. Diet. Assoc. 2003, 103, 5–9. [Google Scholar] [CrossRef]
- Kant, A.K. Indexes of Overall Diet Quality: A Review. J. Am. Diet. Assoc. 1996, 96, 785–791. [Google Scholar] [CrossRef]
- Kant, A.K.; Schatzkin, A.; Ziegler, R.G. Dietary Diversity and Subsequent Cause-Specific Mortality in the NHANES I Epidemiologic Follow-up Study. J. Am. Coll. Nutr. 1995, 14, 233–238. [Google Scholar] [CrossRef]
- Hatløy, A.; Torheim, L.; Oshaug, A. Food VarietyÐa Good Indicator of Nutritional Adequacy of the Diet? A Case Study from an Urban Area in Mali, West Africa. Eur. J. Clin. Nutr. 1998, 52, 8. [Google Scholar] [CrossRef]
- Steyn, N.P.; Nel, J.H.; Nantel, G.; Kennedy, G.; Labadarios, D. Food Variety and Dietary Diversity Scores in Children: Are They Good Indicators of Dietary Adequacy? Public Health Nutr. 2006, 9, 644–650. [Google Scholar] [CrossRef]
- Drescher, L.S.; Thiele, S.; Mensink, G.B.M. A New Index to Measure Healthy Food Diversity Better Reflects a Healthy Diet Than Traditional Measures. J. Nutr. 2007, 137, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Haines, P.S.; Siega-Riz, A.M.; Popkin, B.M. The Diet Quality Index-International (DQI-I) Provides an Effective Tool for Cross-National Comparison of Diet Quality as Illustrated by China and the United States. J. Nutr. 2003, 133, 3476–3484. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dietary Diversity Score and Cardiovascular Risk Factors in Tehranian Adults. Public Health Nutr. 2006, 9, 728–736. [Google Scholar] [CrossRef]
- Braha, K.; Cupák, A.; Pokrivčák, J.; Qineti, A.; Rizov, M. Economic Analysis of the Link between Diet Quality and Health: Evidence from Kosovo. Econ. Hum. Biol. 2017, 27, 261–274. [Google Scholar] [CrossRef]
- Huffman, S.K.; Rizov, M. The Rise of Obesity in Transition: Theory and Empirical Evidence from Russia. J. Dev. Stud. 2010, 46, 574–594. [Google Scholar] [CrossRef]
- Jayawardena, R.; Byrne, N.M.; Soares, M.J.; Katulanda, P.; Yadav, B.; Hills, A.P. High Dietary Diversity Is Associated with Obesity in Sri Lankan Adults: An Evaluation of Three Dietary Scores. BMC Public Health 2013, 13, 314. [Google Scholar] [CrossRef]
- Karimbeiki, R.; Pourmasoumi, M.; Feizi, A.; Abbasi, B.; Hadi, A.; Rafie, N.; Safavi, S.M. Higher Dietary Diversity Score Is Associated with Obesity: A Case–Control Study. Public Health 2018, 157, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Khamis, A.G.; Ntwenya, J.E.; Senkoro, M.; Mfinanga, S.G.; Kreppel, K.; Mwanri, A.W.; Bonfoh, B.; Kwesigabo, G. Association between Dietary Diversity with Overweight and Obesity: A Cross-Sectional Study Conducted among Pastoralists in Monduli District in Tanzania. PLoS ONE 2021, 16, e0244813. [Google Scholar] [CrossRef]
- Korir, L.; Rizov, M.; Ruto, E. Diet Diversity, Malnutrition and Health: Evidence from Kenya. J. Agric. Econ. 2023, 74, 534–550. [Google Scholar] [CrossRef]
- Salehi-Abargouei, A.; Akbari, F.; Bellissimo, N.; Azadbakht, L. Dietary Diversity Score and Obesity: A Systematic Review and Meta-Analysis of Observational Studies. Eur. J. Clin. Nutr. 2016, 70, 1–9. [Google Scholar] [CrossRef]
- Akhlaghi, M. Diet Diversity Score May Not Be a Good Indicator of Healthy Diet. J. Health Sci. Surveill. Syst. 2017, 5, 32–37. [Google Scholar]
- Conklin, A.I.; Monsivais, P.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. Dietary Diversity, Diet Cost, and Incidence of Type 2 Diabetes in the United Kingdom: A Prospective Cohort Study. PLOS Med. 2016, 13, e1002085. [Google Scholar] [CrossRef] [PubMed]
