Modelling In Situ Concrete Temperature Development: The Impact of Ambient Temperature and GGBS Replacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Concrete Mixes
2.2. Semi-Adiabatic Calorimetry
2.3. Isothermal Calorimetry
2.4. Finite Element Modelling
2.4.1. Concrete Heat Balance
2.4.2. Heat Source Definition
2.4.3. Boundary Conditions and Concrete Heat Loss
2.4.4. Mesh and Solver Configuration
3. Results and Discussion
3.1. Semi-Adiabatic Calorimetry Results
3.2. Isothermal Calorimetry Results
3.3. FEM Modelling Results
4. Conclusions and Future Work
- Semi-Adiabatic Calorimetry Results: Partial replacement of Portland cement with GGBS significantly reduced the early-age concrete hydration temperature. However, the temperature mitigation effect of the 70% GGBS specimens was not as effective as that of the 50% GGBS specimens, primarily due to the higher initial temperature of the 70% GGBS specimen by 5.8 °C compared to that of the 50% GGBS specimen.
- Isothermal Calorimetry Results: Higher ambient temperatures promoted the hydration reactions of both cement-only and GGBS cement blended mixes. GGBS was found to be more temperature-sensitive than Portland cement. The mitigating effect of GGBS on the hydration heat became more pronounced with a higher GGBS content but weakened as the ambient temperature increased.
- FEM Modelling Results: The FEM model results for 0% and 50% GGBS concrete closely matched the semi-adiabatic calorimetry results, with maximum errors of 4.2 °C and 3.8 °C, respectively. However, the model’s prediction accuracy decreased for the 70% GGBS mix, with a maximum error of 7.0 °C, due to the failure to capture secondary hydration peaks. The FEM modelling validated by semi-adiabatic calorimetry suggests that the adjusted isothermal calorimetry data effectively quantify the ambient temperature’s effect. Additionally, the FEM model successfully simulated the internal temperature distribution within the concrete.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
T | Temperature of the concrete in degrees Celsius (°C). |
α | Degree of hydration |
Cp | Specific heat capacity of concrete (J/kg·K) |
ρ | Density of concrete (kg/m3) |
k | Thermal conductivity of concrete (W/m·K) |
q | Heat generation rate of hydration (W/g). |
Q | Cumulative heat of hydration (J/g) |
f(α) | Normalised heat generation rate |
k(T) | Rate constant at temperature T |
A | Pre-exponential factor in the Arrhenius equation |
Ea | Apparent activation energy (J/mol) |
R | Constant universal gas constant (8.314 J/K·mol) |
Tr | Reference temperature (°C) |
te | Equivalent age of the concrete (h) |
References
- Young, J.F. Portland Cements. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 7768–7773. [Google Scholar]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Neville, A.M. Properties of Concrete, 5th ed.; Longman: London, UK, 2011; Volume 4. [Google Scholar]
- Hewlett, P.C.; Liska, M. Lea’s Chemistry of Cement and Concrete; Butterworth-Heinemann: Oxford, UK, 2019; pp. 1–858. [Google Scholar]
- Lu, Z.; Haist, M.; Ivanov, D.; Jakob, C.; Jansen, D.; Leinitz, S.; Link, J.; Mechtcherine, V.; Neubauer, J.; Plank, J.; et al. Characterization data of reference cement CEM I 42.5 R used for priority program DFG SPP 2005 “Opus Fluidum Futurum—Rheology of reactive, multiscale, multiphase construction materials”. Data Brief 2019, 27, 104699. [Google Scholar] [CrossRef]
- Ge, Z. Predicting Temperature and Strength Development of the Field Concrete. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2005. [Google Scholar]
