Assessment of Chemical Properties, Heavy Metals, and Metalloid Contamination in Floodplain Soils under the Influence of Copper Mining: A Case Study of Sibay, Southern Urals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Su, J.; Li, Z.; Liu, B.; Chen, G.; Jiang, Y.; Li, Y.; Zhou, S.; Yuan, W. Source apportionment of heavy metal and their health risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, Eastern China. Environ. Pollut. 2019, 254, 113089. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, M.; Wang, J.; Zhang, Z.; Duan, C.; Wang, X.; Zhao, S.; Bai, X.; Li, Z.; Li, Z.; et al. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks. Sci. Total Environ. 2022, 835, 155441. [Google Scholar] [CrossRef] [PubMed]
- Kuramshina, N.G.; Kuramshin, E.M.; Nikolaeva, S.V.; Imashev, Y.B. The biogeochemical characteristics of the content of heavy metals in soil, plants and animals in different natural areas of Bashkortostan. J. Geochem. Explor. 2014, 144, 237–240. [Google Scholar] [CrossRef]
- Opekunova, M.; Opekunov, A.; Somov, V.; Kukushkin, S.; Papyan, E. Transformation of metals migration and biogeochemical cycling under the influence of copper mining production (the Southern Urals). Catena 2020, 189, 104512. [Google Scholar] [CrossRef]
- Abdrakhmanov, R.F. Atlas of the Republic of Bashkortostan; Kitap Publ.: Ufa, Russia, 2005. (In Russian) [Google Scholar]
- Semenova, I.N.; Rafikova, Y.S.; Khasanova, R.F.; Suyundukov, Y.T. Analysis of metal content in soils near abandoned mines of Bashkir Trans-Urals and in the hair of children living in this territory. J. Trace Elem. Med. Biol. 2018, 50, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Opekunov, A.Y.; Opekunova, M.G.; Kukushkin, S.Y.; Yanson, S.Y.; Arestova, I.Y.; Sheinerman, N.A.; Spasskii, V.V.; Papyan, E.E.; Elsukova, E.Y. Mineralogical–Geochemical Characteristics of the Snow Cover in Areas with Mining and Ore-Processing Facilities. Geochem. Int. 2021, 59, 711–724. [Google Scholar] [CrossRef]
- Suyundukov, Y.T.; Suyundukova, M.B.; Khasanova, R.F.; Semenova, I.N.; Rafikova, Y.S.; Ilbulova, G.R.; Bezuglova, O.S.; Khabirov, I.K. Physical Properties of the Soils of Sibay City of the Republic of Bashkortostan. Eurasian Soil Sci. 2022, 55, 27–35. [Google Scholar] [CrossRef]
- Opekunova, M.G.; Somov, V.V.; Papian, E.E. Soil contamination in the impact zone of mining enterprises in the Bashkir Transural region. Eurasian Soil Sci. 2017, 50, 732–745. [Google Scholar] [CrossRef]
- Khasanova, R.F.; Semenova, I.N.; Suyundukov, I.T.; Rafikova, I.S.; Biktimerova, G.I.; Ilbulova, G.R.; Kuzhina, G.S.; Ilyina, I.V. Environmental assessment of heavy metal pollution of soils in industrial zones of the city of Sibay. Vestn. Orenb. Gos. Univ. 2017, 12, 74–77. (In Russian) [Google Scholar]
- Golia, E.E.; Tsiropoulos, G.N.; Füleky, G.; Floras, S.; Vleioras, S. Pollution Assessment of Potentially Toxic Elements in Soils of Different Taxonomy Orders in Central Greece. Env. Monit Assess 2019, 191, 106. [Google Scholar] [CrossRef] [PubMed]
- Santos-Francés, F.; Martínez-Graña, A.; Zarza, C.Á.; Sánchez, A.G.; Rojo, P.A. Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods. Int. J. Environ. Res. Public Health 2017, 14, 568. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Chen, X.; Jing, F.; Liu, W.; Wen, X. An Assessment of Spatial Distribution and Source Identification of Five Toxic Heavy Metals in Nanjing, China. Environ. Eng. Res. 2021, 26, 200135. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y.; Zhang, Z.; Dai, B. Multivariate Geostatistical Analyses of Heavy Metals in Soils: Spatial Multi-Scale Variations in Wulian, Eastern China. Ecotoxicol. Environ. Saf. 2014, 107, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Gareev, A.M.; Galimova, R.G. Regional qualities of weather conditions global changes (by the example of the Cis-Ural forest-steppe). J. Int. Sci. Publ. Ecol. Saf. 2012, 6, 390–397. [Google Scholar]
