How Old Is a Turtle? Challenges in Interpreting Age Information in Sea Turtles
Abstract
:1. Introduction
2. Aging Methods and Limits
2.1. Absolute Age
2.1.1. Captivity Rearing
2.1.2. Tagging at Hatching
2.1.3. Skeletochronology-Based Age Determination
- -
- Juvenile loggerhead turtles were injected intramuscularly with oxytetracycline to establish a chronology for the deposition of periosteal bone growth layers. Eight recaptures, covering intervals of 1 to 3 years, were used to demonstrate that these growth layers were typically deposited on an annual basis [32]. Based on the published information, it is not possible to ascertain the intended meaning of “typically”.
- -
- A similar experiment was carried out on another individual that was found dead eight years after being tagged and injected intramuscularly with oxytetracycline. The authors reported good agreement between the number of lines of arrested growth and the time since tagging, although this was not visible in the sole published image (see Figure 1A in [33]).
- -
- Another study used a 29.4 year-old loggerhead turtle that had remained permanently in captivity and an eight year-old juvenile released from captivity when it was two years old. Thirteen Kemp’s ridley turtles, Lepidochelys kempii (Garman, 1880), of known age were also used. These had been reared for one year in captivity after emerging from a nest, tagged with passive integrated transponders and released [34]. Lines of arrested growth on images of the humeri of the young Kemp’s ridleys were consistent with the known ages of the individuals. However, the lines of arrested growth on the older loggerheads were particularly difficult to interpret, in the authors’ opinion, since they described double lines of arrested growth or blunt lines and endosteal resorption.
- -
- Oxytetracycline was intramuscularly injected into 25 wild green turtles from a tropical environment (southern Bahamas) where temperature variations were low, and no growth marks were visible in biopsies of the recaptured individuals’ humeri after periods of 1.3 or 2.4 years [35].
- -
- In a study on green turtles in Hawaii, where temperature variations were more significant, 14 humeri were recovered from oxytetracycline-marked individuals. Of these, a fluorescent trace was visible in 10 individuals and interpretable in six. The number of lines of arrested growth was as expected in five individuals, the sixth one having double lines [36]. It is noteworthy that the determination of whether a line of arrested growth must be interpreted as double or not is impossible without knowing the animal’s actual age, and this creates circularity in interpretation. Based on these results, the conclusion stated by [36] of “providing strong validation that growth marks are annual” appears very optimistic.
2.1.4. Sclerochronology (Scute)-Based Age Determination
2.2. Relative Age
2.3. Physiological Age
2.3.1. Telomere Length Reduction
2.3.2. Methylation of DNA
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: New York, NY, USA, 1992; p. 249. [Google Scholar]
- Stearns, S.C. Trade-offs in life-history evolution. Funct. Ecol. 1989, 3, 259–268. [Google Scholar] [CrossRef]
- Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001; p. 722. [Google Scholar]
- Hohn, A.; Frazier, J. Growth layers in bone and scutes of sea turtles: A possible aging method. Am. Zool. 1979, 19, 953. [Google Scholar]
