Enhanced Photocatalytic Hydrogen Evolution by TiO2: A Synergistic Approach with Defect-Rich SnS2 and Ti3C2 MXene Cocatalysts
Abstract
1. Introduction
2. Materials and Methodology
2.1. Resources
2.2. Preparation of Ti3C2 MXene and SnS2
2.2.1. MAX Phase (Ti3AlC2)
2.2.2. Preparation of SnS2
2.3. Preparation of Ti3C2/TiO2 Composites
Hydrothermal Synthesis of MXene-TiO2 Composites
2.4. STT Composite Preparation
2.5. Synthesis of Molybdenum Vacancy-Containing STT Composites (SnS2/Ti3C2/TiO2)
2.6. Synthesis of Molybdenum Vacancy
2.7. Photocatalytic and Photoelectrochemical Activity of SnS2/Ti3C2/TiO2 Composites
2.7.1. Photocatalytic H2 Creation
2.7.2. Photocatalytic Movement
2.7.3. Photoelectrochemical Activity
3. Results and Discussion
4. Plausible Photocatalytic Hydrogen-Evolution Mechanism Using STT Composite
- (i)
- Increased solar energy absorption;
- (ii)
- Maximized utilization of photogenerated charge carriers;
- (iii)
- Enhanced catalytic activity;
- (iv)
- Enhanced material stability.
5. Conclusions
- (1)
- Molybdenum vacancies generate additional active sites, enhancing the specific activity for hydrogen production.
- (2)
- Molybdenum vacancies suppress charge carrier recombination, civilizing competence in the photocatalytic method.
- (3)
- The high conductivity of SnS2 and Ti3C2 MXene facilitates improved charge separation and efficient electron transport.
- (4)
- The synergistic interplay of these factors renders the STT composite a promising candidate for efficient solar-to-hydrogen conversion.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature (Abbreviation)
STT | SnS2/Ti3C2/TiO2 |
MoS2 | Molybdenum disulfide |
SnS2 | Tin disulfide |
TiO2 | Titanium dioxide |
M | Transition metal |
A | Group A element |
X | Primarily carbon or nitrogen |
NaBH4 | Sodium borohydrides |
C2H6O | Ethanol |
NaBF4 | Sodium tetrafluoroborate |
HCl | Hydrochloric acid |
HF | Hydrofluoric acid |
References
- Chang, K.; Li, M.; Wang, T.; Ouyang, S.X.; Li, P.; Liu, L.Q.; Ye, J.H. Drastic Layer-Number-Dependent Activity Enhancement in Photocatalytic H2 Evolution over nMoS2/CdS (n ≥ 1) Under Visible Light. Adv. Energy Mater. 2015, 5, 1402279. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Y.; Zhang, T.; Qin, L.; Kang, S.Z.; Li, X. A novel nanohybrid constructed by Ti3C2 MXene/TiO2 coupled with porphyrin metal-organic frameworks for enhanced photocatalytic hydrogen production. J. Solid State Chem. 2023, 327, 124298. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X.W.; Xie, Y. Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Wang, L.; Tian, Y.; Li, P. One-step synthesis of multiple electron migration channels TiO2/Fe2O3@Ti3C2 MXene heterojunction composite for high efficiency photo-catalytic hydrogen production. Opt. Mater. 2023, 142, 114018. [Google Scholar] [CrossRef]
- Premkumar, N.; Radha Madhavi, M.; Kitmo, K.; Shanmugan, S. Utilizing the lignocellulosic fibers from Pineapple Crown Leaves extract for enhancing TiO2 interfacial bonding in dye-sensitized solar cell photoanodes. Mater. Renew. Sustain. Energy 2024, 13, 13–25. [Google Scholar] [CrossRef]
- Sethu Narayanan, T.; Shanmugan, S.; Ravichandran, S. Impact of Activated Carbon on TiO2 Based Solar Cell Sensitized by Dyes Extracted from Celosia (Cockscombs). In 15, Climate Change and Human Health; Kripa Drishti Puhlicatiosn: Pune, MH, USA, 2023; Available online: https://www.kdpublications.in (accessed on 6 February 2023).
