Fuel Cell Micro-CHP: Analysis of Hydrogen Solid Storage and Artificial Photosynthesis Hydrogen Production
Abstract
1. Introduction
- Artificial photosynthesis for hydrogen production with low carbon emissions;
- Analytical approach for estimation of MH SOC based only on external measurements;
- The mCHP behavior under different operating conditions.
2. Hydrogen Solid Storage and Artificial Photosynthesis Production
2.1. Hydrogen Storage Experimental Setup
2.2. Mathematical Modeling
2.3. Results and Discussions
3. mCHP Behavior, H2 Demand, and CO2 Emission Under Different Fuel Consumption
3.1. mCHP Experimental Setup
3.2. Experimental Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DHW | Domestic hot water |
| FC | Fuel cell |
| IR | Internal reformer |
| LHV | Lower heating value |
| mCHP | Micro-combined heat and power production |
| MH | Metal hydrides |
| PEMFC | Proton exchange membrane fuel cell |
| SHD | Space heat demand |
| SOC | State of charge |
| RMSE | Root mean square error |
References
- Salehabadi, A.; Zanganeh, J.; Moghtaderi, B. Exploring Hydrogen Production over Non-Thermal Ammonia Electrolysis: A Practical Review. Sustain. Mater. Technol. 2025, 46, e01732. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Topal, M.; Akbulut, U.; Dincer, I. A Comprehensive Review on Hydrogen Production from Coal Gasification: Challenges and Opportunities. Int. J. Hydrogen Energy 2021, 46, 25385–25412. [Google Scholar] [CrossRef]
- Szablowski, L.; Wojcik, M.; Dybinski, O. Review of Steam Methane Reforming as a Method of Hydrogen Production. Energy 2025, 316, 134540. [Google Scholar] [CrossRef]
- Soltani, S.; Lahiri, A.; Bahzad, H.; Clough, P.; Gorbounov, M.; Yan, Y. Sorption-Enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review. Carbon Capture Sci. Technol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- El-Shafie, M. Hydrogen Production by Water Electrolysis Technologies: A Review. Results Eng. 2023, 20, 101426. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Li, Y.; Ding, Z. Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology. Molecules 2024, 29, 1767. [Google Scholar] [CrossRef]
- Wang, X.; Peng, P.; Witman, M.D.; Stavila, V.; Allendorf, M.D.; Breunig, H.M. Technoeconomic Insights into Metal Hydrides for Stationary Hydrogen Storage. Adv. Sci. 2025, 12, 2415736. [Google Scholar] [CrossRef]
- Kaoutari, T.; Louahlia, H.; Schaetzel, P.; Gualous, H. Modeling of a Metal Hydride Energy Storage Tank Dynamics Using Hybrid Numerical, Experimental, and Machine Learning Methods. Appl. Therm. Eng. 2025, 258, 124718. [Google Scholar] [CrossRef]
- Kaoutari, T.; Louahlia, H.; Schaetzel, P. Optimization of Hydrogen Gas Storage in PEM Fuel Cell mCHP System for Residential Applications Using Numerical and Machine Learning Modeling. Energy Convers. Manag. 2025, 341, 120017. [Google Scholar] [CrossRef]
- Brooks, K.P.; Sprik, S.J.; Tamburello, D.A.; Thornton, M.J. Design Tool for Estimating Metal Hydride Storage System Characteristics for Light-Duty Hydrogen Fuel Cell Vehicles. Int. J. Hydrogen Energy 2020, 45, 24917–24927. [Google Scholar] [CrossRef]
- Luo, L.; Cristofari, C.; Levrey, S. Cogeneration: Another Way to Increase Energy Efficiency of Hybrid Renewable Energy Hydrogen Chain—A Review of Systems Operating in Cogeneration and of the Energy Efficiency Assessment through Exergy Analysis. J. Energy Storage 2023, 66, 107433. [Google Scholar] [CrossRef]
