A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways
Abstract
:1. Introduction
2. General Overview of H2 Production Pathways
- Steam Reforming Process
- Coal Gasification Process
- Electrolysis Process
3. Life Cycle Assessment Review
3.1. Carbon Footprint
3.2. Water Consumption
3.3. Energy Performance
4. General Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic Digestion |
AEL | Alkaline Electrolysis |
AWARE | Available Water Remaining |
BG | Biomass Gasification Reforming |
BP | Biomass Pyrolysis |
CCS | Carbon Capture and Storage |
CED | Cumulative Energy Demand |
CG | Coal Gasification |
EL | Electrolysis |
EI | Energy Indicator |
EROI | Energy Return on Investment |
EtOH | Ethanol |
GHG | Greenhouse gas |
GWP | Global Warming Potential |
HHV | High Heat Value |
LCA | Life Cycle Assessment |
LFG | Landfill Gas |
LHV | Low Heat Value |
PEM | Proton-Exchange Membrane |
PV | Photovoltaic |
SMR | Steam Methane Reforming |
SOEC | Solid Oxide Electrolyzer Cell |
SRBio | Steam Reforming of Biomethane |
SREtOH | Steam Reforming of Ethanol |
WF | Water Footprint |
WFA | Water Footprint Assessment |
WFN | Water Footprint Network |
WGS | Water Gas Shift |
WSF | Water Scarcity Footprint |
Appendix A
Route | GWP (kg CO2e/kg H2) | Location of the Study | Observations | Boundaries | Ref. |
---|---|---|---|---|---|
SMR | 11.2 | - | - | Cradle-to-gate | [90] |
11.9 | - | - | Not specified | [110] | |
13.8 | - | - | Well-to-pump | [95] | |
9.8 | - | - | Cradle-to-use | [111] | |
10.8 | Europe | - | Cradle-to-gate | [97] | |
10.2 | - | - | Cradle-to-grave | [91] | |
10.4 | - | - | Cradle-to-gate | [87] | |
7 | - | - | Cradle-to-gate | [23] | |
12.6 | - | - | Cradle-to-gate | [99] | |
8.0 | - | - | Well-to-pump | [112] | |
12.3 | Finland | - | Cradle-to-gate | [92] | |
CGR | 23.7 | - | - | Well-to-pump | [95] |
11.59 | Iran | - | Cradle-to-grave | [91] | |
24.2 | - | - | Cradle-to-grave | [46] | |
26 | - | - | Cradle-to-gate | [66] | |
51.86 | - | - | Cradle-to-distribution | [40] | |
84.2 | - | - | Not specified | [93] | |
14.74 | - | - | Cradle-to-gate | [88] | |
SRBiogas | 9.2 | Swedish | Wheat grains EtOH | Cradle-to-gate | [90] |
6.8 | - | - | Cradle-to-gate | [49] | |
7.27 | Tunisian | Sugar beet EtOH | Cradle-to-gate | [94] | |
10.8 | - | AD of organic waste | Cradle-to-gate | [98] | |
0.25 | Germany | Biogas supply | Cradle-to-gate | [89] | |
12.2 | USA | Corn EtOH | Well-to-pump | [95] | |
−4.8 | Europe | AD of waste | Cradle-to-gate | [97] | |
4 | - | Waste corn crops and pig manure | Cradle-to-distribution | [23] | |
5.6 | - | AD manure, cheese whey, maize silage and fodder beet | Cradle-to-gate | [49] | |
10 | USA | Biomass collection | Well-to-pump | [95] | |
3.9 | Republic of Korea | Landfill gas | Well-to-wheel | [96] | |
2.13 | Sweden | Mostly food waste | Cradle-to-gate | [113] | |
−31.8 | - | Residues from landfill bioreactor | Cradle-to-gate | [3] | |
EL | 23 | Italy | AEL Grid mix | Cradle-to-gate | [99] |
28.01 | - | AEL Grid 80% fossil | Cradle-to-gate | [82] | |
6.3 | Brazil | Grid | Cradle-to-gate | [114] | |
28.6 | USA | Grid | Well-to-pump | [95] | |
31 | USA | PEM Grid | Cradle-to-gate | [87] | |
23 | Union Europe | Grid 2019 | Cradle-to-distribution | [23] | |
5.7 | - | AEL PV | Cradle-to-gate | [82] | |
2.0 | Canada | PV | Cradle-to-grave | [6] | |
0.37 | - | PV | Not specified | [110] | |
3.1 | Iran | PV AEL | Cradle-to-grave | [91] | |
2.8 | - | PEM PV | Cradle-to-gate | [87] | |
0.5 | Switzerland | AEL PV | Cradle-to-gate | [66] | |
2.5 | Finland | PEM PV | Cradle-to-gate | [92] | |
2.5 | Australia | AEL PV | Cradle-to-gate | [18] | |