- Hatzitheodorou, A. In-Situ Strength Development of Concretes with Supplementary Cementitious Materials. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2007. [Google Scholar]
- Mydin, M.A.O. Assessment of thermal conductivity, thermal diffusivity and specific heat capacity of lightweight aggregate foamed concrete. J. Teknol. 2016, 78, 477–482. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; Sultan, M.A. Effect of Temperature on Thermal Properties of High-Strength Concrete. J. Mater. Civ. Eng. 2003, 15, 101–107. [Google Scholar] [CrossRef]
- Lawrence, A.M.; Tia, M.; Ferraro, C.C.; Bergin, M. Effect of Early Age Strength on Cracking in Mass Concrete Containing Different Supplementary Cementitious Materials: Experimental and Finite-Element Investigation. J. Mater. Civ. Eng. 2012, 24, 362–372. [Google Scholar] [CrossRef]
- Bilčík, J.; Sonnenschein, R.; Gažovičová, N. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking. Slovak J. Civ. Eng. 2017, 25, 8–14. [Google Scholar] [CrossRef]
- Tang, K.; Millard, S.; Beattie, G. Early-age heat development in GGBS concrete structures. Proc. Inst. Civ. Eng. Struct. Build. 2015, 168, 541–553. [Google Scholar] [CrossRef]
- Tang, K.; Millard, S.; Beattie, G. Technical and economical feasibility of using GGBS in long-span concrete structures. Adv. Concr. Constr. 2015, 3, 1–14. [Google Scholar] [CrossRef]
- Tang, K.; Khatib, J.; Beattie, G.; Sato, T.; Beaudoin, J.J.; Kong, X.-M.; Lu, Z.-B.; Liu, H.; Wang, D.-M.; Barbhuiya, S.A.; et al. Effect of partial replacement of cement with slag on the early-age strength of concrete. Proc. Inst. Civ. Eng. Struct. Build. 2017, 170, 451–461. [Google Scholar] [CrossRef]
- Tiwari, S.; Mondal, G.; Dash, S.R.; Roy, K. Experimental investigation of unbonded reinforced concrete PT shear wall under lateral loading: A state-of-the-art review. J. Build. Eng. 2023, 78, 107504. [Google Scholar] [CrossRef]
- Philip, R.E.; Andrushia, A.D.; Nammalvar, A.; Gurupatham, B.G.A.; Roy, K. A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques. J. Compos. Sci. 2023, 7, 169. [Google Scholar] [CrossRef]
- Lowe, D.; Roy, K.; Das, R.; Clifton, C.G.; Lim, J.B. Full scale experiments on splitting behaviour of concrete slabs in steel concrete composite beams with shear stud connection. Structures 2020, 23, 126–138. [Google Scholar] [CrossRef]
- Bamforth, P.B. Early-Age Thermal Crack Control in Concrete; CIRIA: London, UK, 2007. [Google Scholar]
- Brunetaud, X.; Divet, L.; Damidot, D. Impact of unrestrained Delayed Ettringite Formation-induced expansion on concrete mechanical properties. Cem. Concr. Res. 2008, 38, 1343–1348. [Google Scholar] [CrossRef]
- Sellier, A.; Multon, S. Chemical modelling of Delayed Ettringite Formation for assessment of affected concrete structures. Cem. Concr. Res. 2018, 108, 72–86. [Google Scholar] [CrossRef]
- Taylor, H.; Famy, C.; Scrivener, K.J. Delayed ettringite formation. Cem. Concr. Res. 2001, 31, 683–693. [Google Scholar] [CrossRef]
- Hong, Y.-X.; Chen, W.; Lin, J.; Gong, J.; Cheng, H.-D. Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method. Water Sci. Eng. 2017, 10, 107–114. [Google Scholar] [CrossRef]
- Singh, P.R.; Rai, D.C. Effect of Piped Water Cooling on Thermal Stress in Mass Concrete at Early Ages. J. Eng. Mech. 2018, 144, 04017183. [Google Scholar] [CrossRef]
- Schindler, A.; Folliard, K. Influence of supplementary cementing materials on the heat of hydration of concrete. In Proceedings of the Advances in Cement and Concrete IX Conference, Copper Mountain Conference Resort in Colorado, Denver, CO, USA, 10–14 August 2003. [Google Scholar]
- Zheng, L.; Paine, K.; Dhir, R. Heat evolution and hydration modelling of GGBS cement. In Proceedings of the International Symposium on Role of Cement Science in Sustainable Development, Scotland, UK, 3–4 September 2003. [Google Scholar]
