Conservation Priorities for Threatened Fish to Withstand Climate Crisis: Sustainable Capture and Protection of Inland Hydrographic Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Data Collection
2.2. Climatic and Spatial Factors
2.3. Species Distribution Model
2.4. Inland Hydrographic Network
2.5. Determination of Species Status
3. Results
3.1. Present Prediction of Suitable Climate Spaces
3.2. Future Prediction of Suitable Climate Spaces
3.3. Recent Scenario of Fishing and Shape of the Hydrographic Network
3.4. Re-Assessing the Species Status
3.5. Efficiency of Protected Areas to Provide Suitable Climate Space
3.6. High Risk Group of Extinction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postel, S.; Carpenter, S. Freshwater ecosystem services. Nature’s services: Societal dependence on natural ecosystems. In Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; p. 195. [Google Scholar]
- Shiklomanov, L.A. World Freshwater Resources. In Water in Crisis: A Guide to World’s Freshwater Resources; Gleick, P.H., Ed.; Oxford University Press: Oxford, UK, 1993; pp. 13–24. [Google Scholar]
- Radinger, J.; Britton, J.R.; Carlson, S.M.; Magurran, A.E.; Alcaraz-Hernández, J.D.; Almodóvar, A.; Benejam, L.; Fernández-Delgado, C.; Nicola, G.G.; Oliva-Paterna, F.J.; et al. Effective monitoring of freshwater fish. Fish Fish. 2019, 20, 729–747. [Google Scholar] [CrossRef]
- Reid, A.J.; Cooke, S.J.; Ormerod, S.J.; Smol, J.P.; Tockner, K.; Vermaire, J.C.; Dudgeon, D.; Carlson, A.K.; Taylor, W.W.; Creed, I.F.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Broadley, A.; Adame, M.F.; Branch, T.A.; Turschwell, M.P.; Connolly, R.M. The assessment of fishery status depends on fish habitats. Fish Fish. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Fuller, M.R.; Doyle, M.W.; Strayer, D.L. Causes and consequences of habitat fragmentation in river networks. Ann. N. Y. Acad. Sci. 2015, 1355, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Comte, L.; Buisson, L.; Daufresne, M.; Grenouillet, G. Climate-induced changes in the distribution of freshwater fish: Observed and predicted trends. Freshw. Biol. 2013, 58, 625–639. [Google Scholar] [CrossRef]
- Arthington, A.H.; Dulvy, N.K.; Gladstone, W.; Winfield, I.J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 838–857. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, Á.; González-Wangüemert, M.; Lenfant, P.; Marcos, C.; García-Charton, J.A. Effects of fishing protection on the genetic structure of fish populations. Biol. Conserv. 2006, 129, 244–255. [Google Scholar] [CrossRef]
- Leidy, R.A.; Moyle, P.B. Keeping up with the status of freshwater fishes: A California (USA) perspective. Conserv. Sci. Pract. 2021, 3, e474. [Google Scholar] [CrossRef]
- Marcos-López, M.; Gale, P.; Oidtmann, B.C.; Peeler, E.J. Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transbound. Emerg. Dis. 2010, 57, 293–304. [Google Scholar] [CrossRef]
- Light, T.; Marchetti, M.P. Distinguishing between invasions and habitat changes as drivers of diversity loss among California’s freshwater fishes. Conserv. Biol. 2007, 21, 434–446. [Google Scholar] [CrossRef]
- Standards and Petitions Working Group. Guidelines for Using the IUCN Red List Categories and Criteria; Version 15.1; Standards and Petitions Working Group, IUCN SSC Biodiversity Assessments Sub-Committee: Cambridge, UK, 2022; pp. 1–114. Available online: https://www.iucnredlist.org/resources/redlistguidelines (accessed on 16 November 2023).