- Castanet, J.; Meunier, F.J.; Francillon-Vieillot, H. Squelettochronologie à partir des os et des dents chez les vertébrés. In Tissus Durs et Age Individuel des Vertébrés; Baglinière, J.L., Castanet, J., Conand, F., Meunier, F.J., Eds.; ORSTOM; INRA: Paris, France, 1992; pp. 257–280. [Google Scholar]
- de Buffrénil, V.; Quilhac, A. Basic processes in bone growth. In Vertebrate Skeletal Histology and Paleohistology; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Castanet, J.; Rogers, K.C.; Cubo, J.; Boisard, J.-J. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. C. R. Acad. Sci. III 2000, 323, 543–550. [Google Scholar] [CrossRef]
- Castanet, J.; Croci, S.; Aujard, F.; Perret, M.; Cubo, J.; de Margerie, E. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 2004, 263, 31–39. [Google Scholar] [CrossRef]
- Köhler, M.; Marín-Moratalla, N.; Jordana, X.; Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 2012, 487, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Woodward, H.N.; Padian, K.; Lee, A.H. Skeletochronology. In Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation; Padian, K., Lamm, E.T., Eds.; University of California Press: Berkeley, CA, USA, 2013; pp. 187–207. [Google Scholar]
- Papageorgopoulou, C.; Suter, S.K.; Rühli, F.J.; Siegmund, F. Harris lines revisited: Prevalence, comorbidities, and possible etiologies. Am. J. Hum. Biol. 2011, 23, 381–391. [Google Scholar] [CrossRef]
- Chevallier, D.; Mourrain, B.; Girondot, M. Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation. Ecol. Model. 2020, 426, 109037. [Google Scholar] [CrossRef]
- Avens, L.; Taylor, J.C.; Goshe, L.R.; Jones, T.T.; Hastings, M. Use of skeletochronological analysis to estimate the age of leatherback sea turtles Dermochelys coriacea in the western North Atlantic. Endanger. Species Res. 2009, 8, 165–177. [Google Scholar] [CrossRef]
- Jones, T.T.; Hastings, M.D.; Bostrom, B.L.; Pauly, D.; Jones, D.R. Growth of captive leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild: Implications for population decline and recovery. J. Exp. Mar. Biol. Ecol. 2011, 399, 84–92. [Google Scholar] [CrossRef]
- Zug, G.R.; Kalb, H.L.; Luzar, S.L. Age and growth in wild kemp’s ridley sea turtles Lepidochelys kempii from skeletochronological data. Biol. Conserv. 1997, 80, 261–268. [Google Scholar] [CrossRef]
- Avens, L.; Goshe, L.R.; Coggins, L.; Snover, M.L.; Pajuelo, M.; Bjorndal, K.A.; Bolten, A.B. Age and size at maturation- and adult-stage duration for loggerhead sea turtles in the western North Atlantic. Mar. Biol. 2015, 162, 1749–1767. [Google Scholar] [CrossRef]
- Kozłowski, J.; Wiegert, R.G. Optimal age and size at maturity in annuals and perennials with determinate growth. Evol. Ecol. 1987, 1, 231–244. [Google Scholar] [CrossRef]
- Kozłowski, J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 1992, 7, 15–19. [Google Scholar] [CrossRef]
- Berrigan, D.; Charnov, E.L. Reaction norms for age and size at maturity in response to temperature: A puzzle for life historians. Oikos 1994, 70, 474–478. [Google Scholar] [CrossRef]
- Bjorndal, K.A.; Parsons, J.; Mustin, W.; Bolten, A.B. Threshold to maturity in a long-lived reptile: Interactions of age, size, and growth. Mar. Biol. 2013, 160, 607–616. [Google Scholar] [CrossRef]
- Girondot, M.; Mourrain, B.; Chevallier, D.; Godfrey, M.H. Maturity of a Giant: Age and size reaction norm for sexual maturity for Atlantic leatherback turtles. Mar. Ecol. 2021, 42, e12631. [Google Scholar] [CrossRef]
