Resistance of Nitric Oxide Dioxygenase and Cytochrome c Oxidase to Inhibition by Nitric Oxide and Other Indications of the Spintronic Control of Electron Transfer
Abstract
1. Background and Introduction
1.1. NO Toxicity and Inhibition of Heme Enzymes
1.2. Cellular NO Detoxification Pathways, NODs, NORs, and Other Pathways
1.3. The Paradoxical Function(s) of flavoHbs in NO Detoxification
1.4. The Paradoxical NO Resistance of CcO and Other O2 Reductases
2. Purpose and Scope
3. NOD Resistance to NO Poisoning
3.1. O2 vs. NO Binding to Globins
3.2. NO Inhibition of NODs
3.3. Reversal of NO Inhibition of NODs
3.3.1. NO Reduction by flavoHb-NOD
3.3.2. Denitrosylase Mechanism of flavoHb
3.3.3. NO and O2 Ligand Exchange Reaction or a Kinetic Aberration
3.3.4. Heme-Fe3+O2 Quantum State Switch in the flavoHb-NOD Catalytic Cycle
4. CcO Resistance to NO Poisoning
4.1. O2 vs. NO Binding to CcO
4.2. NO Inhibition of CcO
4.3. Reversal of NO Inhibition of CcO
4.3.1. NO Reduction by CcO
4.3.2. NO Oxidation by CcO
4.3.3. Heme-Fe(III)O2 Quantum State Switch and the CcO Catalytic Cycle
- (i)
- Can the model explain all empirical observations?
- (ii)
- Does the model agree with existing theory, or overlap with other models?
- (iii)
- Does the model suggest definitive experiments?
- (iv)
- Does the model need to be revised or rejected?
CcO Catalytic Cycle
Spintronics in BNCox Binding of O2
4.3.4. Tunnel and Countercurrent Charge Migration Path in Proton Pumping
4.3.5. Toward the Resolution of Unanswered Questions with Models
- (1)
- O2, NO, and CO binding to BNCox (Figure 5).
- (2)
- SOC and spintronics (Figure 6).
- (3)
- an ET switch mechanism (Figure 7)
- (4)
- the alpha helix dipole-driven and membrane potential-opposed Pro tunnel (Figure 8)
- (5)
- the ET-linked proton pump mechanism (Figure 7)
- (6)
- the existence of well-defined electrostatically-coordinated and concerted EPT pathways (Figure 9)
- (7)
- proton reverse flow and ET pathway control by the hydrated magnesium ion (Figure 9)
- (8)
- the proton or hydronium ion exit channel (Figure 9)
- (9)
- the free energy and mechanism for pumping first proton in the cycle comes from reduction of ferromagnetically coupled O2Cu2+, not O2 per se
- (10)
- other concepts mentioned but not listed here
5. Pathology of Irreversible NO Poisoning
6. Prospective Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NOR | NO reductase |
NOD | NO dioxygenase |
NOS | NO synthase |
Hb | Hemoglobin |
Mb | Myoglobin |
CcO | Cytochrome c Oxidase |
flavoHb | flavohemoglobin |
FAD | Flavin Adenine Dinucleotide |
ET | Electron Transfer |
Ngb | Neuroglobin; |
SOC | Spin-Orbit Coupling |
SC | Spin Crossover |
SI | Spin Inversion |
FM | Ferromagnetic |
AFM | Antiferromagnetic |
BNC | Binuclear Center |
BNCred | the Reduced BNC |
BNCox | the Oxidized BNC |
EPR | Electron Paramagnetic Resonance |
DFT | Density Functional Theory |
PT | Proton Transfer |
EPT | Electron–Proton Transfer |
PCET | Proton-Coupled Electron Transfer |
SQUID | Superconducting Quantum Interference Device |
References
- Davy, H. Humphry Davy’s Physiologische-Chemische Untersuchungen Über Das Athmen, Besonders Über Das Athmen Von Oxydirtem Stickgas (Transl.); Menerschen Buchhandlung: Lemgo, Germany, 1814; pp. 51–58. [Google Scholar]
- Koppenol, W.H. Thermodynamic considerations on the generation of hydroxyl radicals from nitrous oxide—No laughing matter. Free Radic. Biol. Med. 1991, 10, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Zumft, W.G. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. J. Inorg. Biochem. 2005, 99, 194–215. [Google Scholar] [CrossRef]
- Gardner, P.R. Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J. Inorg. Biochem. 2005, 99, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.R. Hemoglobin: A nitric-oxide dioxygenase. Scientifica 2012, 2012, 683729. [Google Scholar] [CrossRef] [PubMed]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hibbs, J.B., Jr.; Taintor, R.R.; Vavrin, Z. Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987, 235, 473–476. [Google Scholar] [CrossRef]
- MacMicking, J.; Xie, Q.W.; Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 1997, 15, 323–350. [Google Scholar] [CrossRef]
- Drapier, J.C.; Hibbs, J.B., Jr. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J. Clin. Investig. 1986, 78, 790–797. [Google Scholar] [CrossRef]
- Stuehr, D.J.; Nathan, C.F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 1989, 169, 1543–1555. [Google Scholar] [CrossRef]
- Mohanty, I.; Fazelinia, H.; Raimo, S.; Ding, H.; Spruce, L.; Symeonidou, M.; Tenopoulou, M.; Ichinose, F.; Yamashita, H.; Shimokawa, H.; et al. Proteomic surveys of the mouse heart unveil cardiovascular responses to nitric oxide/cGMP signaling deficiencies. Commun. Biol. 2025, 8, 817. [Google Scholar] [CrossRef]
- Dent, M.R.; DeMartino, A.W.; Tejero, J.; Gladwin, M.T. Endogenous hemoprotein-dependent signaling pathways of nitric oxide and nitrite. Inorg. Chem. 2021, 60, 15918–15940. [Google Scholar] [CrossRef]
- Yunker, M.H.; Szulczewski, D.; Higuchi, T. Kinetics of the degradation of isoamyl nitrite in ampuls I.: Nature of reaction products and influence of temperature, oxygen, alcohol, water, and acid on the overall rate. J. Am. Pharm. Assoc. 1958, 47, 613–620. [Google Scholar] [CrossRef]
- Di Carlo, F.J. Nitroglycerin revisited: Chemistry, biochemistry, interactions. Drug Metab. Rev. 1975, 4, 1–38. [Google Scholar] [CrossRef]
- Ignarro, L. Nitric oxide as a unique signaling molecule in the vascular system: A historical overview. J. Physiol. Pharmacol. 2002, 53, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.R.; Martin, L.A.; Hall, D.; Gardner, A.M. Dioxygen-dependent metabolism of nitric oxide in mammalian cells. Free Radic. Biol. Med. 2001, 31, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.R.; Gardner, A.M.; Brashear, W.T.; Suzuki, T.; Hvitved, A.N.; Setchell, K.D.; Olson, J.S. Hemoglobins dioxygenate nitric oxide with high fidelity. J. Inorg. Biochem. 2006, 100, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.R. Ordered motions in the nitric-oxide dioxygenase mechanism of flavohemoglobin and assorted globins with their tightly coupled reductases. In Protein Reviews; Atassi, M.Z., Ed.; Springer International Publishing: Cham, Switzerland, 2023; Volume 23, pp. 45–96. [Google Scholar]
- Doyle, M.P.; Hoekstra, J.W. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem. 1981, 14, 351–358. [Google Scholar] [CrossRef]
- Eich, R.F.; Li, T.S.; Lemon, D.D.; Doherty, D.H.; Curry, S.R.; Aitken, J.F.; Mathews, A.J.; Johnson, K.A.; Smith, R.D.; Phillips, G.N.; et al. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 1996, 35, 6976–6983. [Google Scholar] [CrossRef]
- Wade, R.S.; Castro, C.E. Reactions of oxymyoglobin with NO, NO2, and NO2− under argon and in air. Chem. Res. Toxicol. 1996, 9, 1382–1390. [Google Scholar] [CrossRef]
- Yukl, E.T.; de Vries, S.; Moënne-Loccoz, P. The millisecond intermediate in the reaction of nitric oxide with oxymyoglobin is an iron(III)—nitrato complex, not a peroxynitrite. J. Am. Chem. Soc. 2009, 131, 7234–7235. [Google Scholar] [CrossRef]