- Meena, M.; Kavitha, A.; Karthick, S.; Pavithra, S.; Shanmugan, S. Effect of decorated photoanode of TiO2 nanorods/nanoparticles in dye-sensitized solar cell. Bull. Mater. Sci. 2022, 45, 231. [Google Scholar] [CrossRef]
- Gul, I.; Sayed, M.; Rehman, F.; Jinlong, W.; Fu, P.; Zhang, Y.; Nadagouda, M.N. Unlocking the potential of multifunctional and highly porous Ti3C2/TiO2@Bi2O3—Based MXene: Synergetic photocatalytic activation of peroxymonosulfate, hydrogen evolution and antimicrobial activity. Appl. Catal. B Environ. Energy 2024, 359, 124493. [Google Scholar] [CrossRef]
- He, J.; Lyu, P.; Nachtigall, P. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C 2016, 4, 11143–11149. [Google Scholar] [CrossRef]
- Lei, J.C.; Zhang, X.; Zhou, Z. Recent advances in MXene: Preparation, properties, and applications. Front. Phys. 2015, 10, 276–286. [Google Scholar] [CrossRef]
- Liu, S.; Li, F.; Wang, D.; Huang, C.; Zhao, Y.; Baek, J.-B.; Xu, J. 3D MacroporousMoxC@N-C with Incorporated Mo Vacancies as Anodes for High-Performance Lithium-Ion Batteries. Small Methods 2018, 2, 180040. [Google Scholar] [CrossRef]
- Meeran, M.N.; Haridharan, N.; Shkir, M.; Algarni, H.; Minnam Reddy, V.R. Rationally designed 1D CdS/TiO2@Ti3C2 multi-components nanocomposites for enhanced visible light photocatalytic hydrogen production. Chem. Phys. Lett. 2022, 809, 140150. [Google Scholar] [CrossRef]
- Yang, M.; Dong, Y.; Fei, S.; Ke, H.; Cheng, H. A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts. Int. J. Hydrogen Energy 2014, 39, 18976–18983. [Google Scholar] [CrossRef]
- Sangeetha, A.; Shanmugan, S.; Gorjian, S. Experimental evaluation and thermodynamic Gibbs free energy analysis of a double-slope U-shaped stepped basin solar still using activated carbon with ZnO nanoparticles. J. Clean. Prod. 2022, 380, 135118. [Google Scholar] [CrossRef]
- Perović, K.; Kovačić, M.; Roković, M.K.; Kušić, H.; Genorio, B.; Štangar, U.L.; Božić, A.L. The development of ternary-based TiO2-SnS2/GO-RGO composite material for photocatalytic H2 production under Solar light irradiation. Mater. Res. Bull. 2023, 167, 112418. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, W.; Yuan, H.; Jin, C.; Zhang, L.; Hui, H.; Chu, L.; Yang, X.; Zhang, J.; Gan, Y. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11, 2459–2469. [Google Scholar] [CrossRef]
- Shanmugan, S.; Djuansjah, J.; Ahmadein, M.; Alsaleh, N.A.; Parsa, S.M.; Elsheikh, A.H. Chemical potential of different phases inside the pyramid stepped basin solar still through Gibbs free energy. Case Stud. Therm. Eng. 2023, 49, 103277. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, X.; Zeng, X.; Li, Y.; Zheng, L.; Wan, C. Enhanced photocatalytic activity of TiO2 nanoparticles using SnS2/RGO hybrid as co-catalyst: DFT study and photocatalytic mechanism. J. Alloys Compd. 2016, 685, 774–783. [Google Scholar] [CrossRef]
- Guo, L.; Hu, R.; Zhong, C.; Wang, X.; Liu, J.; Wang, X. N-doped and sulfur vacancy-rich TiO2@SnS2 nanoporous arrays for the plasmonic photocatalytic H2 evolution. Int. J. Hydrogen Energy 2023, 48, 17177–17186. [Google Scholar] [CrossRef]
- Li, Y.; Deng, X.; Tian, J.; Liang, Z.; Cui, H. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 2018, 13, 217–227. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Z.; Ji, G.; Liang, Z.; Xue, Y.; Guo, Y.; Tian, J.; Wang, X.; Cui, H. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B Environ. 2019, 246, 12–20. [Google Scholar] [CrossRef]
- Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; et al. Vacancy-Induced Ferromagnetism of MoS2 Nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lv, T.; Zhu, C.; Su, X.; Zhu, Z. Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity. J. Mol. Catal. A Chem. 2015, 396, 136–142. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Pan, W.; Zhang, G.; Hong, C. Vacancy-Rich Monolayer BiO2−x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst. Angewante Chem. Int. Ed. 2018, 57, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Zhang, G. Enhanced molecular oxygen activation of Ni2+-doped BiO2-x nanosheets under UV, visible and near-infrared irradiation: Mechanism and DFT study. Appl. Catal. B Environ. 2018, 234, 167–177. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, H.; Tian, J.; Gao, J.; Li, Y.; Cui, H. Synthesis of few-layer MoS2 nanosheets-coated TiO2 nanosheets on graphite fibers for enhanced photocatalytic properties. Sol. Energy Mater. Sol. Cells 2017, 172, 108–116. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Wang, H.; Tian, J.; Cui, H. Novel Ag2O nanoparticles modified MoS2 nanoflowers for piezoelectric-assisted full solar spectrum photocatalysis. J. Colloid Interface Sci. 2019, 537, 206–214. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Zhou, W.; Wu, X.; Zhang, H.; Zhang, J. Hierarchical MoS2 Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano 2019, 13, 5533–5540. [Google Scholar] [CrossRef]
- Xue, Z.; Cheng, Z.; Xu, J.; Xiang, Q.; Wang, X.; Xu, J. Controllable Evolution of Dual Defect Zni and VO Associate-Rich ZnONanodishes with (0001) Exposed Facet and Its Multiple Sensitization Effect for Ethanol Detection. ACS Appl. Mater. Interfaces 2017, 9, 41559–41567. [Google Scholar] [CrossRef]
- Sun, B.; Qian, Y.; Liang, Z.; Guo, Y.; Xue, Y.; Tian, J.; Cui, H. Oxygen vacancy-rich BiO2-x ultra-thin nanosheet for efficient full-spectrum responsive photocatalytic oxygen evolution from water splitting. Sol. Energy Mater. Sol. Cells 2019, 195, 309–317. [Google Scholar] [CrossRef]
- Hu, X.; Lu, S.; Tian, J.; Wei, N.; Song, X.; Wang, X.; Cui, H. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl. Catal. B Environ. 2019, 241, 329–337. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Wang, Y.; Peng, X. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithiumion batteries. Nano Energy 2014, 7, 25–32. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, N.; Wang, Y.; Ni, Y. Facile formation of 2D Co2P@Co3O4microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting. J. Power Sources 2018, 374, 142–148. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.Q.; Fu, X.; Zhang, N.; Xu, Y.J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417. [Google Scholar] [CrossRef]
- Jin, X.; Lv, C.; Zhou, X.; Zhang, C.; Meng, Q.; Liu, Y.; Chen, G. Molecular adsorption promotes carrier migration: Key step for molecular oxygen activation of defective Bi4O5I2. Appl. Catal. B Environ. 2018, 226, 53–60. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Ai, Z.; Zhang, L. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets. J. Am. Chem. Soc. 2015, 137, 6393–6399. [Google Scholar] [CrossRef]
- Manikandan, A.; Ilango, P.R.; Chen, C.; Wang, Y.; Shih, Y.C.; Lee, L.; Wang, Z.; Ko, H.; Chueh, Y.L. A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/α-MoO3 hybrid heterostructure nanoflowers. J. Mater. Chem. A 2018, 6, 15320–15329. [Google Scholar] [CrossRef]
- Su, T.; Men, C.; Chen, L.; Chu, B.; Luo, X.; Ji, H.; Chen, J.; Qin, Z. Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv. Sci. 2022, 9, 2103715. [Google Scholar] [CrossRef]
- Kiran, T.; Ahmed, H.P.; Begum, N.S.; Kannan, K.; Radhika, D. Structural, morphological and optical studies of sol-gel engineered Sm3+ activated ZnO thin films for photocatalytic applications. Phys. Chem. Solid State 2020, 21, 433–439. [Google Scholar] [CrossRef]
- Sarojini, P.; Leeladevi, K.; Kavitha, T.; Gurushankar, K.; Sriram, G.; Oh, T.H.; Kannan, K. Design of V2O5 Blocks Decorated with Garlic Peel Biochar Nanoparticles: A Sustainable Catalyst for the Degradation of Methyl Orange and Its Antioxidant Activity. Materials 2023, 16, 5800. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, Y.; Xiao, T.; Yuan, X.; Zeng, G.; Tu, W.; Wu, S.; Lee, H.Y.; Tan, Y.Z.; Chew, J.W. Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catal. B Environ. 2018, 233, 213–225. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Bian, R.; Ji, Y.; Wang, X.; Zhang, X.; Cui, H.; Tian, J. Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. J. Colloid. Interface Sci. 2022, 613, 644–651. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huang, J.X.; Tang, H.; Yu, X.H.; Shen, J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H-2 evolution activity. J. Mater. Sci. Technol. 2020, 56, 196–205. [Google Scholar] [CrossRef]