- Eckert, K.L.; Eckert, S.A. Tagging hatchling leatherback sea turtles. Mar. Turt. Newsl. 1990, 51, 17–19. [Google Scholar]
- Fukuoka, T.; Omuta, K.; Hidaka, T.; Sato, K. First record of a known-age juvenile loggerhead turtle (Caretta caretta) at the Sanriku Coast in the Northwest Pacific Ocean. Coast. Mar. Sci. 2019, 42, 8–11. [Google Scholar]
- Tucek, J.; Nel, R.; Girondot, M.; Hughes, G. Age−size relationship at reproduction of South African female loggerhead turtles Caretta caretta. Endanger. Species Res. 2014, 23, 167–175. [Google Scholar] [CrossRef]
- Limpus, C.; Reimer, D. The loggerhead turtle, Caretta caretta, in Queensland: A population in decline. In Proceedings of the Australian Marine Turtle Conservation Workshop, Canberra, Australia, 14–17 November 1994; pp. 39–59. [Google Scholar]
- Limpus, C.J. A Biological Review of Australian Marine Turtles. 1. Loggerhead Turtle Caretta caretta (Linnaeus); Freshwater and Marine Sciences Unit, Environmental Sciences Division: Brisbane, Queensland, Australia, 2008; p. 67. [Google Scholar]
- Castanet, J.; Francillon-Vieillot, H.; Meunier, F.J.; de Ricqlès, A. Bone and individual aging. In Bone; Hall, B.K., Ed.; CRC Press: Boca Raton, FL, USA, 1993; pp. 245–283. [Google Scholar]
- Castanet, J. Age estimation and longevity in reptiles. Gerontology 1994, 40, 174–192. [Google Scholar] [CrossRef]
- Paladino, F.V.; O’Connor, M.P.; Spotila, J.R. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 1990, 344, 858–860. [Google Scholar] [CrossRef]
- Zug, G.R.; Wynn, A.H.; Ruckdeschel, C. Age determination of Loggerhead sea turtle, Caretta caretta, by incremental growth marks in the skeleton. Smithson. Contrib. Zool. 1986, 427, 1–34. [Google Scholar] [CrossRef]
- Turner Tomaszewicz, C.N.; Avens, L.; Seminoff, J.A.; Limpus, C.J.; FitzSimmons, N.N.; Guinea, M.L.; Pendoley, K.L.; Whittock, P.A.; Vitenbergs, A.; Whiting, S.D.; et al. Age-specific growth and maturity estimates for the flatback sea turtle (Natator depressus) by skeletochronology. PLoS ONE 2022, 17, e0271048. [Google Scholar] [CrossRef] [PubMed]
- Klinger, R.C.; Musick, J.A. Annular growth layers in juvenile loggerhead turtles (Caretta caretta). Bull. Mar. Sci. 1992, 51, 224–230. [Google Scholar]
- Coles, W.C.; Musick, J.A.; Williamson, L.A. Skeletochronology validation from adult loggerhead (Caretta caretta). Copeia 2001, 2001, 240–242. [Google Scholar] [CrossRef]
- Snover, M.L.; Hohn, A.A. Validation and interpretation of annual skeletal marks in loggerhead (Caretta caretta) and Kemp’s ridley (Lepidochelys kempii) sea turtles. Fish. Bull. 2004, 102, 682–692. [Google Scholar]
- Bjorndal, K.A.; Bolten, A.B.; Jacobson, E.R.; Wronski, T.J.; Valeski, J.J.; Eliazar, P.J. Age and growth in sea turtles: Limitation of skeletochronology for demographic studies. Copeia 1998, 1998, 23–30. [Google Scholar] [CrossRef]
- Snover, M.L.; Hohn, A.A.; Goshe, L.R.; Balazs, G.H. Validation of annual skeletal marks in green sea turtles Chelonia mydas using tetracycline labeling. Aquat. Biol. 2011, 12, 197–204. [Google Scholar] [CrossRef]
- de Buffrénil, V.; Quilhac, A.; Cubo, J. Accretion rate and histological features of bone. In Vertebrate Skeletal Histology and Paleohistology; de Buffrénil, V., de Ricqlès, A.J., Zylberberg, L., Padian, K., Eds.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Amling, M.; Takeda, S.; Karsenty, G. A neuro (endo)crine regulation of bone remodeling. Bioessays 2000, 22, 970–975. [Google Scholar] [CrossRef]