- Schopfer, M.P.; Mondal, B.; Lee, D.-H.; Sarjeant, A.A.N.; Karlin, K.D. Heme/O2/•NO nitric oxide dioxygenase (NOD) reactivity: Phenolic nitration via a putative heme-peroxynitrite intermediate. J. Am. Chem. Soc. 2009, 131, 11304–11305. [Google Scholar] [CrossRef]
- Möller, M.N.; Rios, N.; Trujillo, M.; Radi, R.; Denicola, A.; Alvarez, B. Detection and quantification of nitric oxide–derived oxidants in biological systems. J. Biol. Chem. 2019, 294, 14776–14802. [Google Scholar] [CrossRef] [PubMed]
- Ford, P.C.; Miranda, K.M. The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020, 103, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, J.R., Jr.; Hibbs, J.B., Jr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 1990, 87, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Drapier, J.-C.; Hibbs, J.B., Jr. Aconitases: A class of metalloproteins highly sensitive to nitric oxide synthesis. Methods Enzymol. 1996, 269, 26–36. [Google Scholar] [CrossRef]
- Gardner, P.R.; Costantino, G.; Szabo, C.; Salzman, A.L. Nitric oxide sensitivity of the aconitases. J. Biol. Chem. 1997, 272, 25071–25076. [Google Scholar] [CrossRef]
- Brown, G.C.; Cooper, C.E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal cytochrome oxidase respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994, 356, 295–298. [Google Scholar] [CrossRef]
- Cleeter, M.W.J.; Cooper, J.M.; Darley-Usmar, V.M.; Moncada, S.; Schapira, A.H.V. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: Implications for neurodegenerative diseases. FEBS Lett. 1994, 345, 50–54. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Bergonia, H.A.; Müller, C.; Pitt, B.R.; Watkins, W.D.; Lancaster, J.R., Jr. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J. Biol. Chem. 1995, 270, 5710–5713. [Google Scholar] [CrossRef]
- Takemura, S.; Minamiyama, Y.; Imaoka, S.; Funae, Y.; Hirohashi, K.; Inoue, M.; Kinoshita, H. Hepatic cytochrome P450 is directly inactivated by nitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia. J. Hepatol. 1999, 30, 1035–1044. [Google Scholar] [CrossRef]
- Minamiyama, Y.; Takemura, S.; Imaoka, S.; Funae, Y.; Tanimoto, Y.; Inoue, M. Irreversible inhibition of cytochrome P450 by nitric oxide. J. Pharmacol. Exp. Therap. 1997, 283, 1479–1485. [Google Scholar] [CrossRef]
- Arnold, W.P.; Mittal, C.K.; Katsuki, S.; Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3′: 5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 1977, 74, 3203–3207. [Google Scholar] [CrossRef] [PubMed]
- Bouton, C.; Raveau, M.; Drapier, J.-C. Modulation of iron regulatory protein functions. Further insights into the role of nitrogen- and oxygen-derived reactive species. J. Biol. Chem. 1996, 271, 2300–2306. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.C.; Antholine, W.E.; Beinert, H. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J. Biol. Chem. 1997, 272, 20340–20347. [Google Scholar] [CrossRef]
- Cooper, C.E.; Davies, N.A. Effects of nitric oxide and peroxynitrite on the cytochrome oxidase Km for oxygen: Implications for mitochondrial pathology. Biochim. Biophys. Acta (BBA)-Bioenerg. 2000, 1459, 390–396. [Google Scholar] [CrossRef]
- Brown, G.C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995, 369, 136–139. [Google Scholar] [CrossRef]
- Perutz, M.F. Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu. Rev. Biochem. 1990, 52, 1–25. [Google Scholar] [CrossRef]
- Saraste, M.; Castresana, J. Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 1994, 341, 1–4. [Google Scholar] [CrossRef]
- Castresana, J.; Lübben, M.; Saraste, M.; Higgins, D.G. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J. 1994, 13, 2516–2525. [Google Scholar] [CrossRef]
- Brunori, M. Wandering about allostery. Biol. Direct 2024, 19, 64. [Google Scholar] [CrossRef]
- Prebble, J.; Weber, B. Wandering in the Gardens of the Mind: Peter Mitchell and the Making of Glynn; Oxford University Press: New York, NY, USA, 2003; pp. 1–324. [Google Scholar]
- Rudolph, J.; Koschorreck, M.; Conrad, R. Oxidative and reductive microbial consumption of nitric oxide in a heathland soil. Soil Biol. Biochem. 1996, 28, 1389–1396. [Google Scholar] [CrossRef]
- Koschorreck, M.; Moore, E.; Conrad, R. Oxidation of nitric oxide by a new heterotrophic Pseudomonas sp. Arch. Microbiol. 1996, 166, 23–31. [Google Scholar] [CrossRef]
- Remde, A.; Slemr, F.; Conrad, R. Microbial production and uptake of nitric oxide in soil. FEMS Microbio. Ecol. 1989, 5, 221–230. [Google Scholar] [CrossRef]
- Schäfer, F.; Ralf, C. Metabolism of nitric oxide by Pseudomonas stutzeri in culture and in soil. FEMS Microbio. Ecol. 1993, 11, 119–127. [Google Scholar] [CrossRef]
- Gardner, P.R.; Costantino, G.; Salzman, A.L. Constitutive and adaptive detoxification of nitric oxide in Escherichia coli. Role of nitric-oxide dioxygenase in the protection of aconitase. J. Biol. Chem. 1998, 273, 26528–26533. [Google Scholar] [CrossRef]
- Gardner, P.R.; Gardner, A.M.; Martin, L.A.; Salzman, A.L. Nitric oxide dioxygenase: An enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 1998, 95, 10378–10383. [Google Scholar] [CrossRef]
- Masters, B.S.S.; Kamin, H.; Gibson, Q.H.; Williams, C.H., Jr. Studies on the mechanism of microsomal triphosphopyridine nucleotide-cytochrome c reductase. J. Biol. Chem. 1965, 240, 921–931. [Google Scholar] [CrossRef]
- Gardner, A.M.; Martin, L.A.; Gardner, P.R.; Dou, Y.; Olson, J.S. Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis. J. Biol. Chem. 2000, 275, 12581–12589. [Google Scholar] [CrossRef]
- Westfelt, U.N.; Benthin, G.; Lundin, S.; Stenqvist, O.; Wennmalm, Å. Conversion of inhaled nitric oxide to nitrate in man. Br. J. Pharmacol. 1995, 114, 1621–1624. [Google Scholar] [CrossRef]
- Hausladen, A.; Stamler, J.S. Is the flavohemoglobin a nitric oxide dioxygenase? Free Radic. Biol. Med. 2012, 53, 1209–1210. [Google Scholar] [CrossRef]
- Hausladen, A.; Gow, A.J.; Stamler, J.S. Nitrosative stress: Metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 1998, 95, 14100–14105. [Google Scholar] [CrossRef] [PubMed]
- Forrester, M.T.; Foster, M.W. Protection from nitrosative stress: A central role for microbial flavohemoglobin. Free Radic. Biol. Med. 2012, 52, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Poole, R.K. Flavohaemoglobin: The pre-eminent nitric oxide-detoxifying machine of microorganisms. F1000Research 2020, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Frey, A.D.; Farrés, J.; Bollinger, C.J.T.; Kallio, P.T. Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Appl. Environ. Microbiol. 2002, 68, 4835–4840. [Google Scholar] [CrossRef]
- Poole, R.K.; Anjum, M.F.; Membrillo-Hernandez, J.; Kim, S.O.; Hughes, M.N.; Stewart, V. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J. Bacteriol. 1996, 178, 5487–5492. [Google Scholar] [CrossRef]
- LaCelle, M.; Kumano, M.; Kurita, K.; Yamane, K.; Zuber, P.; Nakano, M.M. Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis. J. Bacteriol. 1996, 178, 3803–3808. [Google Scholar] [CrossRef]
- Cramm, R.; Siddiqui, R.A.; Friedrich, B. Primary sequence and evidence for a physiological function of the flavohemoprotein of Alcaligenes eutrophus. J. Biol. Chem. 1994, 269, 7349–7354. [Google Scholar] [CrossRef]