- Handoko, A.D.; Fredrickson, K.D.; Anasori, B.; Convey, K.W.; Johnson, L.R.; Gogotsi, Y.; Vojvodic, A.; Seh, Z.W. Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) to Control Hydrogen Evolution Activity. ACS Appl. Energy Mater. 2018, 1, 173–180. [Google Scholar] [CrossRef]
- Seh, Z.W.; Fredrickson, K.D.; Anasori, B.; Kibsgaard, J.; Strickler, A.L.; Lukatskaya, M.R.; Gogotsi, Y.; Jaramillo, T.F.; Vojvodic, A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1, 589–594. [Google Scholar] [CrossRef]
- Liu, Z.W.; Hou, W.B.; Pavaskar, P.; Aykol, M.; Cronin, S.B. Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination. Nano Lett. 2011, 11, 1111–1116. [Google Scholar] [CrossRef]
- Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.; Qin, Z.; Wu, Z. 2D/2D heterojunction of Ti3C2/gC3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale 2019, 11, 8138–8149. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Z.; Zeng, G.; Huang, D.; Xiao, R.; Zhang, C.; Zhou, C.; Xiong, W.; Wang, W.; Cheng, M. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956. [Google Scholar] [CrossRef]
- Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy 2019, 44, 540–577. [Google Scholar] [CrossRef]
- Sherryna, A.; Tahir, M. Role of Ti3C2 MXene as prominent schottky barriers in driving hydrogen production through photoinduced water splitting: A comprehensive review. ACS Appl. Energy Mater. 2021, 4, 11982–12006. [Google Scholar] [CrossRef]
- Irfan, M.; Ahmad, I.; Shukrullah, S.; Hussain, H.; Atif, M.; Legutko, S.; Petru, J.; Hatala, M.; Naz, M.Y.; Rahman, S. Construction of 0D/2D Schottky Heterojunctions of ZnO and Ti3C2 Nanosheets with the Enriched Transfer of Interfacial Charges for Photocatalytic Hydrogen Evolution. Materials 2022, 15, 4557. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Wei, P.; Li, X.; Liu, Y.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Zhang, L.; Zhang, B. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@ Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018, 53, 97–107. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, Q.; Li, J.; Liu, H. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst. Appl. Catal. B Environ. 2020, 267, 118379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varadarajan, S.; Kavitha, A.; Selvaraju, P.; Muthu, S.E.; Gurushankar, K.; Shanmugan, S.; Kannan, K. Enhanced Photocatalytic Hydrogen Evolution by TiO2: A Synergistic Approach with Defect-Rich SnS2 and Ti3C2 MXene Cocatalysts. Hydrogen 2024, 5, 940-957. https://doi.org/10.3390/hydrogen5040050
Varadarajan S, Kavitha A, Selvaraju P, Muthu SE, Gurushankar K, Shanmugan S, Kannan K. Enhanced Photocatalytic Hydrogen Evolution by TiO2: A Synergistic Approach with Defect-Rich SnS2 and Ti3C2 MXene Cocatalysts. Hydrogen. 2024; 5(4):940-957. https://doi.org/10.3390/hydrogen5040050
Chicago/Turabian StyleVaradarajan, Saminathan, Andiappan Kavitha, Periasamy Selvaraju, Sankaran Esakki Muthu, Krishnamoorthy Gurushankar, Sengottaiyan Shanmugan, and Karthik Kannan. 2024. "Enhanced Photocatalytic Hydrogen Evolution by TiO2: A Synergistic Approach with Defect-Rich SnS2 and Ti3C2 MXene Cocatalysts" Hydrogen 5, no. 4: 940-957. https://doi.org/10.3390/hydrogen5040050
APA StyleVaradarajan, S., Kavitha, A., Selvaraju, P., Muthu, S. E., Gurushankar, K., Shanmugan, S., & Kannan, K. (2024). Enhanced Photocatalytic Hydrogen Evolution by TiO2: A Synergistic Approach with Defect-Rich SnS2 and Ti3C2 MXene Cocatalysts. Hydrogen, 5(4), 940-957. https://doi.org/10.3390/hydrogen5040050