- López, S.; López-Sandoval, M.F.; Gerique, A.; Salazar, J. Landscape change in Southern Ecuador: An indicator-based and multi-temporal evaluation of land use and land cover in a mixed-use protected area. Ecol. Indic. 2020, 115, 106357. [Google Scholar] [CrossRef]
- Roy, S.; Ray, S.; Saikia, S.K. Indicator environmental variables in regulating the distribution patterns of small freshwater fish Amblypharyngodon mola in India and Bangladesh. Ecol. Indic. 2021, 120, 106906. [Google Scholar] [CrossRef]
- Buisson, L.; Thuiller, W.; Lek, S.; Lim, P.; Grenouillet, G. Climate change hastens the turnover of stream fish assemblages. Glob. Chang. Biol. 2008, 14, 2232–2248. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Stewart, B.A.; Ford, B.M.; Benson, J.A. Using species distribution modelling to identify ‘coldspots’ for conservation of freshwater fishes under a changing climate. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 32, 576–590. [Google Scholar] [CrossRef]
- Forester, B.R.; Dechaine, E.G.; Bunn, A.G. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers. Distrib. 2013, 19, 1480–1495. [Google Scholar] [CrossRef]
- Lorenzen, K.; Beveridge, M.C.M.; Mangel, M. Cultured fish: Integrative biology and management of domestication and interactions with wild fish. Biol. Rev. 2012, 87, 639–660. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Sultana, P.; Islam, N. Lessons from community based management of floodplain fisheries in Bangladesh. J. Environ. Manage. 2003, 69, 307–321. [Google Scholar] [CrossRef]
- Dhamelincourt, M.; Rives, J.; Lange, F.; Elosegi, A.; Tentelier, C. Habitat choice versus habitat transformation in a nest-building fish: Which matters most? Behav. Ecol. 2022, 33, 615–623. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics. Bangladesh Bureau of Statistics Statistics and Informatics Division Ministry of Planning; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2017; pp. 1–73. Available online: https://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/a1d32f13_8553_44f1_92e6_8ff80a4ff82e/Bangladesh%20%20Statistics-2017.pdf (accessed on 14 November 2023).
- Nishat, A.; Huq, S.; Barua, S.; Reza, A.; Khan, A. Bioecological Zones of Bangladesh; IUCN-Bangladesh: Dhaka, Bangladesh, 2002; p. 141. [Google Scholar]
- Mahmud, K.H.; Abid, S.B.; Ahmed, R. Development of a climate classification map for Bangladesh based on Koppen’s climatic classification. Soc. Sci. 2018, 39, 23–36. [Google Scholar]
- IUCN Bangladesh Red List of Bangladesh Volume 5: Freshwater Fishes; IUCN, International Union for Conservation of Nature, Bangladesh Country Office: Dhaka, Bangladesh, 2015.
- Dauby, G.; Stévart, T.; Droissart, V.; Cosiaux, A.; Deblauwe, V.; Simo-Droissart, M.; Sosef, M.S.; Lowry, P.P.; Schatz, G.E.; Gereau, R.E.; et al. ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol. Evol. 2017, 7, 11292–11303. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. Available online: https://arxiv.org/abs/1710.10724 (accessed on 25 December 2023).
- Hijmans, R.; Cameron, S.; Parra, J.; Jones, P.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate; Intergovernmental Panel on Climate Change, IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Nasim, M.; Shahidullah, S.M.; Saha, A.; Muttaleb, M.A.; Aditya, T.L.; Ali, M.A.; Kabir, M.S. Distribution of crops and cropping patterns in Bangladesh. Bangladesh Rice J. 2017, 21, 1–55. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Elith, J. dismo: Species Distribution Modeling_ R package version 1.3-9. 2022.
- International Steering Committee for Global Mapping. Sārve aba Bāṃlādeśa Inland Waters, Bangladesh. 2016. Available online: https://earthworks.stanford.edu/catalog/stanford-js773kw6163 (accessed on 25 December 2023).
- The Humanitarian Data Exchange (HDX) Bangladesh—Waterbodies. Available online: https://data.humdata.org/dataset/bangladesh-water-bodies (accessed on 31 December 2023).
- UNEP-WCMC. IUCN Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM).