- Zhu, H.; Riggs, A.F. Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc. Natl. Acad. Sci. USA 1992, 89, 5015–5019. [Google Scholar] [CrossRef]
- Gardner, P.R.; Gardner, A.M.; Martin, L.A.; Dou, Y.; Li, T.; Olson, J.S.; Zhu, H.; Riggs, A.F. Nitric-oxide dioxygenase activity and function of flavohemoglobins. Sensitivity to nitric oxide and carbon monoxide inhibition. J. Biol. Chem. 2000, 275, 31581–31587. [Google Scholar] [CrossRef]
- Hausladen, A.; Gow, A.; Stamler, J.S. Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc. Natl. Acad. Sci. USA 2001, 98, 10108–10112. [Google Scholar] [CrossRef]
- Kim, S.O.; Orii, Y.; Lloyd, D.; Hughes, M.N.; Poole, R.K. Anoxic function for the Escherichia coli flavohaemoglobin (Hmp): Reversible binding of nitric oxide and reduction to nitrous oxide. FEBS Lett. 1999, 445, 389–394. [Google Scholar] [CrossRef]
- Poole, R.K.; Hughes, M.N. New functions for the ancient globin family: Bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 2000, 36, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.M.; Gardner, P.R. Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J. Biol. Chem. 2002, 277, 8166–8171. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Z.; Lonergan, Z.R.; Wilbert, S.A.; Eiler, J.M.; Newman, D.K. Widespread detoxifying NO reductases impart a distinct isotopic fingerprint on N2O under anoxia. Proc. Natl. Acad. Sci. USA 2024, 121, e2319960121. [Google Scholar] [CrossRef] [PubMed]
- Puppo, A.; Pauly, N.; Boscari, A.; Mandon, K.; Brouquisse, R. Hydrogen peroxide and nitric oxide: Key regulators of the legume—Rhizobium and mycorrhizal symbioses. Antioxid. Redox. Signal. 2013, 18, 2202–2219. [Google Scholar] [CrossRef]
- Minning, D.M.; Gow, A.J.; Bonaventura, J.; Braun, R.; Dewhirst, M.; Goldberg, D.E.; Stamler, J.S. Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’. Nature 1999, 401, 497–502. [Google Scholar] [CrossRef]
- Gardner, A.M.; Helmick, R.A.; Gardner, P.R. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem. 2002, 277, 8172–8177. [Google Scholar] [CrossRef]
- Gardner, P.R.; Gardner, D.P.; Gardner, A.P. Globins scavenge sulfur trioxide anion radical. J. Biol. Chem. 2015, 290, 27204–27214. [Google Scholar] [CrossRef]
- Membrillo-Hernandez, J.; Coopamah, M.D.; Anjum, M.F.; Stevanin, T.M.; Kelly, A.; Hughes, M.N.; Poole, R.K. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 1999, 274, 748–754. [Google Scholar] [CrossRef]
- Buisson, N.; Labbe-Bois, R. Flavohemoglobin expression and function in Saccharomyces cerevisiae. No relationship with respiration and complex response to oxidative stress. J. Biol. Chem. 1998, 273, 9527–9533. [Google Scholar] [CrossRef]
- Gardner, A.M.; Gardner, P.R. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. J. Inorg. Biochem. 2023, 245, 112257. [Google Scholar] [CrossRef]
- Gardner, A.M.; Gardner, P.R. Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin. J. Biol. Chem. 2021, 296, 100186. [Google Scholar] [CrossRef]
- Nazmutdinov, R.R.; Santos, E.; Schmickler, W. Spin effects in oxygen electrocatalysis: A discussion. Electrochem. Commun. 2013, 33, 14–17. [Google Scholar] [CrossRef]
- Gracia, J. Itinerant spins and bond lengths in oxide electrocatalysts for oxygen evolution and reduction reactions. J. Phys. Chem. C 2019, 123, 9967–9972. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, S.; Yang, H.; Xi, S.; Gracia, J.; Xu, Z.J. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003297. [Google Scholar] [CrossRef] [PubMed]
- Pech-Santiago, E.O.; Argüello-García, R.; Arce-Cruz, G.; Angeles, E.; Ortega-Pierres, G. Giardia duodenalis flavohemoglobin is a target of 5-nitroheterocycle and benzimidazole compounds acting as enzymatic inhibitors or subversive substrates. Free Radic. Biol. Med. 2025, 227, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Borutaité, V.; Brown, G.C. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem. J. 1996, 315, 295–299. [Google Scholar] [CrossRef]
- Cooper, C.E.; Torres, J.; Sharpe, M.A.; Wilson, M.T. Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: A general mechanism for the interaction of copper proteins with nitric oxide? FEBS Lett. 1997, 414, 281–284. [Google Scholar] [CrossRef]
- Stevanin, T.M.; Ioannidis, N.; Mills, C.E.; Kim, S.O.; Hughes, M.N.; Poole, R.K. Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo’ or bd, from nitric oxide. J. Biol. Chem. 2000, 275, 35868–35875. [Google Scholar] [CrossRef]
- Palacios-Callender, M.; Hollis, V.; Mitchison, M.; Frakich, N.; Unitt, D.; Moncada, S. Cytochrome c oxidase regulates endogenous nitric oxide availability in respiring cells: A possible explanation for hypoxic vasodilation. Proc. Natl. Acad. Sci. USA 2007, 104, 18508–18513. [Google Scholar] [CrossRef]
- Daiber, A.; Shoun, H.; Ullrich, V. Nitric oxide reductase (P450nor) from Fusarium oxysporum. J. Inorg. Biochem. 2005, 99, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Stubauer, G.; Giuffrè, A.; Brunori, M.; Sarti, P. Cytochrome c oxidase does not catalyze the anaerobic reduction of NO. Biochem. Biophys. Res. Commun. 1998, 245, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Brudvig, G.W.; Stevens, T.H.; Chan, S.I. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 1980, 19, 5275–5285. [Google Scholar] [CrossRef] [PubMed]
- Giles, A.V.; Edwards, L.; Covian, R.; Lucotte, B.M.; Balaban, R.S. Cardiac nitric oxide scavenging: Role of myoglobin and mitochondria. J. Physiol. 2024, 602, 73–91. [Google Scholar] [CrossRef]
- Giuffrè, A.; Forte, E.; Brunori, M.; Sarti, P. Nitric oxide, cytochrome c oxidase and myoglobin: Competition and reaction pathways. FEBS Lett. 2005, 579, 2528–2532. [Google Scholar] [CrossRef]
- Moore, E.G.; Gibson, Q.H. Cooperativity in the dissociation of nitric oxide from hemoglobin. J. Biol. Chem. 1976, 251, 2788–2794. [Google Scholar] [CrossRef]
- Blackmore, R.S.; Greenwood, C.; Gibson, Q.H. Studies of the primary oxygen intermediate in the reaction of fully reduced cytochrome oxidase. J. Biol. Chem. 1991, 266, 19245–19249. [Google Scholar] [CrossRef]
- Torres, J.; Darley-Usmar, V.; Wilson, M.T. Inhibition of cytochrome c oxidase in turnover by nitric oxide: Mechanism and implications for control of respiration. Biochem. J. 1995, 312, 169–173. [Google Scholar] [CrossRef]
- Giuffrè, A.; Sarti, P.; D’Itri, E.; Buse, G.; Soulimane, T.; Brunori, M. On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J. Biol. Chem. 1996, 271, 33404–33408. [Google Scholar] [CrossRef]
- Sarti, P.; Giuffré, A.; Forte, E.; Mastronicola, D.; Barone, M.C.; Brunori, M. Nitric oxide and cytochrome c oxidase: Mechanisms of inhibition and NO degradation. Biochem. Biophys. Res. Commun. 2000, 274, 183–187. [Google Scholar] [CrossRef]
- Mason, M.G.; Nicholls, P.; Wilson, M.T.; Cooper, C.E. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2006, 103, 708–713. [Google Scholar] [CrossRef]
- Antunes, F.; Boveris, A.; Cadenas, E. On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc. Natl. Acad. Sci. USA 2004, 101, 16774–16779. [Google Scholar] [CrossRef]