1.9 | Germany | Wind | Cradle-to-grave | [80] | |
0.7 | Canada | Wind | Cradle-to-distribution | [115] | |
9.7 | - | Wind | Cradle-to-gate | [23] | |
0.4 | Europe | AEL Wind | Well-to-tank | [66] | |
3.4 | - | Wind | Cradle-to-gate | [82] | |
0.9 | Canada | Wind | Cradle-to-gate | [6] | |
0.0325 | - | Wind | Not specified | [110] | |
1.8 | - | PEM Wind | Cradle-to-gate | [87] | |
0.6 | Finland | PEM Wind | Cradle-to-gate | [92] |
Route | Location of the Study | Observations | Method | WF L H2O/kg H2 | WSF m³ H2O/kg H2 | Ref. |
---|---|---|---|---|---|---|
SMR | USA | - | LCA | 15.8 | - | [101] |
USA | - | LCA | 11.7 | - | [116] | |
- | AWARE | 5.77 | 247.5 | [46] | ||
- | WFN | 52.4 | - | [10] | ||
Brazil | - | LCA | 257 | - | [102] | |
CG | USA | - | LCA | 20.8 | - | [101] |
- | AWARE | 13.1 | 570.2 | [46] | ||
USA | - | LCA | 28 | - | [87] | |
- | WFN | 80 | - | [10] | ||
China | - | LCA | 127.2 | - | [37] | |
SREtOH | Maize ethanol | AWARE | 2.24 | 91.61 | [46] | |
Wheat ethanol | 3.87 | 149.4 | [46] | |||
Brazil | Sugarcane ethanol | LCA | 9600 | - | [102] | |
BG | Waste corn crop | AWARE | 4.94 | 212.4 | [46] | |
USA | - | LCA | 532 | [87] | ||
- | WFN | 7467 | [10] | |||
BP | China | Wheat straw biomass | LCA | 9332.40 | - | [37] |
EL | PV | WFN | 29 | - | [10] | |
Wind | 9.2 | - | [10] | |||
Nuclear | 105 | - | [10] | |||
USA | PV/PEM | LCA | 15.5 | - | [101] | |
USA | Wind/PEM | LCA | 15.5 | - | [101] | |
Grid not specified/PEM | AWARE | 223.4 | 9604.30 | [46] | ||
Grid not specified /SOEC | AWARE | 146.8 | 6312.30 | [46] | ||
Wind/SOEC | AWARE | 9 | 379.3 | [46] | ||
Wind/PEM | AWARE | 16.40 | 629.8 | [46] | ||
USA | Grid/PEM | LCA | 280 | - | [87] | |
USA | PV/PEM | LCA | 40 | - | [87] | |
USA | Wind/PEM | LCA | 26 | - | [87] | |
USA | Grid/PEM | LCA | 220 | - | [87] | |
USA | PV/SOEC | LCA | 26 | - | [87] | |
USA | Wind/SOEC | LCA | 25 | - | [87] | |
Australia | Grid/PEM | AWARE | 200 | 3.0 | [41] | |
Australia | PV/PEM | AWARE | 40 | 1.0 | [41] | |
Australia | Wind/PEM | AWARE | 20 | 0.4 | [41] | |
China | PV/AEL | AWARE | 66.6 | 915 | [36] | |
China | Wind/AEL | AWARE | 36.4 | 1700 | [36] | |
USA | Wind/AEL | LCA | 30.2 | - | [116] | |
USA | PV/AEL | LCA | 30.2 | - | [116] |
Technology | CED (MJ/kg H2) | EI | References |
---|---|---|---|
SMR | 216 | 0.6 * | [66] |
- | 2.44 | [53] | |
- | 5.5 | [99] | |
CG | 300 | 0.4 * | [66] |
162 | 0.7 * | [88] | |
100 | 1.2 | [88] | |
- | 1.47 | [53] | |
450 | 0.25 * | [106] | |
350 | 0.3 * | [106] | |
SRBiogas | 164 | 0.7 * | [105] |
- | 12.0 | [50] | |
BG | 117.4 | 1.02 | [40] |
EL PV | 60 | 2.0 * | [66] |
- | 4.6 | [18] | |
- | 7.22 | [53] | |
62 | 2.0 * | [82] | |
- | 13.4 | [99] | |
30 | 4.0 * | [66] | |
34 | 4.1 * | [80] | |
EL Grid EU | 341 | 0.4 * | [82] |
EL Grid (45% NG and 20% Hydro) | - | 14.3 | [99] |
References
- Da Silva Veras, T.; Mozer, T.S.; Da Costa Rubim Messeder Dos Santos, D.; Da Silva César, A. Hydrogen: Trends, Production and Characterization of the Main Process Worldwide. Int. J. Hydrogen Energy 2017, 42, 2018–2033. [Google Scholar] [CrossRef]
- Aravindan, M.; Kumar, P.G. Hydrogen towards Sustainable Transition: A Review of Production, Economic, Environmental Impact and Scaling Factors. Results Eng. 2023, 20, 101456. [Google Scholar] [CrossRef]
- Wijayasekera, S.C.; Hewage, K.; Hettiaratchi, P.; Siddiqui, O.; Razi, F.; Pokhrel, D.; Sadiq, R. Sustainability of Waste-to-Hydrogen Conversion Pathways: A Life Cycle Thinking-Based Assessment. Energy Convers. Manag. 2022, 270, 116218. [Google Scholar] [CrossRef]