- Sibhatu, K.T.; Krishna, V.V.; Qaim, M. Production Diversity and Dietary Diversity in Smallholder Farm Households. Proc. Natl. Acad. Sci. USA 2015, 112, 10657–10662. [Google Scholar] [CrossRef]
- Kennedy, G.; Ballard, T.; Dop, M.-C. Guidelines for Measuring Household and Individual Dietary Diversity; FAO: Rome, Italy, 2011; ISBN 978-92-5-106749-9. [Google Scholar]
- Clements, K.W.; Si, J. Engel’s Law, Diet Diversity, and the Quality of Food Consumption. Am. J. Agric. Econ. 2018, 100, 1–22. [Google Scholar] [CrossRef]
- Casale, D.; Espi, G.; Norris, S.A. The Predictors of Different Measures of Dietary Diversity among One-Year-Olds in South Africa. S. Afr. J. Clin. Nutr. 2020, 33, 158–164. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Popkin, B.M.; Ng, S.W. The Nutrition Transition to a Stage of High Obesity and Noncommunicable Disease Prevalence Dominated by Ultra-processed Foods Is Not Inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Drescher, L.; Thiele, S.; Roosen, J.; Mensink, G.B. Consumer Demand for Healthy Eating Considering Diversity–an Economic Approach for German Individuals. Int. J. Consum. Stud. 2009, 33, 684–696. [Google Scholar] [CrossRef]
- Drescher, L.S.; Goddard, E. Observing Changes in Canadian Demand for Food Diversity over Time; Drescher and Goddard: Orlando, FL, USA, 2008; p. 22. [Google Scholar]
- Rosenzweig, M.R.; Schultz, T.P. The Behavior of Mothers as Inputs to Child Health: The Determinants of Birth Weight, Gestation, and Rate of Fetal Growth. In Economic Aspects of Health; Rosenzweig, M.R., Schultz, T.P., Eds.; A Conference Report/National Bureau of Economic Research; University of Chicago Press: Chicago, IL, USA, 1982; pp. 53–92. ISBN 978-0-226-26785-2. [Google Scholar]
- Grossman, M. Chapter 7—The Human Capital Model. I Am Indebted to Robert Kaestner, Sara Markowitz, Tomas Philipson, and Walter Ried for Helpful Comments. In Handbook of Health Economics; Culyer, A.J., Newhouse, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 1, pp. 347–408. [Google Scholar]
- Huffman, W. Agricultural Household Models: Survey and Critique; Iowa State University, Department of Economics: Ames, IA, USA, 1991. [Google Scholar]
- Jackson, L.F. Hierarchic Demand and the Engel Curve for Variety. Rev. Econ. Stat. 1984, 66, 8–15. [Google Scholar] [CrossRef]
- Herzfeld, T.; Huffman, S.; Rizov, M. The Dynamics of Food, Alcohol and Cigarette Consumption in Russia during Transition. Econ. Hum. Biol. 2014, 13, 128–143. [Google Scholar] [CrossRef]
- Cupák, A.; Pokrivčák, J.; Rizov, M. Diversity of Food Consumption in Slovakia. Polit. Ekon. 2016, 64, 608–626. [Google Scholar] [CrossRef]
- Turner, C.; Aggarwal, A.; Walls, H.; Herforth, A.; Drewnowski, A.; Coates, J.; Kalamatianou, S.; Kadiyala, S. Concepts and Critical Perspectives for Food Environment Research: A Global Framework with Implications for Action in Low- and Middle-Income Countries. Glob. Food Secur. 2018, 18, 93–101. [Google Scholar] [CrossRef]
- Smith, L.C.; Haddad, L. Reducing Child Undernutrition: Past Drivers and Priorities for the Post-MDG Era. World Dev. 2015, 68, 180–204. [Google Scholar] [CrossRef]
- Muraoka, R.; Jin, S.; Jayne, T.S. Land Access, Land Rental and Food Security: Evidence from Kenya. Land Use Policy 2018, 70, 611–622. [Google Scholar] [CrossRef]