- Mason, M.G.; Shepherd, M.; Nicholls, P.; Dobbin, P.S.; Dodsworth, K.S.; Poole, R.K.; Cooper, C.E. Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat. Chem. Biol. 2009, 5, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Borisov, V.B.; Forte, E.; Sarti, P.; Brunori, M.; Konstantinov, A.A.; Giuffrè, A. Redox control of fast ligand dissociation from Escherichia coli cytochrome bd. Biochem. Biophys. Res. Commun. 2007, 355, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Giuffre, A.; Borisov, V.B.; Mastronicola, D.; Sarti, P.; Forte, E. Cytochrome bd oxidase and nitric oxide: From reaction mechanisms to bacterial physiology. FEBS Lett. 2012, 586, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, A.; Borisov, V.B.; Arese, M.; Sarti, P.; Forte, E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim. Biophys. Acta (BBA)-Bioenerg. 2014, 1837, 1178–1187. [Google Scholar] [CrossRef]
- Forte, E.; Urbani, A.; Saraste, M.; Sarti, P.; Brunori, M.; Giuffrè, A. The cytochrome cbb3 from Pseudomonas stutzeri displays nitric oxide reductase activity. Eur. J. Biochem. 2001, 268, 6486–6491. [Google Scholar] [CrossRef]
- Covian, R.; Edwards, L.O.; Lucotte, B.M.; Balaban, R.S. Spectroscopic identification of the catalytic intermediates of cytochrome c oxidase in respiring heart mitochondria. Biochim. Biophys. Acta (BBA)-Bioenerg. 2023, 1864, 148934. [Google Scholar] [CrossRef]
- Covian, R.; Edwards, L.O.; Balaban, R.S. Effect of the mitochondrial membrane potential on the absorbance of the reduced form of cytochrome c oxidase. Biochim. Biophys. Acta (BBA)-Bioenerg. 2024, 1865, 149048. [Google Scholar] [CrossRef]
- Gibson, Q.; Roughton, F. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J. Physiol. 1957, 136, 507–526. [Google Scholar] [CrossRef]
- Foley, E.L.; Hvitved, A.N.; Eich, R.F.; Olson, J.S. Mechanisms of nitric oxide reactions with globins using mammalian myoglobin as a model system. J. Inorg. Biochem. 2022, 233, 111839. [Google Scholar] [CrossRef] [PubMed]
- Hille, R.; Palmer, G.; Olson, J.S. Chain equivalence in reaction of nitric oxide with hemoglobin. J. Biol. Chem. 1977, 252, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Frey, A.D.; Kallio, P.T. Bacterial hemoglobins and flavohemoglobins: Versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol. Rev. 2003, 27, 525–545. [Google Scholar] [CrossRef] [PubMed]
- Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems; John Wiley & Sons, Inc.: New York, NY, USA, 1975; pp. 826–830. [Google Scholar]
- Mills, C.E.; Sedelnikova, S.; Soballe, B.; Hughes, M.N.; Poole, R.K. Escherichia coli flavohaemoglobin (Hmp) with equistoichiometric FAD and haem contents has a low affinity for dioxygen in the absence or presence of nitric oxide. Biochem. J. 2001, 353, 207–213. [Google Scholar] [CrossRef]
- Hill, S.; Decorso, I.; Nezamololama, N.; Babaei, Z.; Rafferty, S.P. Catalytic differences between flavohemoglobins of Giardia intestinalis and E. coli. Pathogens 2024, 13, 480. [Google Scholar] [CrossRef]
- Ilangovan, G.; Khaleel, S.A.; Kundu, T.; Hemann, C.; El-Mahdy, M.A.; Zweier, J.L. Defining the reducing system of the NO dioxygenase cytoglobin in vascular smooth muscle cells and its critical role in regulating cellular NO decay. J. Biol. Chem. 2021, 296, 100196. [Google Scholar] [CrossRef]
- Gardner, A.M.; Cook, M.R.; Gardner, P.R. Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J. Biol. Chem. 2010, 285, 23850–23857. [Google Scholar] [CrossRef]
- Liu, X.; Follmer, D.; Zweier, J.R.; Huang, X.; Hemann, C.; Liu, K.; Druhan, L.J.; Zweier, J.L. Characterization of the function of cytoglobin as an oxygen-dependent regulator of nitric-oxide concentration. Biochemistry 2012, 51, 5072–5082. [Google Scholar] [CrossRef]
- Zhou, S.; Fushinobu, S.; Nakanishi, Y.; Kim, S.-W.; Wakagi, T.; Shoun, H. Cloning and characterization of two flavohemoglobins from Aspergillus oryzae. Biochem. Biophys. Res. Commun. 2009, 381, 7–11. [Google Scholar] [CrossRef]
- Gonçalves, V.L.; Nobre, L.S.; Vicente, J.B.; Teixeira, M.; Saraiva, L.M. Flavohemoglobin requires microaerophilic conditions for nitrosative protection of Staphylococcus aureus. FEBS Lett. 2006, 580, 1817–1821. [Google Scholar] [CrossRef]
- Gardner, P.R. Assay and characterization of the NO dioxygenase activity of flavohemoglobins. Methods Enzymol. 2008, 436, 217–237. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, M.; Hausladen, A.; Heitman, J.; Stamler, J.S. Protection from nitrosative stress by yeast flavohemoglobin. Proc. Natl. Acad. Sci. USA 2000, 97, 4672–4676. [Google Scholar] [CrossRef]
- Crawford, M.J.; Goldberg, D.E. Role for the Salmonella flavohemoglobin in protection from nitric oxide. J. Biol. Chem. 1998, 273, 12543–12547. [Google Scholar] [CrossRef]
- Justino, M.C.; Vicente, J.B.; Teixeira, M.; Saraiva, L.M. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J. Biol. Chem. 2005, 280, 2636–2643. [Google Scholar] [CrossRef]
- Nakano, M.M. Essential role of flavohemoglobin in long-term anaerobic survival of Bacillus subtilis. J. Bacteriol. 2006, 188, 6415–6418. [Google Scholar] [CrossRef] [PubMed]
- Platzen, L.; Koch-Koerfges, A.; Weil, B.; Brocker, M.; Bott, M. Role of flavohaemoprotein Hmp and nitrate reductase NarGHJI of Corynebacterium glutamicum for coping with nitrite and nitrosative stress. FEMS Microbiol. Lett. 2014, 350, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Hayashi, M.; Kuroi, A.; Ishii, M.; Igarashi, Y. Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxide-responsive regulator of Pseudomonas aeruginosa. J. Bacteriol. 2005, 187, 3960–3968. [Google Scholar] [CrossRef] [PubMed]
- Dalsing, B.L.; Truchon, A.N.; Gonzalez-Orta, E.T.; Milling, A.S.; Allen, C. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. mBio 2015, 6, e02471. [Google Scholar] [CrossRef]
- Takaya, N.; Shoun, H. Genetic engineering using fungal flavohemoglobin for constructing Pseudomonas stutzeri strain emitting less nitrous oxide. J. Biosci. Bioeng. 2002, 94, 282–284. [Google Scholar] [CrossRef]
- Kaldorf, M.; Linne von Berg, K.H.; Meier, U.; Servos, U.; Bothe, H. The reduction of nitrous oxide to dinitrogen by Escherichia coli. Arch. Microbiol. 1993, 160, 432–439. [Google Scholar] [CrossRef]
- Herold, S.; Fago, A.; Weber, R.E.; Dewilde, S.; Moens, L. Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress. J. Biol. Chem. 2004, 279, 22841–22847. [Google Scholar] [CrossRef] [PubMed]
- Arnold, E.V.; Bohle, D.S. Isolation and oxygenation reactions of nitrosylmyoglobins. Methods Enzymol. 1996, 269, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Herold, S.; Röck, G. Mechanistic studies of the oxygen-mediated oxidation of nitrosylhemoglobin. Biochemistry 2005, 44, 6223–6231. [Google Scholar] [CrossRef] [PubMed]
- De Simone, G.; di Masi, A.; Fattibene, P.; Ciaccio, C.; Platas-Iglesias, C.; Coletta, M.; Pesce, A.; Ascenzi, P. Oxygen-mediated oxidation of ferrous nitrosylated nitrobindins. J. Inorg. Biochem. 2021, 224, 111579. [Google Scholar] [CrossRef]
- Das, A.K.; Meuwly, M. Kinetic analysis and structural interpretation of competitive ligand binding for NO dioxygenation in truncated hemoglobin N. Angew. Chem. Int. Ed. 2018, 57, 3509–3513. [Google Scholar] [CrossRef]