- FRSS. Yearbook of Fisheries Statistics of Bangladesh; Fisheries Resources Survey System (FRSS); Department of Fisheries, Ministry of Fisheries: Dhaka, Bangladesh, 2002; p. 141. Available online: http://www.fisheries.gov.bd/site/page/54ea4502-a4cb-4e33-9f29-4be8f09cf8a6/%E0%A6%AE%E0%A7%8E%E0%A6%B8%E0%A7%8D%E0%A6%AF-%E0%A6%AA%E0%A6%B0%E0%A6%BF%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%A8 (accessed on 10 November 2023).
- Islam, S.; Ma, M. Geospatial monitoring of land surface temperature effects on vegetation dynamics in the southeastern region of Bangladesh from 2001 to 2016. ISPRS Int. J. Geo-Inf. 2018, 7, 486. [Google Scholar] [CrossRef]
- Matthews, W.J.; Hill, L.G. Habitat Partitioning in the Fish Community of a Southwestern River. Southwest. Nat. 1980, 25, 51. [Google Scholar] [CrossRef]
- Teal, L.R.; Marras, S.; Peck, M.A.; Domenici, P. Physiology-based modelling approaches to characterize fish habitat suitability: Their usefulness and limitations. Estuar. Coast. Shelf Sci. 2018, 201, 56–63. [Google Scholar] [CrossRef]
- Hossain, M.A.R. Habitat and fish diversity: Bangladesh perspective. In Advances in Fisheries Research in Bangladesh: I. Proceedings of 5th Fisheries Conference and Research Fair, Dhaka, Bangladesh, 18–19 January 2012; Wahab, M.A., Shah, M.S., Hossain, M.A.R., Barman, B.K., Hoq, M.E., Eds.; Bangladesh Agricultural Research Council and Bangladesh Fisheries Research Forum: Dhaka, Bangladesh, 2014; pp. 1–26. [Google Scholar]
- Ficke, A.D.; Myrick, C.A.; Hansen, L.J. Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish. 2007, 17, 581–613. [Google Scholar] [CrossRef]
- Sauz-Sánchez, J.D.J.; Rodiles-Hernández, R.; Andrade-Velázquez, M.; Mendoza-Carranza, M. Modelling the potential distribution of two tropical freshwater fish species under climate change scenarios. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 2737–2751. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, C.; Fan, X.; Bi, R.; Xia, L.; Xu, C.; Sun, B.; Li, T.; Jiang, C. Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China. Land 2022, 11, 127. [Google Scholar] [CrossRef]
- Keleher, C.J.; Rahel, F.J. Thermal Limits to Salmonid Distributions in the Rocky Mountain Region and Potential Habitat Loss Due to Global Warming: A Geographic Information System (GIS) Approach. Trans. Am. Fish. Soc. 1996, 125, 1–13. [Google Scholar] [CrossRef]
- Islam, N. Indo-Bangladesh common rivers: The impact on Bangladesh. Contemp. South Asia 1992, 1, 203–225. [Google Scholar] [CrossRef]
- Rasul, G.; Chowdhury, A.J.U. Equity and social justice in water resource management in Bangladesh. Gatekeeper Int. Inst. Environ. Dev. 2010, 146, 1–40. [Google Scholar]
- Pearson, K.A.; Millar, G.M.; Norton, G.J.; Price, A.H. Alternate wetting and drying in Bangladesh: Water-saving farming practice and the socioeconomic barriers to its adoption. Food Energy Secur. 2018, 7, e00149. [Google Scholar] [CrossRef]
- Alam, M. Subsidence of the Ganges—Brahmaputra Delta of Bangladesh and Associated Drainage, Sedimentation and Salinity Problems. In Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies; Milliman, J.D., Haq, B.U., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 2, pp. 169–192. [Google Scholar] [CrossRef]
- Craig, J.F.; Halls, A.S.; Barr, J.J.F.; Bean, C.W. The Bangladesh floodplain fisheries. Fish. Res. 2004, 66, 271–286. [Google Scholar] [CrossRef]
- Munro, A.D. Tropical Freshwater Fish. In Reproductive Seasonality in Teleosts; CRC Press: Boca Raton, FL, USA, 2019; pp. 145–240. [Google Scholar]
- Ahmad, M.; Kabir, M.; Alam, M.; Lee, S. Limnoecology and carp fish species peak spawning timing in haor basin of Bangladesh. Malaysian Appl. Biol. 2019, 48, 113–124. [Google Scholar]