- Klemczak, B.; Batog, M. Heat of hydration of low-clinker cements. J. Therm. Anal. Calorim. 2015, 123, 1351–1360. [Google Scholar] [CrossRef]
- Roy, K.; Ananthi, G.B.G. Sustainable Composite Construction Materials; MDPI—Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2023. [Google Scholar]
- Özkılıç, Y.O.; Zeybek, O.; Bahrami, A.; Çelik, A.I.; Mydin, A.O.; Karalar, M.; Hakeem, I.Y.; Roy, K.; Jagadesh, P. Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete. J. Mater. Res. Technol. 2023, 25, 4799–4819. [Google Scholar] [CrossRef]
- Woo, H.-M.; Kim, C.-Y.; Yeon, J.H. Heat of hydration and mechanical properties of mass concrete with high-volume GGBFS replacements. J. Therm. Anal. Calorim. 2018, 132, 599–609. [Google Scholar] [CrossRef]
- Xu, G.; Tian, Q.; Miao, J.; Liu, J. Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures. Constr. Build. Mater. 2017, 149, 367–377. [Google Scholar] [CrossRef]
- Wang, Q.; Miao, M.; Feng, J.; Yan, P. The influence of high-temperature curing on the hydration characteristics of a cement–GGBS binder. Adv. Cem. Res. 2012, 24, 33–40. [Google Scholar] [CrossRef]
- Jędrzejewska, A.; Benboudjema, F.; Lacarrière, L.; Azenha, M.; Schlicke, D.; Pont, S.D.; Delaplace, A.; Granja, J.; Hájková, K.; Heinrich, P.J.; et al. COST TU1404 benchmark on macroscopic modelling of concrete and concrete structures at early age: Proof-of-concept stage. Constr. Build. Mater. 2018, 174, 173–189. [Google Scholar] [CrossRef]
- Jeong, D.J.; Kim, T.; Ryu, J.-H.; Kim, J.H. Analytical model to parameterize the adiabatic temperature rise of concrete. Constr. Build. Mater. 2020, 268, 121656. [Google Scholar] [CrossRef]
- Kiernożycki, W.; Błyszko, J. The Influence of Temperature on the Hydration Rate of Cements Based on Calorimetric Measurements. Materials 2021, 14, 3025. [Google Scholar] [CrossRef] [PubMed]
- Soutsos, M.; Hatzitheodorou, A.; Kwasny, J.; Kanavaris, F. Effect of in situ temperature on the early age strength development of concretes with supplementary cementitious materials. Constr. Build. Mater. 2016, 103, 105–116. [Google Scholar] [CrossRef]
- Hansen, P.F.; Pedersen, E.J. Maturity Computer for Controlled Curing and Hardening of Concrete. Nordisk Betong 1977, 21, 19–34. [Google Scholar]
- Reinhardt, J.B.H.; Jongedijk, J. Temperature development in concrete structures taking account of state dependent properties. In Proceedings of the International Conference of Concrete at Early Ages, Paris, France, 14–16 September 1982. [Google Scholar]
- Azenha, M. Numerical Simulation of the Structural Behaviour of Concrete Since Its Early Ages. Ph.D. Thesis, University of Porto, Porto, Protugal, 2009. [Google Scholar]
- Azenha, M.; Faria, R.; Ferreira, D. Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cem. Concr. Compos. 2009, 31, 369–378. [Google Scholar] [CrossRef]
- Matthieu, B.; Farid, B.; Jean-Michel, T.; Georges, N. Analysis of semi-adiabiatic tests for the prediction of early-age behavior of massive concrete structures. Cem. Concr. Compos. 2012, 34, 634–641. [Google Scholar] [CrossRef]
- Poole, J.; Riding, K.; Folliard, K.; Juenger, M.; Schindler, A. Methods for Calculating Activation Energy for Portland Cement. ACI Mater. J. 2007, 104, 303–311. [Google Scholar]
- ASTM C1074-19e1; Standard Practice for Estimating Concrete Strength by the Maturity Method. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Barnett, S.; Soutsos, M.; Millard, S.; Bungey, J. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cem. Concr. Res. 2006, 36, 434–440. [Google Scholar] [CrossRef]