- Moura, C.H.S.; Silveira, J.L.; Lamas, W.D.Q. Dynamic Production, Storage, and Use of Renewable Hydrogen: A Technical-Economic-Environmental Analysis in the Public Transport System in São Paulo State, Brazil. Int. J. Hydrogen Energy 2020, 45, 31585–31598. [Google Scholar] [CrossRef]
- Prato-Garcia, D.; Robayo-Avendaño, A.; Vasquez-Medrano, R. Hydrogen from Natural Gas and Biogas: Building Bridges for a Sustainable Transition to a Green Economy. Gas Sci. Eng. 2023, 111, 204918. [Google Scholar] [CrossRef]
- Cetinkaya, E.; Dincer, I.; Naterer, G.F. Life Cycle Assessment of Various Hydrogen Production Methods. Int. J. Hydrogen Energy 2012, 37, 2071–2080. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, X. The Regulatory Perspectives to China’s Emerging Hydrogen Economy: Characteristics, Challenges, and Solutions. Sustainability 2022, 14, 9700. [Google Scholar] [CrossRef]
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-samari, A.; Abdulateef, J.; Sameen, A.Z.; Salman, H.M.; Al-Jiboory, A.K.; Wieteska, S.; Jaszczur, M. Renewable Energy-to-Green Hydrogen: A Review of Main Resources Routes, Processes and Evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- Mir, B.A.; Nurdiawati, A.; Al-Ghamdi, S.G. Assessing the Environmental Impact of Freshwater Use in LCA: Established Practices and Current Methods. Environ. Sci. Water Res. Technol. 2025, 11, 196–221. [Google Scholar] [CrossRef]
- Olaitan, D.; Bertagni, M.; Porporato, A. The Water Footprint of Hydrogen Production. Sci. Total Environ. 2024, 927, 172384. [Google Scholar] [CrossRef]
- Gandiglio, M.; Marocco, P.; Bianco, I.; Lovera, D.; Blengini, G.A.; Santarelli, M. Life Cycle Assessment of a Renewable Energy System with Hydrogen-Battery Storage for a Remote off-Grid Community. Int. J. Hydrogen Energy 2022, 47, 32822–32834. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. Published Online at OurWorldInData.Org. 2024. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 24 April 2025).
- Empresa de Pesquisa Energética (EPE) Balanço Energético Nacional 2023: Ano Base 2022. 2023. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-ben (accessed on 24 April 2025).
- Wedy, G.; Amaral, W.; Pimentel, C. The Carbon Market and Its Regulation in Brazil; Sabin Center for Climate Change Law, Columbia Law School: New York, NY, USA, 2022; Available online: https://scholarship.law.columbia.edu/cgi/viewcontent.cgi?article=1194&context=sabin_climate_change (accessed on 24 April 2025).
- de Andrade Santos, J.A.F.; De Jong, P.; Alves Da Costa, C.; Torres, E.A. Combining Wind and Solar Energy Sources: Potential for Hybrid Power Generation in Brazil. Util. Policy 2020, 67, 101084. [Google Scholar] [CrossRef]
- IRENA. Hydrogen from Renewable Power: Technology Outlook for the Energy Transition; IRENA: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Chelvam, K.; Hanafiah, M.M.; Woon, K.S.; Ali, K.A. A Review on the Environmental Performance of Various Hydrogen Production Technologies: An Approach towards Hydrogen Economy. Energy Rep. 2024, 11, 369–383. [Google Scholar] [CrossRef]
- Palmer, G.; Roberts, A.; Hoadley, A.; Dargaville, R.; Honnery, D. Life-Cycle Greenhouse Gas Emissions and Net Energy Assessment of Large-Scale Hydrogen Production via Electrolysis and Solar PV. Energy Environ. Sci. 2021, 14, 5113–5131. [Google Scholar] [CrossRef]
- Arvesen, A.; Hertwich, E.G. Environmental Implications of Large-Scale Adoption of Wind Power: A Scenario-Based Life Cycle Assessment. Environ. Res. Lett. 2011, 6, 045102. [Google Scholar] [CrossRef]
- Oliveira, R.C.D. Panorama do Hidrogênio no Brasil. 2022. Available online: https://repositorio.ipea.gov.br/handle/11058/11291 (accessed on 24 April 2025).