- Quddus, M.M.A.; Shimizu, M.; Nose, Y. Spawning and Fecundity of Two Types of Hilsa ilisha in Bangladesh Waters. Nippon Suisan Gakkaishi 1984, 50, 177–181. [Google Scholar] [CrossRef]
- Kwak, T.J. Lateral movement and use of floodplain habitat by fishes of the Kankakee River, Illinois. Am. Midl. Nat. 1988, 120, 241–249. [Google Scholar] [CrossRef]
- King, A.J.; Humphries, P.; Lake, P.S. Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics. Can. J. Fish. Aquat. Sci. 2003, 60, 773–786. [Google Scholar] [CrossRef]
- Copp, G.H. The habitat diversity and fish reproductive function of floodplain ecosystems. Environ. Biol. Fishes 1989, 26, 1–27. [Google Scholar] [CrossRef]
- Brammer, H. Floods in Bangladesh: II. Flood Mitigation and Environmental Aspects. Geogr. J. 1990, 156, 158. [Google Scholar] [CrossRef]
- Islam, S.N. Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh. Sustain. Water Resour. Manag. 2016, 2, 237–256. [Google Scholar] [CrossRef]
- Moss, B. Wetlands in danger. Appl. Geogr. 1994, 14, 284–285. [Google Scholar] [CrossRef]
- Masum, J.H. Climatic Hazards in Bangladesh: A Literature Review. Coastal Development Partnership (CDP), Bangladesh, Coastal Development Partnership (CDP), Bangladesh. 2019. Available online: https://www.researchgate.net/profile/Syed-Masum-2/publication/355202936_Climatic_Hazards_in_Bangladesh-A_Literature_Review/links/6167e80525be2600ace596f2/Climatic-Hazards-in-Bangladesh-A-Literature-Review.pdf (accessed on 23 November 2023).
- Welcomme, R.L.; Bene, C.; Brown, C.A.; Arthington, A.; Dugan, P.; King, J.M.; Sugunan, V. Predicting the Water Requirements of River Fisheries. Wetl. Nat. Resour. Manag. 2006, 190, 123–154. [Google Scholar] [CrossRef]
- Humphries, P.; King, A.J.; Koehn, J.D. Fish, flows and flood plains: Links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environ. Biol. Fish. 1998, 56, 129–151. [Google Scholar] [CrossRef]
- Hung, H.J.; Lo, W.C.; Chen, C.N.; Tsai, C.H. Fish’ habitat area and habitat transition in a river under ordinary and flood flow. Ecol. Eng. 2022, 179, 106606. [Google Scholar] [CrossRef]
- Kunda, M.; Ray, D.; Pandit, D.; Harun-Al-Rashid, A. Establishment of a fish sanctuary for conserving indigenous fishes in the largest freshwater swamp forest of Bangladesh: A community-based management approach. Heliyon 2022, 8, e09498. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.F.; Islam, K. Effectiveness of protected areas in reducing deforestation and forest fragmentation in Bangladesh. J. Environ. Manage. 2021, 280, 111711. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Xu, P.; Wang, Y.; Yan, K.; Chaudhary, S. Assessment of the ecosystem services provided by ponds in hilly areas. Sci. Total Environ. 2018, 642, 979–987. [Google Scholar] [CrossRef]
- Hilborn, R.; Fulton, E.A.; Green, B.S.; Hartmann, K.; Tracey, S.R.; Watson, R.A. When is a fishery sustainable? Can. J. Fish. Aquat. Sci. 2015, 72, 1433–1441. [Google Scholar] [CrossRef]
- van Overzee, H.M.J.; Rijnsdorp, A.D. Effects of fishing during the spawning period: Implications for sustainable management. Rev. Fish Biol. Fish. 2015, 25, 65–83. [Google Scholar] [CrossRef]
- Tamario, C.; Sunde, J.; Petersson, E.; Tibblin, P.; Forsman, A. Ecological and Evolutionary Consequences of Environmental Change and Management Actions for Migrating Fish. Front. Ecol. Evol. 2019, 7, 271. [Google Scholar] [CrossRef]
- Parvez, M.T.; Lucas, M.C.; Hossain, M.I.; Chaki, N.; Mohsin, A.B.M.; Sun, J.; Galib, S.M. Invasive vermiculated sailfin catfish (Pterygoplichthys disjunctivus) has an impact on highly valued native fish species. Biol. Invasions 2023, 25, 1795–1809. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. Fishbase. World Wide Web Electronic Publication. Available online: www.fishbase.org (accessed on 20 February 2023).