- Eicher-Miller, H.A.; Graves, L.; McGowan, B.; Mayfield, B.J.; Connolly, B.A.; Stevens, W.; Abbott, A. A Scoping Review of Household Factors Contributing to Dietary Quality and Food Security in Low-Income Households with School-Age Children in the United States. Adv. Nutr. 2023, 14, 914–945. [Google Scholar] [CrossRef]
- Pretorius, B.; Ambuko, J.; Papargyropoulou, E.; Schönfeldt, H.C. Guiding Nutritious Food Choices and Diets along Food Systems. Sustainability 2021, 13, 9501. [Google Scholar] [CrossRef]
- Ruel, M.T.; Garrett, J.; Yosef, S.; Olivier, M. Urbanization, Food Security and Nutrition. In Nutrition and Health in a Developing World; Humana Press: Cham, Switzerland, 2017; pp. 705–735. [Google Scholar]
- Cano-Ibáñez, N.; Gea, A.; Ruiz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Navarrete-Muñoz, E.M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Diet Quality and Nutrient Density in Subjects with Metabolic Syndrome: Influence of Socioeconomic Status and Lifestyle Factors. A Cross-Sectional Assessment in the PREDIMED-Plus Study. Clin. Nutr. 2020, 39, 1161–1173. [Google Scholar] [CrossRef]
- Jones, A.D. On-Farm Crop Species Richness Is Associated with Household Diet Diversity and Quality in Subsistence-and Market-Oriented Farming Households in Malawi. J. Nutr. 2017, 147, 86–96. [Google Scholar] [CrossRef]
- Makate, M.; Makate, C. Educated Mothers, Well-Fed and Healthy Children? Assessing the Impact of the 1980 School Reform on Dietary Diversity and Nutrition Outcomes of Zimbabwean Children. J. Dev. Stud. 2018, 54, 1196–1216. [Google Scholar] [CrossRef]
- Segun, A.; Zhang, B.; Mary, A.M.; Kibenja, D.; Ma, J.; Said, S.; Adeniyi, I.; Barrow, L.F. Exploring the Relationship between Dietary Patterns and Obesity among Nigerian Adults: A Cross-Sectional Study. BMC Public Health 2024, 24, 1319. [Google Scholar] [CrossRef]
- Gassara, G.; Chen, J. Household Food Insecurity, Dietary Diversity, and Stunting in Sub-Saharan Africa: A Systematic Review. Nutrients 2021, 13, 4401. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.B.; Epnere, K.; Haque, M.A.; Mkuu, R.S. Urban Rural Differences in Prevalence and Risk Factors of Self-Reported Hypertension among Kenyan Women: A Population-Based Study. J. Hum. Hypertens. 2021, 35, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Amugsi, D.A.; Mberu, B.; Ensor, T.; Hill, A.J.; Newell, J.N.; Elsey, H. Nutrition Transition, Overweight and Obesity among Rural-to-Urban Migrant Women in Kenya. Public Health Nutr. 2019, 22, 3200–3210. [Google Scholar] [CrossRef] [PubMed]
- Arimond, M.; Ruel, M.T. Dietary Diversity Is Associated with Child Nutritional Status: Evidence from 11 Demographic and Health Surveys. J. Nutr. 2004, 134, 2579–2585. [Google Scholar] [CrossRef]
- Juma, K.; Juma, P.A.; Shumba, C.; Otieno, P.; Asiki, G. Non-Communicable Diseases and Urbanization in African Cities: A Narrative Review. Public Health Dev. Ctries.-Chall. Oppor. 2019, 15, 31–50. [Google Scholar]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Food diversity indicators | ||||
Healthy Food Diversity Index (HFD) | 0.397 | 0.059 | 0.24 | 0.623 |
Diet Diversity Score Index (DDS) | 1.268 | 0.203 | 0.154 | 2 |
Count measure (CM) | 10.213 | 2.776 | 2 | 16 |
Demographic characteristics | ||||
Household (HH) size | 5.099 | 2.488 | 1 | 22 |
Rural dummy | 0.597 | 0.490 | 0 | 1 |
Male-headed household HH | 0.608 | 0.488 | 0 | 1 |
Age (HH head) | 42.479 | 13.433 | 15 | 98 |