- Crespo, A.; Martí, M.A.; Kalko, S.G.; Morreale, A.; Orozco, M.; Gelpi, J.L.; Luque, F.J.; Estrin, D.A. Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism. J. Am. Chem. Soc. 2005, 127, 4433–4444. [Google Scholar] [CrossRef]
- Bidon-Chanal, A.; Marti, M.A.; Crespo, A.; Milani, M.; Orozco, M.; Bolognesi, M.; Luque, F.J.; Estrin, D.A. Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N. Proteins 2006, 64, 457–464. [Google Scholar] [CrossRef]
- Estarellas, C.; Capece, L.; Seira, C.; Bidon-Chanal, A.; Estrin, D.A.; Luque, F.J. Structural plasticity in globins: Role of protein dynamics in defining ligand migration pathways. Adv. Protein Chem. Struct. Biol. 2016, 105, 59–80. [Google Scholar] [CrossRef]
- Gardner, P.R. Aconitase: Sensitive target and measure of superoxide. Methods Enzymol. 2002, 349, 9–23. [Google Scholar] [CrossRef]
- Ferrand, L.; Soorkia, S.; Grégoire, G.; Broquier, M.; Soep, B.; Shafizadeh, N. Bonding of heme FeIII with dioxygen: Observation and characterization of an incipient bond. Phys. Chem. Chem. Phys. 2015, 17, 25693–25699. [Google Scholar] [CrossRef]
- Shafizadeh, N.; Soorkia, S.; Grégoire, G.; Broquier, M.; Crestoni, M.-E.; Soep, B. Dioxygen binding to protonated heme in the gas phase, an intermediate between ferric and ferrous heme. CHEM-EUR J. 2017, 23, 13493–13500. [Google Scholar] [CrossRef]
- Dillinger, S.; Lang, J.; Niedner-Schatteburg, G. Cryo IR spectroscopy of [hemin]+ complexes in isolation. J. Phys. Chem. A 2017, 121, 7191–7196. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh, N.; Crestoni, M.E.; de la Lande, A.; Soep, B. Heme ligation in the gas phase. Int. Rev. Phys. Chem. 2021, 40, 365–404. [Google Scholar] [CrossRef]
- Trifunovic, L.; Dial, O.; Trif, M.; Wootton, J.R.; Abebe, R.; Yacoby, A.; Loss, D. Long-distance spin-spin coupling via floating gates. Phys. Rev. X 2012, 2, 011006. [Google Scholar] [CrossRef]
- Scheidt, W.; Gouterman, M. Ligands, spin state, and geometry in hemes and related metalloporphyrins. In Iron Porphyrins; Lever, A.B.P., Gray, H.B., Eds.; Addison-Wesley Publishing Company: Reading, MA, USA, 1983; Volume 1, pp. 90–139. [Google Scholar]
- Khudyakov, I.V.; Minaev, B.F. Molecular terms of dioxygen and nitric oxide. Physchem 2021, 1, 121–132. [Google Scholar] [CrossRef]
- Benesch, R.E.; Edalji, R.; Benesch, R. Reciprocal interaction of hemoglobin with oxygen and protons. The influence of allosteric polyanions. Biochemistry 1977, 16, 2594–2597. [Google Scholar] [CrossRef]
- Lehnert, N.; Kim, E.; Dong, H.T.; Harland, J.B.; Hunt, A.P.; Manickas, E.C.; Oakley, K.M.; Pham, J.; Reed, G.C.; Alfaro, V.S. The biologically relevant coordination chemistry of iron and nitric oxide: Electronic structure and reactivity. Chem. Rev. 2021, 121, 14682–14905. [Google Scholar] [CrossRef]
- Kepp, K.P. Heme: From quantum spin crossover to oxygen manager of life. Coord. Chem. Rev. 2017, 344, 363–374. [Google Scholar] [CrossRef]
- Nagatomo, S.; Nagai, M.; Kitagawa, T. Structural origin of cooperativity in human hemoglobin: A view from different roles of α and β subunits in the α2β2 tetramer. Biophys. Rev. 2022, 14, 483–498. [Google Scholar] [CrossRef]
- Chung, L.W.; Li, X.; Hirao, H.; Morokuma, K. Comparative reactivity of ferric-superoxo and ferryl-oxo species in heme and non-heme complexes. J. Am. Chem. Soc. 2011, 133, 20076–20079. [Google Scholar] [CrossRef]
- Bounds, P.L.; Koppenol, W.H. Peroxynitrite: A tale of two radicals. Redox Biochem. Chem. 2024, 10, 100038. [Google Scholar] [CrossRef]
- Ilari, A.; Bonamore, A.; Farina, A.; Johnson, K.A.; Boffi, A. The X-ray structure of ferric Escherichia coli flavohemoglobin reveals an unexpected geometry of the distal heme pocket. J. Biol. Chem. 2002, 277, 23725–23732. [Google Scholar] [CrossRef] [PubMed]
- El Hammi, E.; Warkentin, E.; Demmer, U.; Marzouki, N.M.; Ermler, U.; Baciou, L. Active site analysis of yeast flavohemoglobin based on its structure with a small ligand or econazole. FEBS J. 2012, 279, 4565–4575. [Google Scholar] [CrossRef] [PubMed]
- El Hammi, E.; Houee-Levin, C.; Rezac, J.; Levy, B.; Demachy, I.; Baciou, L.; de la Lande, A. New insights into the mechanism of electron transfer within flavohemoglobins: Tunnelling pathways, packing density, thermodynamic and kinetic analyses. Phys. Chem. Chem. Phys. 2012, 14, 13872–13880. [Google Scholar] [CrossRef]
- Ermler, U.; Siddiqui, R.A.; Cramm, R.; Friedrich, B. Crystal structure of the flavohemoglobin from Alcaligenes eutrophus at 1.75 Å resolution. EMBO J. 1995, 14, 6067–6077. [Google Scholar] [CrossRef]
- Narhi, L.O.; Fulco, A.J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 1986, 261, 7160–7169. [Google Scholar] [CrossRef]
- Yeom, H.; Sligar, S.G.; Li, H.; Poulos, T.L.; Fulco, A.J. The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry 1995, 34, 14733–14740. [Google Scholar] [CrossRef]
- Mowat, C.G.; Gazur, B.; Campbell, L.P.; Chapman, S.K. Flavin-containing heme enzymes. Arch. Biochem. Biophys. 2010, 493, 37–52. [Google Scholar] [CrossRef]
- Haines, D.C.; Tomchick, D.R.; Machius, M.; Peterson, J.A. Pivotal role of water in the mechanism of P450BM-3. Biochemistry 2001, 40, 13456–13465. [Google Scholar] [CrossRef]
- Dickerson, R.E.; Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology; Benjamin-Cummings Publishing Company: Menlo Park, CA, USA, 1983; pp. 1–176. [Google Scholar]
- Brunori, M.; Miele, A.E. Modulation of Allosteric Control and Evolution of Hemoglobin. Biomolecules 2023, 13, 572. [Google Scholar] [CrossRef]
- Borisov, V.B.; Forte, E.; Giuffre, A.; Konstantinov, A.A.; Sarti, P. Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products. J. Inorg. Biochem. 2009, 103, 1185–1187. [Google Scholar] [CrossRef]
- Keilin, D.; Hartree, E.F. Cytochrome and cytochrome oxidase. Proc. R. Soc. Lond. B-Biol. Sci. 1939, 127, 167–191. [Google Scholar] [CrossRef]
- Greenwood, C.; Gibson, Q.H. The reaction of reduced cytochrome c oxidase with oxygen. J. Biol. Chem. 1967, 242, 1782–1787. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, C.; Wilson, M.T.; Brunori, M. Studies on partially reduced mammalian cytochrome oxidase. Reactions with carbon monoxide and oxygen. Biochem. J. 1974, 137, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Gibson, Q.; Greenwood, C. Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem. J. 1963, 86, 541–555. [Google Scholar] [CrossRef]
- Antonini, E.; Brunori, M.; Colosimo, A.; Greenwood, C.; Wilson, M.T. Oxygen “pulsed” cytochrome c oxidase: Functional properties and catalytic relevance. Proc. Natl. Acad. Sci. USA 1977, 74, 3128–3132. [Google Scholar] [CrossRef]
- Wikström, M.; Gennis, R.B.; Rich, P.R. Structures of the intermediates in the catalytic cycle of mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta (BBA)-Bioenerg. 2023, 1864, 148933. [Google Scholar] [CrossRef]
- Noodleman, L.; Götz, A.W.; Han Du, W.-G.; Hunsicker-Wang, L. Reaction pathways, proton transfer, and proton pumping in ba3 class cytochrome c oxidase: Perspectives from DFT quantum chemistry and molecular dynamics. Front. Chem. 2023, 11, 1186022. [Google Scholar] [CrossRef]
- Granger, D.L.; Lehninger, A.L. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J. Cell Biol. 1982, 95, 527–535. [Google Scholar] [CrossRef]