- Ramadhani, F.; Hussain, M.A.; Mokhlis, H. A Comprehensive Review and Technical Guideline for Optimal Design and Operations of Fuel Cell-Based Cogeneration Systems. Processes 2019, 7, 950. [Google Scholar] [CrossRef]
- Briguglio, N.; Ferraro, M.; Brunaccini, G.; Antonucci, V. Evaluation of a Low Temperature Fuel Cell System for Residential CHP. Int. J. Hydrogen Energy 2011, 36, 8023–8029. [Google Scholar] [CrossRef]
- Gabana, P.; Tinaut, F.V.; Reyes, M.; Domínguez, J.I. Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery. Energies 2023, 16, 6420. [Google Scholar] [CrossRef]
- Song, K.; Hou, T.; Jiang, J.; Grigoriev, S.A.; Fan, F.; Qin, J.; Wang, Z.; Sun, C. Thermal Management of Liquid-Cooled Proton Exchange Membrane Fuel Cell: A Review. J. Power Sources 2025, 648, 237227. [Google Scholar] [CrossRef]
- Meng, X.; Sun, C.; Mei, J.; Tang, X.; Hasanien, H.M.; Jiang, J.; Fan, F.; Song, K. Fuel Cell Life Prediction Considering the Recovery Phenomenon of Reversible Voltage Loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
- Nandy, S.; Savant, S.A.; Haussener, S. Prospects and Challenges in Designing Photocatalytic Particle Suspension Reactors for Solar Fuel Processing. Chem. Sci. 2021, 12, 9866–9884. [Google Scholar] [CrossRef]
- Foin, G. Production D’hydrogène par Photosynthèse Artificielle: Modélisation du Transfert Radiatif Pour L’analyse de la Spectrophotométrie et de son Couplage Cinétique en Photoréacteur. Ph.D. Thesis, Université Clermont Auvergne, Clermont-Ferrand, France, 2024. [Google Scholar]
- Heining, M.; Buchholz, R. Photobioreactors with Internal Illumination—A Survey and Comparison. Biotechnol. J. 2015, 10, 1131–1137. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; First; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Patel, G.H.; Havukainen, J.; Horttanainen, M.; Soukka, R.; Tuomaala, M. Climate Change Performance of Hydrogen Production Based on Life Cycle Assessment. Green Chem. 2024, 26, 992–1006. [Google Scholar] [CrossRef]
- Dhaou, H.; Askri, F.; Ben Salah, M.; Jemni, A.; Ben Nasrallah, S.; Lamloumi, J. Measurement and Modelling of Kinetics of Hydrogen Sorption by LaNi5 and Two Related Pseudobinary Compounds. Int. J. Hydrogen Energy 2007, 32, 576–587. [Google Scholar] [CrossRef]
- Askri, F.; Ben Salah, M.; Jemni, A.; Ben Nasrallah, S. Optimization of Hydrogen Storage in Metal-Hydride Tanks. Int. J. Hydrogen Energy 2009, 34, 897–905. [Google Scholar] [CrossRef]
- Nam, J.; Ko, J.; Ju, H. Three-Dimensional Modeling and Simulation of Hydrogen Absorption in Metal Hydride Hydrogen Storage Vessels. Appl. Energy 2012, 89, 164–175. [Google Scholar] [CrossRef]
- Jemni, A.; Nasrallah, S.B. Study of Two-Dimensional Heat and Mass Transfer during Absorption in a Metal-Hydrogen Reactor. Int. J. Hydrogen Energy 1995, 20, 43–52. [Google Scholar] [CrossRef]
- Hahn, D.W.; Özisik, M.N. Heat Conduction; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-33011-1. [Google Scholar]
- Zill, D.G.; Cullen, M.R. Differential Equations with Boundary-Value Problems; Cengage Learning: Boston, MA, USA, 2008; ISBN 978-0-495-10836-8. [Google Scholar]
- Elkhatib, R.; Petrone, R.; Louahlia, H. Dynamic Study of Hydrogen Optimization in the Hybrid Boiler-Fuel Cells MCHP Unit for Eco-Friendly House. Int. J. Hydrogen Energy 2024, 56, 973–988. [Google Scholar] [CrossRef]
- Production D’hydrogène. Available online: https://prod-basecarbonesolo.ademe-dri.fr/documentation/UPLOAD_DOC_FR/index.htm?production-dhydrogene_2.htm (accessed on 4 December 2025).