- Zhang, X.; Yang, H.; Cui, Z. Evaluation and Analysis of Soil Migration and Distribution Characteristics of Heavy Metals in Iron Tailings. J. Clean. Prod. 2018, 172, 475–480. [Google Scholar] [CrossRef]
- Khaziev, F.K. Soils of Bashkortostan Vol. 1: Ecological-Genetic and Agricultural Production Characteristics; Gilem Publ.: Ufa, Russia, 1995; 385p. (In Russian) [Google Scholar]
- Gabbasova, I.M.; Garipov, T.T.; Komissarov, M.A.; Suleimanov, R.R.; Suyundukov, Y.T.; Khasanova, R.F.; Sidorova, L.V.; Komissarov, A.V.; Suleimanov, A.R.; Nazyrova, F.I. The Impact of Fires on the Properties of Steppe Soils in the Trans-Ural Region. Eurasian Soil Sci. 2019, 52, 1598–1607. [Google Scholar] [CrossRef]
- Suleymanov, A.; Gabbasova, I.; Abakumov, E.; Kostecki, J. Soil salinity assessment from satellite data in the Trans-Ural steppe zone (Southern Ural, Russia). Soil Sci. Annu. 2021, 72, 132233. [Google Scholar] [CrossRef]
- Suleymanov, A.; Polyakov, V.; Komissarov, M.; Suleymanov, R.; Gabbasova, I.; Garipov, T.; Saifullin, I.; Abakumov, E. Biophysicochemical properties of the eroded southern chernozem (Trans-Ural Steppe, Russia) with emphasis on the 13C NMR spectroscopy of humic acids. Soil Water Res. 2022, 17, 222–231. [Google Scholar] [CrossRef]
- Arinushkina, E.V. A Handbook of Chemical Analysis of Soils; Moscow State University: Moscow, Russia, 1970; 487p. (In Russian) [Google Scholar]
- Grishina, L.A.; Orlov, D.S. System of indicators of humus state of soils. In Soil Science Issues; Nauka: Moscow, Russia, 1978; pp. 42–47. (In Russian) [Google Scholar]
- Mineev, V.G. (Ed.) Practical Manual on Agrochemistry; Moscow State University: Moscow, Russia, 2001; 689p. (In Russian) [Google Scholar]
- Abakumov, E.V.; Suyundokov, Y.T.; Pigareva, T.A.; Semenova, I.N.; Khasanova, R.F.; Biktimerova, G.Y.; Rafikova, Y.S.; Il-bulova, G.R. Biological and sanitary evaluation of Sibaisky quarry dumps of the Bashkortostan Republic. Hyg. Sanit. 2016, 95, 929–934. (In Russian) [Google Scholar] [CrossRef]
- Khabirov, I.K. Ecology and Biochemistry of Nitrogen in the Soils of the Urals [Ekologiya i Biohimiya Azota v Pochvah Priural’ya]; Ufa Polygraph Plant: Ufa, Russia, 1993; 224p. (In Russian) [Google Scholar]
- Pankova, E.I. Saline Soils of Russia; Akademkniga Publ.: Moscow, Russia, 2006; 857p. (In Russian) [Google Scholar]
- Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and Geostatistical Analyses of the Spatial Distribution and Origin of Heavy Metals in the Agricultural Soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Kanianska, R.; Varga, J.; Benková, N.; Kizeková, M.; Jančová, Ľ. Floodplain Soils Contamination Assessment Using the Sequential Extraction Method of Heavy Metals from Past Mining Activities. Sci. Rep. 2022, 12, 2927. [Google Scholar] [CrossRef] [PubMed]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in Soil PH and Mobility of Heavy Metals in Contaminated Soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Angelaki, A.; Dionysidis, A.; Sihag, P.; Golia, E.E. Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil. Land 2022, 11, 290. [Google Scholar] [CrossRef]