- Giuffrè, A.; Barone, M.C.; Mastronicola, D.; D’Itri, E.; Sarti, P.; Brunori, M. Reaction of nitric oxide with the turnover intermediates of cytochrome c oxidase: reaction pathway and functional effects. Biochemistry 2000, 39, 15446–15453. [Google Scholar] [CrossRef]
- Sarti, P.; Giuffrè, A.; Barone, M.C.; Forte, E.; Mastronicola, D.; Brunori, M. Nitric oxide and cytochrome oxidase: Reaction mechanisms from the enzyme to the cell. Free Radic. Biol. Med. 2003, 34, 509–520. [Google Scholar] [CrossRef]
- Brunori, M.; Giuffrè, A.; Sarti, P. Cytochrome c oxidase, ligands and electrons. J. Inorg. Biochem. 2005, 99, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Sarti, P.; Forte, E.; Mastronicola, D.; Giuffrè, A.; Arese, M. Cytochrome c oxidase and nitric oxide in action: Molecular mechanisms and pathophysiological implications. Biochim. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Borisov, V.B.; Forte, E. Bioenergetics and reactive nitrogen species in bacteria. Int. J. Mol. Sci. 2022, 23, 7321. [Google Scholar] [CrossRef] [PubMed]
- Stevens, T.H.; Brudvig, G.W.; Bocian, D.F.; Chan, S.I. Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc. Natl. Acad. Sci. USA 1979, 76, 3320–3324. [Google Scholar] [CrossRef]
- Giuffrè, A.; Stubauer, G.; Sarti, P.; Brunori, M.; Zumft, W.G.; Buse, G.; Soulimane, T. The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: Evolutionary implications. Proc. Natl. Acad. Sci. USA 1999, 96, 14718–14723. [Google Scholar] [CrossRef]
- Brunori, M. Nitric oxide moves myoglobin center stage. Trends Biochem. Sci. 2001, 26, 209–210. [Google Scholar] [CrossRef]
- Torres, J.; Sharpe, M.A.; Rosquist, A.; Cooper, C.E.; Wilson, M.T. Cytochrome c oxidase rapidly metabolises nitric oxide to nitrite. FEBS Lett. 2000, 475, 263–266. [Google Scholar] [CrossRef]
- Giuffrè, A.; Stubauer, G.; Brunori, M.; Sarti, P.; Torres, J.; Wilson, M.T. Chloride bound to oxidized cytochrome c oxidase controls the reaction with nitric oxide. J. Biol. Chem. 1998, 273, 32475–32478. [Google Scholar] [CrossRef]
- Pearce, L.L.; Kanai, A.J.; Birder, L.A.; Pitt, B.R.; Peterson, J. The catabolic fate of nitric oxide: The nitric oxide oxidase and peroxynitrite reductase activities of cytochrome oxidase. J. Biol. Chem. 2002, 277, 13556–13562. [Google Scholar] [CrossRef]
- Collman, J.P.; Dey, A.; Decreau, R.A.; Yang, Y.; Hosseini, A.; Solomon, E.I.; Eberspacher, T.A. Interaction of nitric oxide with a functional model of cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2008, 105, 9892–9896. [Google Scholar] [CrossRef] [PubMed]
- Pearce, L.L.; Pitt, B.R.; Peterson, J. The peroxynitrite reductase activity of cytochrome c oxidase involves a two-electron redox reaction at the heme a3-CuB site. J. Biol. Chem. 1999, 274, 35763–35767. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.; Kanai, A.J.; Pearce, L.L. A mitochondrial role for catabolism of nitric oxide in cardiomyocytes not involving oxymyoglobin. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H55–H58. [Google Scholar] [CrossRef] [PubMed]
- Wikström, M.K.F. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 1977, 266, 271–273. [Google Scholar] [CrossRef]
- Wilson, M.T.; Peterson, J.; Antonini, E.; Brunori, M.; Colosimo, A.; Wyman, J. A plausible two-state model for cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 1981, 78, 7115–7118. [Google Scholar] [CrossRef]
- Babcock, G.T.; Varotsis, C. Discrete steps in dioxygen activation—The cytochrome oxidase/O2 reaction. J. Bioenerg. Biomembr. 1993, 25, 71–80. [Google Scholar] [CrossRef]
- Chance, B.; Saronio, C.; Leigh, J.S., Jr. Functional intermediates in reaction of cytochrome oxidase with oxygen. Proc. Natl. Acad. Sci. USA 1975, 72, 1635–1640. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Shimada, A. Reaction mechanism of cytochrome c oxidase. Chem. Rev. 2015, 115, 1936–1989. [Google Scholar] [CrossRef]
- Popović, D.M.; Stuchebrukhov, A.A. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 506–517. [Google Scholar] [CrossRef]
- Kaila, V.R.I.; Oksanen, E.; Goldman, A.; Bloch, D.A.; Verkhovsky, M.I.; Sundholm, D.; Wikström, M. A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. Biochim. Biophys. Acta (BBA)-Bioenerg. 2011, 1807, 769–778. [Google Scholar] [CrossRef]
- Hammes-Schiffer, S. Proton-coupled electron transfer: Moving together and charging forward. J. Am. Chem. Soc. 2015, 137, 8860–8871. [Google Scholar] [CrossRef] [PubMed]
- Bloch, D.; Belevich, I.; Jasaitis, A.; Ribacka, C.; Puustinen, A.; Verkhovsky, M.I.; Wikström, M. The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc. Natl. Acad. Sci. USA 2004, 101, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Michel, H. Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping-a discussion. Biochemistry 1999, 38, 15129–15140. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, W.H.; Stanbury, D.M.; Bounds, P.L. Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic. Biol. Med. 2010, 49, 317–322. [Google Scholar] [CrossRef]
- Jose, A.; Schaefer, A.W.; Roveda, A.C.; Transue, W.J.; Choi, S.K.; Ding, Z.; Gennis, R.B.; Solomon, E.I. The three-spin intermediate at the O–O cleavage and proton-pumping junction in heme–Cu oxidases. Science 2021, 373, 1225–1229. [Google Scholar] [CrossRef]
- Proshlyakov, D.A.; Pressler, M.A.; DeMaso, C.; Leykam, J.F.; DeWitt, D.L.; Babcock, G.T. Oxygen activation and reduction in respiration: Involvement of redox-active tyrosine 244. Science 2000, 290, 1588–1591. [Google Scholar] [CrossRef]
- Chance, B.; Saronio, C.; Leigh, J.S., Jr. Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J. Biol. Chem. 1975, 250, 9226–9237. [Google Scholar] [CrossRef]
- Rousseau, D.L.; Ishigami, I.; Yeh, S.-R. Structural and functional mechanisms of cytochrome c oxidase. J. Inorg. Biochem. 2025, 262, 112730. [Google Scholar] [CrossRef]
- Wikström, M.; Sharma, V. Cytochrome c Oxidase—Remaining Questions About the Catalytic Mechanism. In Oxygen Production and Reduction in Artificial and Natural Systems; Barber, J., Ruban, A.V., Nixon, P.J., Eds.; World Scientific: Singapore, 2019; Volume 2019, pp. 135–145. [Google Scholar]
- Blomberg, M.R. Activation of O2 and NO in heme-copper oxidases–mechanistic insights from computational modelling. Chem. Soc. Rev. 2020, 49, 7301–7330. [Google Scholar] [CrossRef]
- Petersen, L.C.; Nicholls, P.; Degn, H. The effect of energization on the apparent Michaelis–Menten constant for oxygen in mitochondrial respiration. Biochem. J. 1974, 142, 247–252. [Google Scholar] [CrossRef]
- Krab, K.; Kempe, H.; Wikström, M. Explaining the enigmatic KM for oxygen in cytochrome c oxidase: A kinetic model. Biochim. Biophys. Acta (BBA)-Bioenerg. 2011, 1807, 348–358. [Google Scholar] [CrossRef]
- Williams, D.H.; Westwell, M.S. Aspects of weak interactions. Chem. Soc. Rev. 1998, 27, 57–64. [Google Scholar] [CrossRef]
- Falahati, K.; Tamura, H.; Burghardt, I.; Huix-Rotllant, M. Ultrafast carbon monoxide photolysis and heme spin-crossover in myoglobin via nonadiabatic quantum dynamics. Nat. Commun. 2018, 9, 4502. [Google Scholar] [CrossRef] [PubMed]