- dos Santos, K.G.; Eckert, C.T.; De Rossi, E.; Bariccatti, R.A.; Frigo, E.P.; Lindino, C.A.; Alves, H.J. Hydrogen Production in the Electrolysis of Water in Brazil, a Review. Renew. Sustain. Energy Rev. 2017, 68, 563–571. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen Production, Storage and Transport for Renewable Energy and Chemicals: An Environmental Footprint Assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- IEA. The Future of Hydrogen, 2019; IEA: Singapore, 2024. [Google Scholar]
- Nadaleti, W.C.; Borges dos Santos, G.; Lourenço, V.A. The Potential and Economic Viability of Hydrogen Production from the Use of Hydroelectric and Wind Farms Surplus Energy in Brazil: A National and Pioneering Analysis. Int. J. Hydrogen Energy 2020, 45, 1373–1384. [Google Scholar] [CrossRef]
- IEA. Global Hydrogen Review 2024; IEA: Singapore, 2024. [Google Scholar]
- Ajanovic, A.; Sayer, M.; Haas, R. The Economics and the Environmental Benignity of Different Colors of Hydrogen. Int. J. Hydrogen Energy 2022, 47, 24136–24154. [Google Scholar] [CrossRef]
- Chew, Y.E.; Cheng, X.H.; Loy, A.C.M.; How, B.S.; Andiappan, V. Beyond the Colours of Hydrogen: Opportunities for Process Systems Engineering in Hydrogen Economy. Process Integr. Optim. Sustain. 2023, 7, 941–950. [Google Scholar] [CrossRef]
- Incer-Valverde, J.; Korayem, A.; Tsatsaronis, G.; Morosuk, T. “Colors” of Hydrogen: Definitions and Carbon Intensity. Energy Convers. Manag. 2023, 291, 117294. [Google Scholar] [CrossRef]
- Rojas, J.; Zhai, S.; Sun, E.; Haribal, V.; Marin-Quiros, S.; Sarkar, A.; Gupta, R.; Cargnello, M.; Chueh, W.; Majumdar, A. Technoeconomics and Carbon Footprint of Hydrogen Production. Int. J. Hydrogen Energy 2023, 49 Pt D, 59–74. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, C.; Bai, F.; Wang, W.; An, S.; Zhao, K.; Li, Z.; Li, J.; Sun, H. A Comprehensive Review of the Promising Clean Energy Carrier: Hydrogen Production, Transportation, Storage, and Utilization (HPTSU) Technologies. Fuel 2024, 355, 129455. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Ergin Şahin, M. A Photovoltaic Powered Electrolysis Converter System with Maximum Power Point Tracking Control. Int. J. Hydrogen Energy 2020, 45, 9293–9304. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Prospective Carbon Footprint Comparison of Hydrogen Options. Sci. Total Environ. 2020, 728, 138212. [Google Scholar] [CrossRef]
- Weidner, T.; Tulus, V.; Guillén-Gosálbez, G. Environmental Sustainability Assessment of Large-Scale Hydrogen Production Using Prospective Life Cycle Analysis. Int. J. Hydrogen Energy 2023, 48, 8310–8327. [Google Scholar] [CrossRef]
- Du, L.; Yang, Y.; Bai, X.; Xu, S.; Lin, L.; Liu, M. Water Scarcity Footprint and Water Saving Potential for Large-Scale Green Hydrogen Generation: Evidence from Coal-to-Hydrogen Substitution in China. Sci. Total Environ. 2024, 940, 173589. [Google Scholar] [CrossRef]
- Cui, P.; Yao, D.; Ma, Z.; Shen, Y.; Liu, X.; Li, K.; Zhu, Z.; Liu, Z.; Gao, J.; Wang, Y.; et al. Life Cycle Water Footprint Comparison of Biomass-to-Hydrogen and Coal-to-Hydrogen Processes. Sci. Total Environ. 2021, 773, 145056. [Google Scholar] [CrossRef]
- IRENA. Bluerisk Water for Hydrogen Production; IRENA: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- Simoes, S.G.; Catarino, J.; Picado, A.; Lopes, T.F.; Di Berardino, S.; Amorim, F.; Gírio, F.; Rangel, C.M.; Ponce De Leão, T. Water Availability and Water Usage Solutions for Electrolysis in Hydrogen Production. J. Clean. Prod. 2021, 315, 128124. [Google Scholar] [CrossRef]
- Li, G.; Cui, P.; Wang, Y.; Liu, Z.; Zhu, Z.; Yang, S. Life Cycle Energy Consumption and GHG Emissions of Biomass-to-Hydrogen Process in Comparison with Coal-to-Hydrogen Process. Energy 2020, 191, 116588. [Google Scholar] [CrossRef]
- Shi, X.; Liao, X.; Li, Y. Quantification of Fresh Water Consumption and Scarcity Footprints of Hydrogen from Water Electrolysis: A Methodology Framework. Renew. Energy 2020, 154, 786–796. [Google Scholar] [CrossRef]
- Lee, U.; Xu, H.; Daystar, J.; Elgowainy, A.; Wang, M. AWARE-US: Quantifying Water Stress Impacts of Energy Systems in the United States. Sci. Total Environ. 2019, 648, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life Cycle Assessment of Hydrogen Production via Electrolysis—A Review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Brandon, N.P.; Kurban, Z. Clean Energy and the Hydrogen Economy. Phil. Trans. R. Soc. A 2017, 375, 20160400. [Google Scholar] [CrossRef]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.J.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef]
- GIZ. Panorama dos Desafios do Hidrogênio Verde no Brasil; GIZ: Brasília, Brazil, 2021. [Google Scholar]
- Ghasemi, A.; Nikafshan Rad, H.; Akrami, M. Biomass-to-Green Hydrogen: A Review of Techno-Economic-Enviro Assessment of Various Production Methods. Hydrogen 2024, 5, 474–493. [Google Scholar] [CrossRef]
- Hajjaji, N.; Martinez, S.; Trably, E.; Steyer, J.P.; Helias, A. Life Cycle Assessment of Hydrogen Production from Biogas Reforming. Int. J. Hydrogen Energy 2016, 41, 6064–6075. [Google Scholar] [CrossRef]