Species Name | Areas (%) within Future Suitable Climate | ||||
---|---|---|---|---|---|
AOO | River | Lake | Floodplains | Protected Areas | |
Channa barca | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Devario anomalus | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Garra annandalei | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Labeo boggut | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Labeo nandina | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Labeo pangusia | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Raiamas bola | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Tor putitora | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Neolissochilus hexagonolepis | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Schistura sikmaiensis | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Schistura corica | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Neoeucirrhichthys maydelli | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Sisor rabdophorus | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Barilius tileo | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
Garra gotyla | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
Lepidocephalichthys irrorata | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 |
Schistura scaturigina | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |
Sicamugil cascasia | 0.00 | 0.00 | 0.00 | 0.14 | 0.11 |
Ompok pabo | 0.00 | 0.00 | 0.00 | 0.45 | 0.02 |
Labeo ariza | 0.00 | 0.00 | 0.00 | 0.55 | 0.08 |
Osteochilus hasseltii | 0.00 | 0.00 | 0.00 | 1.02 | 1.04 |
Labeo boga | 0.00 | 0.00 | 0.30 | 1.37 | 0.00 |
Botia lohachata | 0.00 | 0.00 | 0.00 | 1.37 | 0.67 |
Amblyceps laticeps | 0.00 | 0.00 | 0.00 | 4.04 | 2.77 |
Eugnathogobius oligactis | 0.00 | 0.13 | 0.20 | 2.14 | 0.73 |
Awaous grammepomus | 0.00 | 0.19 | 0.10 | 3.97 | 1.91 |
Tor tor | 0.00 | 1.40 | 2.20 | 17.33 | 1.82 |
Olyra longicaudata | 0.26 | 0.00 | 0.00 | 4.70 | 3.29 |
Batasio tengana | 2.00 | 0.00 | 0.15 | 2.57 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, J.; Haidar, I.K.A.; Noman, M.; Chowdhury, M.A.W. Conservation Priorities for Threatened Fish to Withstand Climate Crisis: Sustainable Capture and Protection of Inland Hydrographic Ecosystems. Ecologies 2024, 5, 155-169. https://doi.org/10.3390/ecologies5020010
Dutta J, Haidar IKA, Noman M, Chowdhury MAW. Conservation Priorities for Threatened Fish to Withstand Climate Crisis: Sustainable Capture and Protection of Inland Hydrographic Ecosystems. Ecologies. 2024; 5(2):155-169. https://doi.org/10.3390/ecologies5020010
Chicago/Turabian StyleDutta, Joya, Ibrahim Khalil Al Haidar, Mohammed Noman, and Mohammad Abdul Wahed Chowdhury. 2024. "Conservation Priorities for Threatened Fish to Withstand Climate Crisis: Sustainable Capture and Protection of Inland Hydrographic Ecosystems" Ecologies 5, no. 2: 155-169. https://doi.org/10.3390/ecologies5020010
APA StyleDutta, J., Haidar, I. K. A., Noman, M., & Chowdhury, M. A. W. (2024). Conservation Priorities for Threatened Fish to Withstand Climate Crisis: Sustainable Capture and Protection of Inland Hydrographic Ecosystems. Ecologies, 5(2), 155-169. https://doi.org/10.3390/ecologies5020010