- Pan, L.; Fang, G.; Wang, Y.; Wang, L.; Su, B.; Li, D.; Xiang, B. Potentially Toxic Element Pollution Levels and Risk Assessment of Soils and Sediments in the Upstream River, Miyun Reservoir, China. Int. J. Environ. Res. Public Health 2018, 15, 2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, A.J.; Verbruggen, F.; Rico, V.S.C.; Bergmans, J.; Spooren, J.; Yurramendi, L.; Laing, G.D.; Boon, N.; Hennebel, T. Selective Leaching of Copper and Zinc from Primary Ores and Secondary Mineral Residues Using Biogenic Ammonia. J. Hazard. Mater. 2021, 403, 123842. [Google Scholar] [CrossRef]
Index | Value |
---|---|
Sunshine duration | 1950–2000 h per year |
Average air temperature | 2–2.5 °C per year |
Average air temperature in July | 18.5–19 °C |
Average number of days with atmospheric drought | 40–45 days per year |
Average wind speed | 3.5–more than 4 m/c per year |
Precipitation | 350–400 mm per year |
The amount of precipitation during the warm period | 250–300 mm |
The reserve of productive moisture in a meter layer of soil in spring | less than 110 mm |
The amount of precipitation during the vegetative season | 160–200 mm |
Moisture coefficient | less than 0.4 |
Moisture deficit during the growing season | 100–115 mm |
The degree of moisture supply of the vegetation season | insufficient |
Soil Genetic Horizon (depth, cm) | Morphological Properties |
---|---|
Profile 1–2020. Haying, floodplain of the river Karagayly. Virgin soil. Stagnic Phaeozems | |
Av 0–3 | sod |
AU 3–83 | dark gray, dry, crumbly, granular, light loamy, smooth transition in color |
AB 83–100 | gray, moist, sticky, lumpy, heavy loamy, abrupt transition in color |
Bg(ca) 100–127 | blue-grayish and brown with albescent spots, sodden, sticky, lumpy-curdy, heavy loam |
Profile 2–2020. The Karagayly River valley. Virgin soil. Lithic Leptosols | |
AU: 0–28 | dark gray, dry, powdery-cloddy, crumbly, light loamy, fissured, covered with the material from the superincumbent horizon, very dense, impossible to dig into |
Profile 3–2020 The floodplain of the river Karagayly. Urban area. Lithic Leptosols | |
AU: 0–15 | dark gray, dry, powdery-cloddy, crumbly, light loamy, featuring pebble inclusions |
R: 15–… | fragments of rock, powdered with a material from the superincumbent horizon, very dense, impossible to dig into |
Profile 4–2020. The floodplain of the river Khudolaz. Urban area. Fluvisols | |
AU: 0–11 | light gray, dry, powdery-cloddy, crumbly, light loamy, featuring inclusions of small pebbles, sandy powder |
C~~, 11–… | densely packed pebbles, powdered with a material from the superincumbent horizon, very dense, impossible to dig into |
Profile 5–2020. The Karagayly River valley. Urban area. Lithic Leptosols | |
AU: 0–22 | dark gray, dry, powdery-cloddy, crumbly, light loamy, featuring inclusions of small pebbles |
R: 22–… | fissured, covered with a material from the superincumbent horizon, very dense, impossible to dig into |
Profile 6–2020. The floodplain of the river Khudolaz. Virgin soil. Stagnic Phaeozems | |
Av: 0–6 | sod |
AU: 6–76 | dark gray, moist, crumbly, granular, light loamy, carbonate mycelium, featuring pebble inclusions, fine sand powder, smooth transition in color |
AB: 76–92 | gray, moist, sticky, lumpy, heavy loamy, featuring pebble inclusions, sharp transition in color |
Bg(ca): 92–119 | blue grey with albescent spots, damp, sticky, lumpy-curdled, heavy loamy, featuring inclusions of pebbles, powder of fine sand |
Profile, Depth, cm | pH H2O | SOM, % | mg/kg Soil | |||