- Hajjaji, N.; Khila, Z.; Baccar, I.; Pons, M.-N. A Thermo-Environmental Study of Hydrogen Production from the Steam Reforming of Bioethanol. J. Energy Storage 2016, 7, 204–219. [Google Scholar] [CrossRef]
- Shaya, N.; Glöser-Chahoud, S. A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances. Energies 2024, 17, 3968. [Google Scholar] [CrossRef]
- Ji, M.; Wang, J. Review and Comparison of Various Hydrogen Production Methods Based on Costs and Life Cycle Impact Assessment Indicators. Int. J. Hydrogen Energy 2021, 46, 38612–38635. [Google Scholar] [CrossRef]
- Mio, A.; Barbera, E.; Pavan, A.M.; Danielis, R.; Bertucco, A.; Fermeglia, M. Analysis of the Energetic, Economic, and Environmental Performance of Hydrogen Utilization for Port Logistic Activities. Appl. Energy 2023, 347, 121431. [Google Scholar] [CrossRef]
- Luk, H.T.; Lei, H.M.; Ng, W.Y.; Ju, Y.; Lam, K.F. Techno-Economic Analysis of Distributed Hydrogen Production from Natural Gas. Chin. J. Chem. Eng. 2012, 20, 489–496. [Google Scholar] [CrossRef]
- Department of Energy. Argonne National Laboratory Guidelines to Determine Well-to-Gate Greenhouse Gas (GHG) Emissions of Hydrogen Production Pathways Using 45VH2-GREET 2023; Department of Energy: Washington, DC, USA, 2023. [Google Scholar]
- Palanisamy, A.; Soundarrajan, N.; Ramasamy, G. Analysis on Production of Bioethanol for Hydrogen Generation. Environ. Sci. Pollut. Res. 2021, 28, 63690–63705. [Google Scholar] [CrossRef]
- Llorca, J.; Corberán, V.C.; Divins, N.J.; Fraile, R.O.; Taboada, E. Hydrogen from Bioethanol. In Renewable Hydrogen Technologies; Elsevier: Rio de Janeiro, Brazil, 2013; pp. 135–169. ISBN 978-0-444-56352-1. [Google Scholar]
- Cho, H.H.; Strezov, V.; Evans, T.J. A Review on Global Warming Potential, Challenges and Opportunities of Renewable Hydrogen Production Technologies. Sustain. Mater. Technol. 2023, 35, e00567. [Google Scholar] [CrossRef]
- Hammi, Z.; Labjar, N.; Dalimi, M.; El Hamdouni, Y.; Lotfi, E.M.; El Hajjaji, S. Green Hydrogen: A Holistic Review Covering Life Cycle Assessment, Environmental Impacts, and Color Analysis. Int. J. Hydrogen Energy 2024, 80, 1030–1045. [Google Scholar] [CrossRef]
- Borole, A.P.; Greig, A.L. Life-Cycle Assessment and Systems Analysis of Hydrogen Production. In Biohydrogen; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Lo Basso, G.; Pastore, L.M.; Mojtahed, A.; De Santoli, L. From Landfill to Hydrogen: Techno-Economic Analysis of Hybridized Hydrogen Production Systems Integrating Biogas Reforming and Power-to-Gas Technologies. Int. J. Hydrogen Energy 2023, 48, 37607–37624. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Longo, S.; Cellura, M.; Miccichè, G.; Ferraro, M. Critical Review of Life Cycle Assessment of Hydrogen Production Pathways. Environments 2024, 11, 108. [Google Scholar] [CrossRef]
- Busch, P.; Kendall, A.; Lipman, T. A Systematic Review of Life Cycle Greenhouse Gas Intensity Values for Hydrogen Production Pathways. Renew. Sustain. Energy Rev. 2023, 184, 113588. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Topal, M.E.; Akbulut, U.; Dincer, I. A Comprehensive Review on Hydrogen Production from Coal Gasification: Challenges and Opportunities. Int. J. Hydrogen Energy 2021, 46, 25385–25412. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water Electrolysis Based on Renewable Energy for Hydrogen Production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Simons, A.; Bauer, C. Life Cycle Assessment of Hydrogen Production the Swiss Competence Center for Heat and Electricity Storage View Project. In Transition to Hydrogen; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Chang, S.H.; Rajuli, M.F. An Overview of Pure Hydrogen Production via Electrolysis and Hydrolysis. Int. J. Hydrogen Energy 2024, 84. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, B.; He, Y.; Zhu, Y.; Wang, Z. Life Cycle Assessment of Three Types of Hydrogen Production Methods Using Solar Energy. Int. J. Hydrogen Energy 2022, 47, 14158–14168. [Google Scholar] [CrossRef]
- Nicita, A.; Maggio, G.; Andaloro, A.P.F.; Squadrito, G. Green Hydrogen as Feedstock: Financial Analysis of a Photovoltaic-Powered Electrolysis Plant. Int. J. Hydrogen Energy 2020, 45, 11395–11408. [Google Scholar] [CrossRef]
- Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-Scale Hydrogen Production via Water Electrolysis: A Techno-Economic and Environmental Assessment. Energy Environ. Sci. 2022, 15, 3583–3602. [Google Scholar] [CrossRef]
- Von Der Assen, N.; Jung, J.; Bardow, A. Life-Cycle Assessment of Carbon Dioxide Capture and Utilization: Avoiding the Pitfalls. Energy Environ. Sci. 2013, 6, 2721–2734. [Google Scholar] [CrossRef]
- Godskesen, B.; Meron, N.; Rygaard, M. LCA of Drinking Water Supply. In Life Cycle Assessment; Springer International Publishing: Cham, Switzerland, 2018; pp. 835–860. ISBN 978-3-319-56475-3. [Google Scholar]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 24 April 2025).