- Saura, P.; Riepl, D.; Frey, D.M.; Wikström, M.; Kaila, V.R.I. Electric fields control water-gated proton transfer in cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2022, 119, e2207761119. [Google Scholar] [CrossRef] [PubMed]
- Seki, S.; Kurumaji, T.; Ishiwata, S.; Matsui, H.; Murakawa, H.; Tokunaga, Y.; Kaneko, Y.; Hasegawa, T.; Tokura, Y. Cupric chloride CuCl2 as an S = 1/2 chain multiferroic. Phys. Rev. B 2010, 82, 064424. [Google Scholar] [CrossRef]
- Jones, S.P.P.; Gaw, S.M.; Doig, K.I.; Prabhakaran, D.; Hétroy Wheeler, E.M.; Boothroyd, A.T.; Lloyd-Hughes, J. High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange. Nat. Commun. 2014, 5, 3787. [Google Scholar] [CrossRef]
- Zakharov, I.; Minaev, B. DFT calculations of the intermediate and transition state in the oxidation of NO by oxygen in the gas phase. Theor. Exp. Chem. 2011, 47, 93–100. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M.J.; Libeu, C.P.; Mizushima, T.; et al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 1998, 280, 1723–1729. [Google Scholar] [CrossRef]
- Kolbe, F.; Safarian, S.; Piórek, Ż.; Welsch, S.; Müller, H.; Michel, H. Cryo-EM structures of intermediates suggest an alternative catalytic reaction cycle for cytochrome c oxidase. Nat. Commun. 2021, 12, 6903. [Google Scholar] [CrossRef]
- van der Avoird, A.; Brocks, G. The O2–O2 dimer: Magnetic coupling and spectrum. J. Chem. Phys. 1987, 87, 5346–5360. [Google Scholar] [CrossRef]
- Minaev, B. Electronic mechanisms of activation of molecular oxygen. Russian Chem. Rev. 2007, 76, 988–1010. [Google Scholar] [CrossRef]
- Fitch, C.A.; Platzer, G.; Okon, M.; Garcia-Moreno E., B.; McIntosh, L.P. Arginine: Its pKa value revisited. Protein Sci. 2015, 24, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Ferguson-Miller, S.; Hiser, C.; Liu, J. Gating and regulation of the cytochrome c oxidase proton pump. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 489–494. [Google Scholar] [CrossRef]
- Olkhova, E.; Hutter, M.C.; Lill, M.A.; Helms, V.; Michel, H. Dynamic water networks in cytochrome c oxidase from Paracoccus denitrificans investigated by molecular dynamics simulations. Biophys. J. 2004, 86, 1873–1889. [Google Scholar] [CrossRef] [PubMed]
- Gorriz, R.F.; Volkenandt, S.; Imhof, P. Protonation-state dependence of hydration and interactions in the two proton-conducting channels of cytochrome c oxidase. Int. J. Mol. Sci. 2023, 24, 10464. [Google Scholar] [CrossRef]
- Krab, K.; Wikström, M. Principles of coupling between electron transfer and proton translocation with special reference to proton-translocation mechanisms in cytochrome oxidase. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 1987, 895, 25–39. [Google Scholar] [CrossRef]
- Malmström, B.G. Redox loops and proton pumps. FEBS Lett. 1988, 231, 268–269. [Google Scholar] [CrossRef]
- Chan, S.I.; Li, P.M. Cytochrome c oxidase: Understanding nature’s design of a proton pump. Biochemistry 1990, 29, 1–12. [Google Scholar] [CrossRef]
- Kim, Y.C.; Hummer, G. Proton-pumping mechanism of cytochrome c oxidase: A kinetic master-equation approach. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 2012, 1817, 526–536. [Google Scholar] [CrossRef]
- Shimada, A.; Hara, F.; Shinzawa-Itoh, K.; Kanehisa, N.; Yamashita, E.; Muramoto, K.; Tsukihara, T.; Yoshikawa, S. Critical roles of the CuB site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. J. Biol. Chem. 2021, 297, 100967. [Google Scholar] [CrossRef]
- Shimokata, K.; Katayama, Y.; Murayama, H.; Suematsu, M.; Tsukihara, T.; Muramoto, K.; Aoyama, H.; Yoshikawa, S.; Shimada, H. The proton pumping pathway of bovine heart cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2007, 104, 4200–4205. [Google Scholar] [CrossRef]
- Brzezinski, P.; Johansson, A.-L. Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 2010, 1797, 710–723. [Google Scholar] [CrossRef]
- Sugitani, R.; Medvedev, E.S.; Stuchebrukhov, A.A. Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 2008, 1777, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Hol, W.G. The role of the α-helix dipole in protein function and structure. Prog. Biophys. Mol. Biol. 1985, 45, 149–195. [Google Scholar] [CrossRef] [PubMed]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Agmon, N. Tetrahedral displacement: The molecular mechanism behind the Debye relaxation in water. J. Phys. Chem. 1996, 100, 1072–1080. [Google Scholar] [CrossRef]
- de la Lande, A.; Babcock, N.S.; Rezác, J.; Sanders, B.C.; Salahub, D.R. Surface residues dynamically organize water bridges to enhance electron transfer between proteins. Proc. Natl. Acad. Sci. USA 2010, 107, 11799–11804. [Google Scholar] [CrossRef]
- Rich, P.R.; Meunier, B.; Mitchell, R.; John Moody, A. Coupling of charge and proton movement in cytochrome c oxidase. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 1996, 1275, 91–95. [Google Scholar] [CrossRef]
- Smith, M.; Li, Z.; Landry, L.; Merz, K.M., Jr.; Li, P. Consequences of overfitting the van der Waals radii of ions. J. Chem. Theory Comput. 2023, 19, 2064–2074. [Google Scholar] [CrossRef]
- Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 1995, 269, 1069–1074. [Google Scholar] [CrossRef]
- Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 1996, 272, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995, 376, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Verkhovsky, M.I.; Morgan, J.E.; Wikström, M. Oxygen binding and activation: Early steps in the reaction of oxygen with cytochrome c oxidase. Biochemistry 1994, 33, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.C.; Greenwood, C. The reaction of fully reduced cytochrome c oxidase with oxygen studied by flow-flash spectrophotometry at room temperature. Evidence for new pathways of electron transfer. Biochem. J. 1984, 218, 913–921. [Google Scholar] [CrossRef]
- Ishigami, I.; Russi, S.; Cohen, A.; Yeh, S.-R.; Rousseau, D.L. Temperature-dependent structural transition following X-ray-induced metal center reduction in oxidized cytochrome c oxidase. J. Biol. Chem. 2022, 298, 101799. [Google Scholar] [CrossRef]
- Hill, B.C.; Greenwood, C. Kinetic evidence for the re-definition of electron transfer pathways from cytochrome c to O2 within cytochrome oxidase. FEBS Lett. 1984, 166, 362–366. [Google Scholar] [CrossRef]
- Antonini, E.; Brunori, M.; Greenwood, C.; Malmström, B.G. Catalytic mechanism of cytochrome oxidase. Nature 1970, 228, 936–937. [Google Scholar] [CrossRef]
- Verkhovsky, M.I.; Jasaitis, A.; Verkhovskaya, M.L.; Morgan, J.E.; Wikström, M. Proton translocation by cytochrome c oxidase. Nature 1999, 400, 480–483. [Google Scholar] [CrossRef]
- Brudvig, G.W.; Stevens, T.H.; Morse, R.H.; Chan, S.I. Conformations of oxidized cytochrome c oxidase. Biochemistry 1981, 20, 3912–3921. [Google Scholar] [CrossRef]
- Mills, D.A.; Geren, L.; Hiser, C.; Schmidt, B.; Durham, B.; Millett, F.; Ferguson-Miller, S. An arginine to lysine mutation in the vicinity of the heme propionates affects the redox potentials of the hemes and associated electron and proton transfer in cytochrome c oxidase. Biochemistry 2005, 44, 10457–10465. [Google Scholar] [CrossRef]