---|---|---|---|---|---|---|
Mineral Nitrogen | P2O5 | K2O | ||||
N-NO3 | N-NH4 | |||||
1-2020, 0–20 | 6.1 ± 0.3 | 15.4 ± 0.6 | 4.1 ± 0.1 | 18.9 ± 0.4 | 27 ± 1.8 | 43 ± 1.5 |
1-2020, 20–40 | 5.5 ± 0.2 | 9.0 ± 0.4 | 2 ± 0.2 | 1 ± 0.2 | 98 ± 2.4 | 19 ± 0.8 |
2-2020, 0–28 | 5.5 ± 0.2 | 6.7 ± 0.3 | 2.3 ± 0.3 | 5.9 ± 0.3 | 100 ± 2.8 | 40 ± 1.4 |
3-2020, 0–5 | 7.2 ± 0.3 | 9.5 ± 0.2 | 16.2 ± 0.6 | 65.7 ± 1.4 | 7 ± 0.4 | 1300 ± 34.4 |
4-2020, 0–11 | 7.4 ± 0.3 | 8.0 ± 0.2 | 30.2 ± 0.4 | 21.7 ± 0.7 | 23 ± 2.4 | 1300 ± 29.8 |
5-2020, 0–22 | 5.5 ± 0.4 | 7.8 ± 0.1 | 6.8 ± 0.3 | 25.1 ± 0.7 | 141 ± 4.2 | 191 ± 5.1 |
6-2020, 5–20 | 8.0 ± 0.3 | 6.0 ± 0.4 | 9.1 ± 0.3 | 26.8 ± 0.6 | 4 ± 0.2 | 700 ± 13.4 |
6-2020, 20–40 | 7.7 ± 0.2 | 7.1 ± 0.3 | 6 ± 0.1 | 5.6 ± 0.3 | 3 ± 0.2 | 80 ± 5.4 |
Profile. Horizon, Depth, cm | Cd | Zn | Cu | As |
---|---|---|---|---|
mg/kg Soil | ||||
1–2020. Floodplain of the river Karagayly AU: 3–83 cm (Virgin soil) | 0.3 ± 0.1 | 0.8 ± 0.1 | 0.3 ± 0.1 | 2.5 ± 0.3 |
1–2020. Floodplain of the river Karagayly AB: 83–100 cm (Virgin soil) | 0.1 ± 0.1 | 0 ± 0 | 0.2 ± 0.1 | 3.6 ± 0.3 |
2–2020. The river valley Karagayly. AU: 0–28 cm (Virgin soil) | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 2.8 ± 0.2 |
3–2020. Floodplain of the river Karagayly. Quarry dumps. AU. 0–15 cm (Urban area) | 0.6 ± 0.1 | 37.8 ± 3.4 | 2.6 ± 0.2 | 1.9 ± 0.2 |
4–2020. Floodplain of the river Khudolaz. AU. 0–11 cm (Urban area) | 1.2 ± 0.1 | 89.7 ± 5.1 | 10.2 ± 0.3 | 13.1 ± 0.5 |
5–2020. The river valley Karagayly. The middle part of the slope. AU. 0–22 cm (Urban area) | 0.5 ± 0.1 | 26.8 ± 3.1 | 1.2 ± 0.2 | 9.7 ± 0.3 |
6–2020. Floodplain of the river Khudolaz. AU. 6–76 cm (Virgin soil) | 0.6 ± 0.1 | 36.3 ± 2.4 | 3.1 ± 0.2 | 8.1 ± 0.4 |
6–2020. Floodplain of the river Khudolaz. AB. 76–92 cm (Virgin soil) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.7 ± 0.1 |
MPC | 1.0 | 23.0 | 3.0 | 15.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleymanov, R.; Dorogaya, E.; Gareev, A.; Minnegaliev, A.; Gaynanshin, M.; Zaikin, S.; Belan, L.; Tuktarova, I.; Suleymanov, A. Assessment of Chemical Properties, Heavy Metals, and Metalloid Contamination in Floodplain Soils under the Influence of Copper Mining: A Case Study of Sibay, Southern Urals. Ecologies 2022, 3, 530-538. https://doi.org/10.3390/ecologies3040039
Suleymanov R, Dorogaya E, Gareev A, Minnegaliev A, Gaynanshin M, Zaikin S, Belan L, Tuktarova I, Suleymanov A. Assessment of Chemical Properties, Heavy Metals, and Metalloid Contamination in Floodplain Soils under the Influence of Copper Mining: A Case Study of Sibay, Southern Urals. Ecologies. 2022; 3(4):530-538. https://doi.org/10.3390/ecologies3040039
Chicago/Turabian StyleSuleymanov, Ruslan, Ekaterina Dorogaya, Aufar Gareev, Aleksandr Minnegaliev, Mansur Gaynanshin, Sergey Zaikin, Larisa Belan, Iren Tuktarova, and Azamat Suleymanov. 2022. "Assessment of Chemical Properties, Heavy Metals, and Metalloid Contamination in Floodplain Soils under the Influence of Copper Mining: A Case Study of Sibay, Southern Urals" Ecologies 3, no. 4: 530-538. https://doi.org/10.3390/ecologies3040039
APA StyleSuleymanov, R., Dorogaya, E., Gareev, A., Minnegaliev, A., Gaynanshin, M., Zaikin, S., Belan, L., Tuktarova, I., & Suleymanov, A. (2022). Assessment of Chemical Properties, Heavy Metals, and Metalloid Contamination in Floodplain Soils under the Influence of Copper Mining: A Case Study of Sibay, Southern Urals. Ecologies, 3(4), 530-538. https://doi.org/10.3390/ecologies3040039