- Valente, A.; Iribarren, D.; Candelaresi, D.; Spazzafumo, G.; Dufour, J. Using Harmonised Life-Cycle Indicators to Explore the Role of Hydrogen in the Environmental Performance of Fuel Cell Electric Vehicles. Int. J. Hydrogen Energy 2020, 45, 25758–25765. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual, 1st ed.; Routledge: Oxfordshire, UK, 2012; ISBN 978-1-136-53852-0. [Google Scholar]
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA Consensus Characterization Model for Water Scarcity Footprints: Assessing Impacts of Water Consumption Based on Available Water Remaining (AWARE). Int J Life Cycle Assess 2018, 23, 368–378. [Google Scholar] [CrossRef]
- García-Herrero, L.; Gibin, D.; Damiani, M.; Sanyé-Mengual, E.; Sala, S. What Is the Water Footprint of EU Food Consumption? A Comparison of Water Footprint Assessment Methods. J. Clean. Prod. 2023, 415, 137807. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Lenoir, L. Sub-National Regionalisation of the AWARE Indicator for Water Scarcity Footprint Calculations. Ecol. Indic. 2020, 111, 106017. [Google Scholar] [CrossRef]
- Ansorge, L.; Beránková, T. LCA Water Footprint Aware Characterization Factor Based on Local Specific Conditions. Eur. J. Sustain. Dev. 2017, 6, 13–20. [Google Scholar] [CrossRef]
- Burkhardt, J.; Patyk, A.; Tanguy, P.; Retzke, C. Hydrogen Mobility from Wind Energy—A Life Cycle Assessment Focusing on the Fuel Supply. Appl. Energy 2016, 181, 54–64. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.M.; Hungerbühler, K.; Hendriks, A.J. Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production. Environ. Sci. Technol. 2010, 44, 2189–2196. [Google Scholar] [CrossRef]
- Dufour, J.; Serrano, D.P.; Gálvez, J.L.; González, A.; Soria, E.; Fierro, J.L.G. Life Cycle Assessment of Alternatives for Hydrogen Production from Renewable and Fossil Sources. Int. J. Hydrogen Energy 2012, 37, 1173–1183. [Google Scholar] [CrossRef]
- Murphy, D.J.; Raugei, M.; Carbajales-Dale, M.; Rubio Estrada, B. Energy Return on Investment of Major Energy Carriers: Review and Harmonization. Sustainability 2022, 14, 7098. [Google Scholar] [CrossRef]
- Aba, M.M.; Sauer, I.L.; Amado, N.B. Comparative Review of Hydrogen and Electricity as Energy Carriers for the Energy Transition. Int. J. Hydrogen Energy 2024, 57, 660–678. [Google Scholar] [CrossRef]
- Zhang, X.; Schwarze, M.; Schomäcker, R.; Van De Krol, R.; Abdi, F.F. Life Cycle Net Energy Assessment of Sustainable H2 Production and Hydrogenation of Chemicals in a Coupled Photoelectrochemical Device. Nat. Commun. 2023, 14, 991. [Google Scholar] [CrossRef]
- Raboni, M.; Viotti, P.; Capodaglio, A.G. A Comprehensive Analysis of the Current and Future Role of Biofuels for Transport in the European Union (EU). Rev. Ambiente Água 2015, 10, 9–21. [Google Scholar] [CrossRef]
- Henriksen, M.S.; Matthews, H.S.; White, J.; Walsh, L.; Grol, E.; Jamieson, M.; Skone, T.J. Tradeoffs in Life Cycle Water Use and Greenhouse Gas Emissions of Hydrogen Production Pathways. Int. J. Hydrogen Energy 2023, S0360319923040363. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S. Life Cycle Energy Consumption and GHG Emissions of Hydrogen Production from Underground Coal Gasification in Comparison with Surface Coal Gasification. Int. J. Hydrogen Energy 2021, 46, 9630–9643. [Google Scholar] [CrossRef]
- Battista, F.; Montenegro Camacho, Y.S.; Hernández, S.; Bensaid, S.; Herrmann, A.; Krause, H.; Trimis, D.; Fino, D. LCA Evaluation for the Hydrogen Production from Biogas through the Innovative BioRobur Project Concept. Int. J. Hydrogen Energy 2017, 42, 14030–14043. [Google Scholar] [CrossRef]
- Hajjaji, N.; Pons, M.N.; Renaudin, V.; Houas, A. Comparative Life Cycle Assessment of Eight Alternatives for Hydrogen Production from Renewable and Fossil Feedstock. J. Clean. Prod. 2013, 44, 177–189. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ghandehariun, S.; Rosen, M.A. Comparative Economic and Life Cycle Assessment of Solar-Based Hydrogen Production for Oil and Gas Industries. Energy 2020, 208, 118347. [Google Scholar] [CrossRef]