- Puustinen, A.; Wikström, M. Proton exit from the heme-copper oxidase of Escherichia coli. Proc. Natl. Acad. Sci. USA 1999, 96, 35–37. [Google Scholar] [CrossRef]
- Qian, J.; Mills, D.A.; Geren, L.; Wang, K.; Hoganson, C.W.; Schmidt, B.; Hiser, C.; Babcock, G.T.; Durham, B.; Millett, F.; et al. Role of the conserved arginine pair in proton and electron transfer in cytochrome c oxidase. Biochemistry 2004, 43, 5748–5756. [Google Scholar] [CrossRef]
- Papa, S.; Capitanio, N.; Capitanio, G. A cooperative model for proton pumping in cytochrome c oxidase. Biochim. Biophys. Acta (BBA)-Bioenerg. 2004, 1655, 353–364. [Google Scholar] [CrossRef]
- Brändén, G.; Brändén, M.; Schmidt, B.; Mills, D.A.; Ferguson-Miller, S.; Brzezinski, P. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase. Biochemistry 2005, 44, 10466–10474. [Google Scholar] [CrossRef] [PubMed]
- Pearce, L.L.; Lopez Manzano, E.; Martinez-Bosch, S.; Peterson, J. Antagonism of nitric oxide toward the inhibition of cytochrome c oxidase by carbon monoxide and cyanide. Chem. Res. Toxicol. 2008, 21, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Frawley, K.L.; Cronican, A.A.; Pearce, L.L.; Peterson, J. Sulfide toxicity and its modulation by nitric oxide in bovine pulmonary artery endothelial cells. Chem. Res. Toxicol. 2017, 30, 2100–2109. [Google Scholar] [CrossRef] [PubMed]
- Ball, E.G.; Strittmatter, C.F.; Cooper, O. The reaction of cytochrome oxidase with carbon monoxide. J. Biol. Chem. 1951, 193, 635–647. [Google Scholar] [CrossRef]
- Keilin, D. Influence of carbon monoxide and light on indophenol oxidase of yeast cells. Nature 1927, 119, 670–671. [Google Scholar] [CrossRef]
- Brzezinski, P.; Malmström, B.G. The reduction of cytochrome c oxidase by carbon monoxide. FEBS Lett. 1985, 187, 111–114. [Google Scholar] [CrossRef]
- Day, E.P.; Kent, T.A.; Lindahl, P.A.; Münck, E.; Orme-Johnson, W.H.; Roder, H.; Roy, A. SQUID measurement of metalloprotein magnetization. New methods applied to the nitrogenase proteins. Biophys. J. 1987, 52, 837–853. [Google Scholar] [CrossRef]
- Peterson, J.; Day, E.P.; Pearce, L.L.; Wilson, M.T. Measurement of the spin concentration of metalloprotein samples from saturation-magnetization data with particular reference to cytochrome c oxidase. Biochem. J. 1995, 305, 871–878. [Google Scholar] [CrossRef]
- Van Gelder, B.F.; Beinert, H. Studies of the heme components of cytochrome c oxidase by EPR spectroscopy. Biochim. Biophys. Acta (BBA)-Bioenerg. 1969, 189, 1–24. [Google Scholar] [CrossRef]
- Van Gelder, B.F.; Slater, E.C. Titration of cytochrome c oxidase with NADH and phenazine methosulphate. Biochim. Biophys. Acta (BBA)-Spec. Sect. Enzymol. Subj. 1963, 73, 663–665. [Google Scholar] [CrossRef]
- Powers, L.; Chance, B.; Ching, Y.; Angiolillo, P. Structural features and the reaction mechanism of cytochrome oxidase: Iron and copper X-ray absorption fine structure. Biophys. J. 1981, 34, 465–498. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yu, L.; King, T.E. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J. Biol. Chem. 1975, 250, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Bruce, R.A.; Lovejoy, F.W., Jr.; Yu, P.N.G.; Pearson, R.; McDowell, M. Further observations on the pathological physiology of chronic pulmonary granulomatosis associated with beryllium workers. Am. Rev. Tuberc. 1950, 62, 29–44. [Google Scholar] [CrossRef]
- Messer, R.L.W.; Doeller, J.E.; Kraus, D.W.; Lucas, L.C. An investigation of fibroblast mitochondria enzyme activity and respiration in response to metallic ions released from dental alloys. J. Biomed. Mater. Res. 2000, 50, 598–604. [Google Scholar] [CrossRef]
- Fridovich, I.; Handler, P. Detection of free radicals generated during enzymic oxidations by the initiation of sulfite oxidation. J. Biol. Chem. 1961, 236, 1836–1840. [Google Scholar] [CrossRef]
- Shepherd, M.; Giordano, D.; Verde, C.; Poole, R.K. The evolution of nitric oxide function: From reactivity in the prebiotic earth to examples of biological roles and therapeutic applications. Antioxidants 2022, 11, 1222. [Google Scholar] [CrossRef]
- Brunori, M.; Giuffre, A.; Nienhaus, K.; Nienhaus, G.U.; Scandurra, F.M.; Vallone, B. Neuroglobin, nitric oxide, and oxygen: Functional pathways and conformational changes. Proc. Natl. Acad. Sci. USA 2005, 102, 8483–8488. [Google Scholar] [CrossRef]
- Khan, A.A.; Mao, X.O.; Banwait, S.; Jin, K.; Greenberg, D.A. Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 19114–19119. [Google Scholar] [CrossRef] [PubMed]
- Kawada, N.; Kristensen, D.B.; Asahina, K.; Nakatani, K.; Minamiyama, Y.; Seki, S.; Yoshizato, K. Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J. Biol. Chem. 2001, 276, 25318–25323. [Google Scholar] [CrossRef]
- Nakatani, K.; Okuyama, H.; Shimahara, Y.; Saeki, S.; Kim, D.H.; Nakajima, Y.; Seki, S.; Kawada, N.; Yoshizato, K. Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab. Investig. 2004, 84, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Jourd’heuil, F.L.; Xu, H.; Reilly, T.; McKellar, K.; El Alaoui, C.; Steppich, J.; Liu, Y.F.; Zhao, W.; Ginnan, R.; Conti, D.; et al. The hemoglobin homolog cytoglobin in smooth muscle inhibits apoptosis and regulates vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1944–1955. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; El-Mahdy, M.A.; Boslett, J.; Varadharaj, S.; Hemann, C.; Abdelghany, T.M.; Ismail, R.S.; Little, S.C.; Zhou, D.; Thuy, L.T.; et al. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nat. Commun. 2017, 8, 14807. [Google Scholar] [CrossRef]
- Ukeri, J.; Wilson, M.T.; Reeder, B.J. Modulating nitric oxide dioxygenase and nitrite reductase of cytoglobin through point mutations. Antioxidants 2022, 11, 1816. [Google Scholar] [CrossRef]
- Straub, A.C.; Lohman, A.W.; Billaud, M.; Johnstone, S.R.; Dwyer, S.T.; Lee, M.Y.; Bortz, P.S.; Best, A.K.; Columbus, L.; Gaston, B.; et al. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 2012, 491, 473–477. [Google Scholar] [CrossRef]
- Flögel, U.; Merx, M.W.; Gödecke, A.; Decking, U.K.; Schrader, J. Myoglobin: A scavenger of bioactive NO. Proc. Natl. Acad. Sci. USA 2001, 98, 735–740. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardner, P.R. Resistance of Nitric Oxide Dioxygenase and Cytochrome c Oxidase to Inhibition by Nitric Oxide and Other Indications of the Spintronic Control of Electron Transfer. Biophysica 2025, 5, 41. https://doi.org/10.3390/biophysica5030041
Gardner PR. Resistance of Nitric Oxide Dioxygenase and Cytochrome c Oxidase to Inhibition by Nitric Oxide and Other Indications of the Spintronic Control of Electron Transfer. Biophysica. 2025; 5(3):41. https://doi.org/10.3390/biophysica5030041
Chicago/Turabian StyleGardner, Paul R. 2025. "Resistance of Nitric Oxide Dioxygenase and Cytochrome c Oxidase to Inhibition by Nitric Oxide and Other Indications of the Spintronic Control of Electron Transfer" Biophysica 5, no. 3: 41. https://doi.org/10.3390/biophysica5030041
APA StyleGardner, P. R. (2025). Resistance of Nitric Oxide Dioxygenase and Cytochrome c Oxidase to Inhibition by Nitric Oxide and Other Indications of the Spintronic Control of Electron Transfer. Biophysica, 5(3), 41. https://doi.org/10.3390/biophysica5030041