- Kacem, A.; Baglinière, J.-L.; Meunier, F.J. Resorption of scales in Atlantic salmon (Salmo salar) during its anadromous migration: A quantitative study. Cybium 2013, 37, 199–206. [Google Scholar] [CrossRef]
- Barbault, R.; Castanet, J.; Francillon, H.; de Ricqlès, A. Détermination de l’age chez un Anoure déserticole Bufo Pentoni, Anderson 1893. Rev. D’écologie 1979, 1, 129–141. [Google Scholar]
- Zug, G.R.; Chaloupka, M.; Balazs, G.H. Age and growth in olive ridley sea turtles (Lepidochelys olivacea) from the North-central Pacific: A skeletochronological analysis. Mar. Ecol. 2006, 27, 263–270. [Google Scholar] [CrossRef]
- Zug, G.R.; Parham, J.F. Age and growth in leatherback turtles, Dermochelys coriacea (Testudines: Dermochelyidae): A skeletochronological analysis. Chelonian Conserv. Biol. 1996, 2, 244–249. [Google Scholar]
- Avens, L.; Goshe, L.R.; Zug, G.R.; Balazs, G.H.; Benson, S.R.; Harris, H. Regional comparison of leatherback sea turtle maturation attributes and reproductive longevity. Mar. Biol. 2020, 167, 4. [Google Scholar] [CrossRef]
- Schucht, P.J.; Klein, N.; Lambertz, M. What’s my age again? On the ambiguity of histology-based skeletochronology. Proc. R. Soc. B Biol. Sci. 2021, 288, 20211166. [Google Scholar] [CrossRef]
- Tucker, A.D.; Limpus, C.J. Annuli on carapacial scutes of hawksbill turtles (Eretmochelys imbricata) at Heron Island Reef. In Proceedings of the 12th Annual Sea Turtle Symposium, Jekyll Island, Georgia, 25–29 February 1992; pp. 249–250. [Google Scholar]
- Kobayashi, M.; Diez, C.E. Age determination of hawksbill turtles (Eretmochelys imbricata) by surface pattern with yellowish bands of scute. In Proceedings of the 17th Annual Sea Turtle Symposium, Orlando, FL, USA, 4–8 March 1997; p. 230. [Google Scholar]
- Tucker, A.D.; Broderick, D.; Kampe, L. Age estimation of Eretmochelys imbricata by sclerochronology of carapacial scutes. Chelonian Conserv. Biol. 2001, 4, 219–222. [Google Scholar]
- Van Houtan, K.S.; Andrews, A.H.; Jones, T.T.; Murakawa, S.K.; Hagemann, M.E. Time in tortoiseshell: A bomb radiocarbon-validated chronology in sea turtle scutes. Proc. Biol. Sci. 2016, 283, 20152220. [Google Scholar] [CrossRef]
- Omeyer, L.C.M.; Fuller, W.J.; Godley, B.J.; Snape, R.T.E.; Broderick, A.C. Determinate or indeterminate growth? Revisiting the growth strategy of sea turtles. Mar. Ecol. Prog. Ser. 2018, 596, 199–211. [Google Scholar] [CrossRef]
- Marioni, R.E.; Harris, S.E.; Shah, S.; McRae, A.F.; von Zglinicki, T.; Martin-Ruiz, C.; Wray, N.R.; Visscher, P.M.; Deary, I.J. The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 2018, 45, 424–432. [Google Scholar] [CrossRef]
- Jones, M.J.; Goodman, S.J.; Kobor, M.S. DNA methylation and healthy human aging. Aging Cell 2015, 14, 924–932. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging hallmarks and the role of oxidative stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Harley, C.B.; Futcher, A.B.; Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 1990, 345, 458–460. [Google Scholar] [CrossRef]
- Lundblad, V.; Wszostak, J. A mutant with defect in telomere elongation leads to senescence in yeast. Cell 1989, 57, 633–643. [Google Scholar] [CrossRef]