- Patel, G.H.; Havukainen, J.; Horttanainen, M.; Soukka, R.; Tuomaala, M. Climate Change Performance of Hydrogen Production Based on Life Cycle Assessment. Green Chem. 2024, 26, 992–1006. [Google Scholar] [CrossRef]
- Sanchez, A.; Ayala, O.R.; Hernandez-Sanchez, P.; Valdez-Vazquez, I.; De León-Rodríguez, A. An Environment-Economic Analysis of Hydrogen Production Using Advanced Biorefineries and Its Comparison with Conventional Technologies. Int. J. Hydrogen Energy 2020, 45, 27994–28006. [Google Scholar] [CrossRef]
- Khila, Z.; Baccar, I.; Jemel, I.; Houas, A.; Hajjaji, N. Energetic, Exergetic and Environmental Life Cycle Assessment Analyses as Tools for Optimization of Hydrogen Production by Autothermal Reforming of Bioethanol. Int. J. Hydrogen Energy 2016, 41, 17723–17739. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. A Well to Pump Life Cycle Environmental Impact Assessment of Some Hydrogen Production Routes. Int. J. Hydrogen Energy 2019, 44, 5773–5786. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, M.; Song, H.H. Well-to-Wheel Analysis of Hydrogen Fuel-Cell Electric Vehicle in Korea. Int. J. Hydrogen Energy 2018, 43, 19267–19278. [Google Scholar] [CrossRef]
- Antonini, C.; Treyer, K.; Streb, A.; van der Spek, M.; Bauer, C.; Mazzotti, M. Hydrogen Production from Natural Gas and Biomethane with Carbon Capture and Storage—A Techno-Environmental Analysis. Sustain. Energy Fuels 2020, 4, 2967–2986. [Google Scholar] [CrossRef]
- Martínez-Ramón, N.; Romay, M.; Iribarren, D.; Dufour, J. Life-Cycle Assessment of Hydrogen Produced through Chemical Looping Dry Reforming of Biogas. Int. J. Hydrogen Energy 2024, 78, 373–381. [Google Scholar] [CrossRef]
- Mio, A.; Barbera, E.; Massi Pavan, A.; Bertucco, A.; Fermeglia, M. Sustainability Analysis of Hydrogen Production Processes. Int. J. Hydrogen Energy 2024, 54, 540–553. [Google Scholar] [CrossRef]
- WEF. Will a Transition to a Hydrogen Economy Affect Water Security? The World Economic Forum: Davos-Klosters, Switzerland, 2022. [Google Scholar]
- Deo, M.; Setoyama, E.; Sieving, J. Hydrogen Electricty Generation and Water Consumption 2022. In Generation and Water Consumption; Hydrogen Europe: Brussels, Belgium, 2022. [Google Scholar]
- De Souza, T.A.Z.; Rocha, D.H.D.; Julio, A.A.V.; Coronado, C.J.R.; Silveira, J.L.; Silva, R.J.; Palacio, J.C.E. Exergoenvironmental Assessment of Hydrogen Water Footprint via Steam Reforming in Brazil. J. Clean. Prod. 2021, 311, 127577. [Google Scholar] [CrossRef]
- Tonelli, D.; Rosa, L.; Gabrielli, P.; Caldeira, K.; Parente, A.; Contino, F. Global Land and Water Limitsto Electrolytic Hydrogen Production Using Wind and Solar Resources. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Subramanian, K.A. Comparative Life Cycle Energy and GHG Emissions Assessment of Green Hydrogen Production with Different Electrolysers and Solar Photovoltaics System. In Proceedings of the 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon), Vijaypur, India, 20–21 November 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Cvetković, S.M.; Radoičić, T.K.; Kijevčanin, M.; Novaković, J.G. Life Cycle Energy Assessment of Biohydrogen Production via Biogas Steam Reforming: Case Study of Biogas Plant on a Farm in Serbia. Int. J. Hydrogen Energy 2021, 46, 14130–14137. [Google Scholar] [CrossRef]
- Liu, H.; Guo, W.; Fan, Z.; Huang, F.; Liu, S. Comparative Life Cycle Energy, Water Consumption and Carbon Emissions Analysis of Deep in-Situ Gasification Based Coal-to-Hydrogen with Carbon Capture and Alternative Routes. J. Clean. Prod. 2023, 426, 139129. [Google Scholar] [CrossRef]
- de Castro, N.; Braga, S.L.; Pradelle, F.; Chaves, A.C.; Chantre, C. A Economia do Hidrogênio: Transição, Descarbonização e Oportunidades para o Brasil; T&B Petroleum/Press Office: Rio de Janeiro, Brazil, 2023. [Google Scholar]
- Capaz, R.S.; Posada, J.A.; Osseweijer, P.; Seabra, J.E.A. The Carbon Footprint of Alternative Jet Fuels Produced in Brazil: Exploring Different Approaches. Resour. Conserv. Recycl. 2021, 166, 105260. [Google Scholar] [CrossRef]