Age (women) | 29.216 | 9.514 | 15 | 49 |
Capital dummy (women) | 0.007 | 0.081 | 0 | 1 |
Socioeconomic factors | ||||
Poorest HH | 0.155 | 0.362 | 0 | 1 |
Poorer HH | 0.181 | 0.385 | 0 | 1 |
Middle HH | 0.187 | 0.390 | 0 | 1 |
Richer HH | 0.222 | 0.416 | 0 | 1 |
Richest HH | 0.254 | 0.435 | 0 | 1 |
No education (in HH) | 0.089 | 0.284 | 0 | 1 |
Primary education (in HH) | 0.411 | 0.492 | 0 | 1 |
Secondary education (in HH) | 0.277 | 0.447 | 0 | 1 |
Higher education (in HH) | 0.218 | 0.413 | 0 | 1 |
Food insecure HH | 0.301 | 0.459 | 0 | 1 |
Ratio of ‘auto consumption’ | 0.113 | 0.165 | 0 | 1 |
No-education (women) | 0.056 | 0.229 | 0 | 1 |
Primary education (women) | 0.365 | 0.481 | 0 | 1 |
Secondary education (women) | 0.392 | 0.488 | 0 | 1 |
Higher education (women) | 0.187 | 0.390 | 0 | 1 |
Wealth index (women) | 3.239 | 1.409 | 1 | 5 |
Variables | Count Measure (CM) | HFD | DDS |
---|---|---|---|
Household size | 0.035 *** | 0.000 | −0.003 ** |
(0.01) | 0.000 | (0.001) | |
Rural_dummy | 0.180 * | −0.006 *** | −0.014 * |
(0.072) | (0.002) | (0.006) | |
Poorest | −1.602 *** | −0.018 *** | −0.032 *** |
(0.069) | (0.002) | (0.006) | |
Poorer | −0.550 *** | −0.004 ** | −0.025 *** |
(0.067) | (0.002) | (0.006) | |
Richer | 0.838 *** | 0.010 *** | 0.035 *** |
(0.075) | (0.002) | (0.006) | |
Richest | 2.017 *** | 0.020 *** | 0.086 *** |
(0.100) | (0.002) | (0.008) | |
No education (in HH) | −0.807 *** | −0.016 *** | −0.005 |
(0.072) | (0.002) | (0.007) | |
Secondary (in HH) | 0.302 *** | 0.002 | −0.002 |
(0.059) | (0.001) | (0.005) | |
Higher Education (in HH) | 0.551 *** | 0.005 ** | 0.005 |
(0.078) | (0.002) | (0.006) | |
Male headed HH | 0.104 * | 0.004 *** | 0.025 *** |
(0.049) | (0.001) | (0.004) | |
Age (HH head) | −0.003 | 0.000 *** | 0.001 *** |
(0.002) | 0.000 | 0.000 | |
Food insecure | −1.138 *** | −0.017 *** | −0.056 *** |
(0.058) | (0.001) | (0.005) | |
Ratio of ‘auto consumption’ | 1.301 *** | 0.034 *** | 0.232 *** |
(0.138) | (0.003) | (0.012) | |
Constant | 9.666 *** | 0.386 *** | 1.215 *** |
(0.114) | (0.003) | (0.009) |
q10 | q52 | q24 | q14 | |
---|---|---|---|---|
HFD fitted values | 1.169 *** | 1.023 *** | 1.119 *** | 1.196 *** |
(0.191) | (0.236) | (0.204) | (0.219) | |
Women’s age | 0.016 *** | 0.022 *** | 0.018 *** | 0.016 *** |
(0.001) | −0.001 | −0.001 | −0.001 | |
Women’s age squared | −0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** |
0.000 | 0.000 | 0.000 | 0.000 | |
Women’s No education | −0.069 *** | −0.083 *** | −0.082 *** | −0.071 *** |
(0.007) | (0.008) | (0.007) | (0.007) | |
Women’s secondary Educ | 0.010 * | 0.005 | 0.010 * | 0.013 ** |
(0.004) | (0.004) | (0.005) | (0.005) | |
Women’s Higher Education | −0.003 | −0.003 | 0 | 0.005 |
(0.007) | (0.005) | (0.006) | (0.006) | |
Rural dummy | 0.022 *** | 0.018 *** | 0.018 *** | 0.025 *** |
(0.006) | (0.004) | (0.005) | (0.005) | |
Capital dummy | 0.050 ** | 0.050 *** | 0.055 *** | 0.060 *** |
(0.017) | (0.011) | (0.013) | (0.01) | |
Wealth index | 0.049 * | 0.064 * | 0.077 ** | 0.075 ** |
(0.024) | (0.032) | (0.026) | (0.025) | |
Wealth interaction HFD | −0.061 | −0.072 | −0.118 | −0.121 |
(0.06) | (0.08) | (0.066) | (0.063) | |
Constant | 2.096 *** | 2.224 *** | 2.147 *** | 2.092 *** |
(0.072) | (0.093) | (0.081) | (0.082) |
q10 | q52 | q24 | q14 | |
---|---|---|---|---|
DDS fitted values | 0.203 ** | 0.137 * | 0.187 ** | 0.196 ** |
(0.072) | (0.064) | (0.065) | (0.070) | |