- Wright, W.E.; Shay, J.W. Telomere positional effects and the regulation of cellular senescence. Trends Genet. 1992, 8, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Clemente, L.; Mazzoleni, S.; Pensabene Bellavia, E.; Augstenova, B.; Auer, M.; Praschag, P.; Protiva, T.; Velensky, P.; Wagner, P.; Fritz, U.; et al. Interstitial telomeric repeats are rare in turtles. Genes 2020, 11, 657. [Google Scholar] [CrossRef] [PubMed]
- Girondot, M.; Garcia, J. Senescence and longevity in turtles: What telomeres tell us. In Proceedings of the 9th Ordinardy General Meeting of the Societas Europaea Herpetologica, Le Bourget du Lac, France, 25–29 August 1998; pp. 133–137. [Google Scholar]
- Lejnine, S.; Makarov, V.L.; Langmore, J.P. Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc. Natl. Acad. Sci. USA 1995, 92, 2393–2397. [Google Scholar] [CrossRef]
- Plot, V.; Criscuolo, F.; Zahn, S.; Georges, J.-Y. Telomeres, age and reproduction in a long-lived reptile. PLoS ONE 2012, 7, e40855. [Google Scholar] [CrossRef]
- Hatase, H.; Sudo, R.; Watanabe, K.K.; Kasugai, T.; Saito, T.; Okamoto, H.; Uchida, I.; Tsukamoto, K. Shorter telomere length with age in the loggerhead turtle: A new hope for live sea turtle age estimation. Genes Genet. Syst. 2008, 83, 423–426. [Google Scholar] [CrossRef]
- Barlian, A.; Riani, Y.D. Aging process in dermal fibroblast cell culture of green turtle (Chelonia mydas). 3Bio J. Biol. Sci. Technol. Manag. 2020, 2, 11–17. [Google Scholar] [CrossRef]
- De Paoli-Iseppi, R.; Deagle, B.E.; McMahon, C.R.; Hindell, M.A.; Dickinson, J.L.; Jarman, S.N. Measuring animal age with DNA methylation: From humans to wild animals. Front. Genet. 2017, 8, 106. [Google Scholar] [CrossRef]
- Mayne, B.; Mustin, W.; Baboolal, V.; Casella, F.; Ballorain, K.; Barret, M.; Vanderklift, M.A.; Tucker, A.D.; Korbie, D.; Jarman, S.; et al. Age prediction of green turtles with an epigenetic clock. Mol. Ecol. Resour. 2022, 22, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, T.M.; Bonder, M.J.; Stark, A.K.; Krueger, F.; Team, B.I.A.C.; von Meyenn, F.; Stegle, O.; Reik, W. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 2017, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Mayne, B.; Korbie, D.; Kenchington, L.; Ezzy, B.; Berry, O.; Jarman, S. A DNA methylation age predictor for zebrafish. Aging 2020, 12, 24817–24835. [Google Scholar] [CrossRef] [PubMed]
- Kietzmann, T.; Petry, A.; Shvetsova, A.; Gerhold, J.M.; Gorlach, A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1533–1554. [Google Scholar] [CrossRef]
- Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435, 297–312. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Mérida, B.A.; Pilcher, N.J.; Girondot, M. How Old Is a Turtle? Challenges in Interpreting Age Information in Sea Turtles. Ecologies 2024, 5, 502-511. https://doi.org/10.3390/ecologies5040031
Morales-Mérida BA, Pilcher NJ, Girondot M. How Old Is a Turtle? Challenges in Interpreting Age Information in Sea Turtles. Ecologies. 2024; 5(4):502-511. https://doi.org/10.3390/ecologies5040031
Chicago/Turabian StyleMorales-Mérida, B. Alejandra, Nicolas J. Pilcher, and Marc Girondot. 2024. "How Old Is a Turtle? Challenges in Interpreting Age Information in Sea Turtles" Ecologies 5, no. 4: 502-511. https://doi.org/10.3390/ecologies5040031
APA StyleMorales-Mérida, B. A., Pilcher, N. J., & Girondot, M. (2024). How Old Is a Turtle? Challenges in Interpreting Age Information in Sea Turtles. Ecologies, 5(4), 502-511. https://doi.org/10.3390/ecologies5040031