- Newborough, M.; Cooley, G. Green Hydrogen: Water Use Implications and Opportunities. Fuel Cells Bull. 2021, 2021, 12–15. [Google Scholar] [CrossRef]
- Suleman, F.; Dincer, I.; Agelin-Chaab, M. Comparative Impact Assessment Study of Various Hydrogen Production Methods in Terms of Emissions. Int. J. Hydrogen Energy 2016, 41, 8364–8375. [Google Scholar] [CrossRef]
- Hacatoglu, K.; Rosen, M.A.; Dincer, I. Comparative Life Cycle Assessment of Hydrogen and Other Selected Fuels. Int. J. Hydrogen Energy 2012, 37, 9933–9940. [Google Scholar] [CrossRef]
- Dong, J.; Liu, X.; Xu, X.; Zhang, S. Comparative Life Cycle Assessment of Hydrogen Pathways from Fossil Sources in China: LCA Analysis of Hydrogen Pathways from Fossil Sources in China. Int. J. Energy Res. 2016, 40, 2105–2116. [Google Scholar] [CrossRef]
- Arfan, M.; Eriksson, O.; Wang, Z.; Soam, S. Life Cycle Assessment and Life Cycle Costing of Hydrogen Production from Biowaste and Biomass in Sweden. Energy Convers. Manag. 2023, 291, 117262. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Machado, P.G.; Nascimento, C.A.O.D.; Ribeiro, C.D.O. Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid. Energies 2023, 16, 3769. [Google Scholar] [CrossRef]
- Ghandehariun, S.; Kumar, A. Life Cycle Assessment of Wind-Based Hydrogen Production in Western Canada. Int. J. Hydrogen Energy 2016, 41, 9696–9704. [Google Scholar] [CrossRef]
- Lampert, D.; Cai, H.; Wang, Z.; Wu, M.; Han, J.; Dunn, J.; Sullivan, J.; Elgowainy, A.; Wang, M. Development of a LCI of Water Consumption Associated with the Production of Transportation Fuels; United States Department of Energy: Washington, DC, USA, 2015. [Google Scholar]
Electrolysis Type. | Technology Maturity | Efficiency (%) | Operating Temperature (°C) | System Lifetime (h) | Advantages | Disadvantages | Source |
---|---|---|---|---|---|---|---|
AEL | Commercially mature | 61–82 | 70–90 | 60,000–90,000 | Proven technology Cost-effective solution Efficient performance Robust and durable Scalable design Supports megawatt-range stack configurations Optimized materials Bipolar plates High-performance catalyst | Limited current density Lower H2 purity Corrosive electrolyte Reduced operational Flexibility Narrow partial load Range Low operating pressure Gas crossover risk | [17,22,32,33,51,59] |
PEM | Commercialization at small scale | 50–60 | 50–80 | 20,000–60,000 | High current density Excellent voltage efficiency Wide partial load range Compact system architecture High-purity hydrogen output Superior dynamic performance Fast startup time Advanced electrode materials Gas diffusion layer Durable sealing materials | Emerging technology High component costs Corrosive operating environment Limited durability Smaller stack sizes Membrane limitations Operates at higher pressures Dependence on noble metal catalysts | |
SOEC | Commercialization in the near term | 60–80 | 700–850 | 10,000 | Exceptional efficiency Non-noble metal catalysts High-pressure operation Advanced electrode material Efficient gas diffusion layer | Thermal and material limitations High operating temperatures Bulky system design Lack of cathode diffusion layer Fragile sealing materials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.P.M.d.; Capaz, R.S. A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways. Hydrogen 2025, 6, 34. https://doi.org/10.3390/hydrogen6020034
Silva DPMd, Capaz RS. A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways. Hydrogen. 2025; 6(2):34. https://doi.org/10.3390/hydrogen6020034
Chicago/Turabian StyleSilva, Douglas Peterson Munis da, and Rafael Silva Capaz. 2025. "A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways" Hydrogen 6, no. 2: 34. https://doi.org/10.3390/hydrogen6020034
APA StyleSilva, D. P. M. d., & Capaz, R. S. (2025). A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways. Hydrogen, 6(2), 34. https://doi.org/10.3390/hydrogen6020034