Women’s age | 0.016 *** | 0.021 *** | 0.018 *** | 0.016 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Women’s age squared | −0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** |
0.000 | 0.000 | 0.000 | 0.000 | |
Women’s No education | −0.083 *** | −0.095 *** | −0.092 *** | −0.085 *** |
(0.008) | (0.008) | (0.007) | (0.006) | |
Women’s secondary Education | 0.014 ** | 0.007 | 0.011 * | 0.015 ** |
(0.005) | (0.004) | (0.005) | (0.005) | |
Women’s Higher Education | −0.002 | −0.003 | 0.000 | 0.004 |
(0.006) | (0.006) | (0.007) | (0.007) | |
Rural dummy | 0.020 ** | 0.020 *** | 0.018 *** | 0.024 *** |
(0.006) | (0.004) | (0.005) | (0.005) | |
Capital dummy | 0.048 ** | 0.045 *** | 0.049 *** | 0.053 *** |
(0.016) | (0.013) | (0.011) | (0.012) | |
Wealth index | 0.051 | 0.055 * | 0.074 ** | 0.057 * |
(0.028) | (0.028) | (0.027) | (0.026) | |
Wealth interaction DDS | −0.015 | −0.011 | −0.03 | −0.019 |
(0.022) | (0.021) | (0.021) | (0.021) | |
Constant | 2.277 *** | 2.433 *** | 2.335 *** | 2.298 *** |
(0.089) | (0.084) | (0.083) | (0.090) |
Variables | q10 | q52 | q24 | q14 |
---|---|---|---|---|
CM fitted values | 0.022 *** | 0.017 *** | 0.019 *** | 0.019 *** |
(0.004) | (0.004) | (0.003) | (0.004) | |
Women’s age | 0.016 *** | 0.021 *** | 0.017 *** | 0.016 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Women’s age squared | −0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** |
0.000 | 0.000 | 0.000 | 0.000 | |
Women’s No education | −0.072 *** | −0.085 *** | −0.084 *** | −0.073 *** |
(0.007) | (0.008) | (0.006) | (0.006) | |
Women’s secondary Educ | 0.01 | 0.004 | 0.011 * | 0.013 ** |
(0.005) | (0.004) | (0.005) | (0.005) | |
Women’s higher Education | −0.003 | −0.006 | −0.002 | 0.003 |
(0.007) | −0.006 | (0.007) | (0.007) | |
Rural dummy | 0.017 ** | 0.014 ** | 0.012 ** | 0.020 *** |
(0.005) | (0.005) | (0.004) | (0.005) | |
Capital dummy | 0.050 ** | 0.048 *** | 0.054 *** | 0.054 *** |
(0.016) | (0.012) | (0.010) | (0.009) | |
Wealth index | 0.040 *** | 0.043 *** | 0.043 *** | 0.045 *** |
(0.011) | (0.009) | (0.009) | (0.010) | |
Wealth interaction CM | −0.002 | −0.001 | −0.002 * | −0.002 * |
(0.001) | (0.001) | (0.001) | (0.001) | |
Constant | 2.352 *** | 2.479 *** | 2.431 *** | 2.396 *** |
(0.036) | (0.035) | (0.034) | (0.040) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korir, L.; Ehiakpor, D.S.; Danso-Abbeam, G.; Djokoto, J.G.; Rizov, M. Balanced Choices: Examining the Impact of Dietary Diversity on BMI, Health Risks, and Rising Rates of Obesity in Kenya. Obesities 2024, 4, 509-523. https://doi.org/10.3390/obesities4040040
Korir L, Ehiakpor DS, Danso-Abbeam G, Djokoto JG, Rizov M. Balanced Choices: Examining the Impact of Dietary Diversity on BMI, Health Risks, and Rising Rates of Obesity in Kenya. Obesities. 2024; 4(4):509-523. https://doi.org/10.3390/obesities4040040
Chicago/Turabian StyleKorir, Lilian, Dennis Sedem Ehiakpor, Gideon Danso-Abbeam, Justice Gameli Djokoto, and Marian Rizov. 2024. "Balanced Choices: Examining the Impact of Dietary Diversity on BMI, Health Risks, and Rising Rates of Obesity in Kenya" Obesities 4, no. 4: 509-523. https://doi.org/10.3390/obesities4040040
APA StyleKorir, L., Ehiakpor, D. S., Danso-Abbeam, G., Djokoto, J. G., & Rizov, M. (2024). Balanced Choices: Examining the Impact of Dietary Diversity on BMI, Health Risks, and Rising Rates of Obesity in Kenya. Obesities, 4(4), 509-523. https://doi.org/10.3390/obesities4040040