- Gaz. Available online: https://prod-basecarbonesolo.ademe-dri.fr/documentation/UPLOAD_DOC_FR/index.htm?gaz.htm (accessed on 4 December 2025).
- éCO2mix—Les émissions de CO2 par kWh produit en France|RTE. Available online: https://www.rte-france.com/donnees-publications/eco2mix-donnees-temps-reel/emissions-co2-par-kwh-produit-france (accessed on 12 December 2025).
- Huang, X.; Jeswani, H.K.; Azapagic, A. Green Hydrogen Production in Photoelectrochemical Artificial-Leaf Systems with Different Tandem Solar Cells: An Environmental and Economic Assessment of Industrial-Scale Production in China. Energy Convers. Manag. 2025, 344, 120274. [Google Scholar] [CrossRef]














| Symbol | Value | Unit | Meaning |
|---|---|---|---|
| a | 1.905 | - | Amplitude scaling factor of the arctangent model |
| b | 6.784 | 1/bar | Sensitivity to equilibrium pressure |
| c | −17.91 | - | Horizontal shift in the arctangent input |
| d | 2.874 | - | Vertical shift in the arctangent output |
| Symbol | Value | Unit | Meaning |
|---|---|---|---|
| p1 | −0.0066 | % | Curvature SOC (log-scale), penalizes over/underestimation at high/low |
| p2 | −10.1240 | % | Curvature surface temperature (log-scale) |
| p3 | −7.5370 | % | Curvature heat power (log-scale), limits impact of very low/high |
| p4 | 0.1197 | % | First-order log sensitivity to SOC model, boosts when it increases multiplicatively |
| p5 | 32.8572 | % | First-order log sensitivity to surface temperature, strong multiplicative effect |
| p6 | 51.8142 | % | First-order log sensitivity to heat power, dominant multiplicative effect |
| p7 | 0.0877 | - | Linear correction on SOC model bias/slope |
| p8 | −1.5722 | %/°C | Linear temperature effect, higher reduces SOC |
| p9 | 0.085 | %/W | Linear heat power effect, higher increases SOC |
| p10 | 74.9965 | % | Intercept global offset aligning model to measurements |
| Used Enhancement Model | RMSE (%) |
|---|---|
| Logarithmic | 4.2479 |
| Sigmoid | 2.4376 |
| Inverse power | 4.2557 |
| Log polynomial | 1.4921 |
| Without enhancement | 9.3457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fahim, S.; Kaoutari, T.; Foin, G.; Louahlia, H. Fuel Cell Micro-CHP: Analysis of Hydrogen Solid Storage and Artificial Photosynthesis Hydrogen Production. Hydrogen 2026, 7, 5. https://doi.org/10.3390/hydrogen7010005
Fahim S, Kaoutari T, Foin G, Louahlia H. Fuel Cell Micro-CHP: Analysis of Hydrogen Solid Storage and Artificial Photosynthesis Hydrogen Production. Hydrogen. 2026; 7(1):5. https://doi.org/10.3390/hydrogen7010005
Chicago/Turabian StyleFahim, Saad, Taoufiq Kaoutari, Guillaume Foin, and Hasna Louahlia. 2026. "Fuel Cell Micro-CHP: Analysis of Hydrogen Solid Storage and Artificial Photosynthesis Hydrogen Production" Hydrogen 7, no. 1: 5. https://doi.org/10.3390/hydrogen7010005
APA StyleFahim, S., Kaoutari, T., Foin, G., & Louahlia, H. (2026). Fuel Cell Micro-CHP: Analysis of Hydrogen Solid Storage and Artificial Photosynthesis Hydrogen Production. Hydrogen, 7(1), 5. https://doi.org/10.3390/hydrogen7010005