- Kuryłowicz-Cudowska, A.; Haustein, E. Isothermal Calorimetry and Compressive Strength Tests of Mortar Specimens for Determination of Apparent Activation Energy. J. Mater. Civ. Eng. 2021, 33, 04021035. [Google Scholar] [CrossRef]
- Kevin, J.; Folliard, M.J.; Schindler, A.; Riding, K.; Poole, J.; Kallivokas, L.F.; Slatnick, S.; Whigham, J.; Meadows, J.L. Prediction Model for Concrete Behavior—Final Report; Technical report; Report No. 0-5483-1; The University of Texas at Austin: Austin, TX, USA, 2008. [Google Scholar]
- Kanagaraj, B.; Kiran, T.; Gunasekaran, J.; Nammalvar, A.; Arulraj, P.; Gurupatham, B.G.A.; Roy, K. Performance of Sustainable Insulated Wall Panels with Geopolymer Concrete. Materials 2022, 15, 8801. [Google Scholar] [CrossRef]
- Wadsö, L. An Experimental Comparison between Isothermal Calorimetry, Semi-Adiabatic Calorimetry and Solution Calorimetry for the Study of Cement Hydration; Final Report, NORDTEST Project 1534-01; NORDTEST: Espoo, Finland, 2002. [Google Scholar]
- Wadsö, L. Applications of an eight-channel isothermal conduction calorimeter for cement hydration studies. Cem. Int. 2005, 5, 94–101. [Google Scholar]
- Xu, Q.; Hu, J.; Ruiz, J.M.; Wang, K.; Ge, Z. Isothermal calorimetry tests and modeling of cement hydration parameters. Thermochim. Acta 2010, 499, 91–99. [Google Scholar] [CrossRef]
- Tahersima, M.; Tikalsky, P. Finite element modeling of hydration heat in a concrete slab-on-grade floor with limestone blended cement. Constr. Build. Mater. 2017, 154, 44–50. [Google Scholar] [CrossRef]
- BS EN 197-1:2011; Cement. Composition, Specifications and Conformity Criteria for Common Cements. BSI: London, UK, 2011.
- BS EN 15167-1:2006; Ground Granulated Blast Furnace Slag for Use in Concrete, Mortar and Grout. Part 1–Definitions, Specifications and Conformity Criteria. BSI: London, UK, 2006.
- BS 8500-1:2015; Concrete. Complementary British Standard to BS EN 206. Method of Specifying and Guidance for the Specifier. BSI: London, UK, 2015.
- Huang, Y.; Liu, G.; Huang, S.; Rao, R.; Hu, C. Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete. Constr. Build. Mater. 2018, 192, 240–252. [Google Scholar] [CrossRef]
- Azenha, M.; Faria, R.; Figueiras, H. Thermography as a technique for monitoring early age temperatures of hardening concrete. Constr. Build. Mater. 2011, 25, 4232–4240. [Google Scholar] [CrossRef]
- Bamforth, P.; Chisholm, D.; Gibbs, J.; Harrison, T. Properties of Concrete for Use in Eurocode 2; The Concrete Centre: Camberley, UK, 2008. [Google Scholar]
Binder Content (kg/m3) | Free Water-Binder Ratio | Sand (kg/m3) | 5–40 mm Gravel (kg/m3) | |
---|---|---|---|---|
0% GGBS concrete | 398 | 0.49 | 690 | 1092 |
50% GGBS concrete | 398 | 0.51 | 690 | 1092 |
70% GGBS concrete | 398 | 0.51 | 690 | 1092 |
Oxide Compound | Content (%) | |
---|---|---|
Portland Cement | GGBS | |
CaO | 60.79 | 37.85 |
SiO2 | 21.32 | 35.49 |
Al2O3 | 4.06 | 13.76 |
Fe2O3 | 3.23 | 1.32 |
K2O | 0.45 | 0.36 |
MgO | 2.40 | 5.19 |
SO3 | 4.57 | 1.72 |
P2O5 | 1.47 | 1.45 |
TiO2 | 0.26 | 0.77 |
SrO | 0.11 | 0.06 |
MnO | 0.06 | 0.29 |
Thermal Conductivity (W/m·°C) | Specific Heat Capacity (J/kg·°C) | |
---|---|---|
Concrete | 1.7 | 1000 |
Expanded polystyrene | 0.0624 | 1040 |
Plywood formwork | 0.15 | 122 |
Initial Temperature (°C) | The Time Required to Reach the Peak Temperature (h) | Peak Temperature (°C) | |
---|---|---|---|
0% GGBS concrete | 26.7 | 16.2 | 46.4 |
50% GGBS concrete | 22.5 | 33.2 | 43.5 |
70% GGBS concrete | 28.3 | 19.0 | 45.0 |
Peak Hydration Rate (W/g) | The Time Required to Reach These Peak Values (h) | 3-d Accumulated Heat Outputs (J/g) | |
---|---|---|---|
0% GGBS | 3.88 × 10−3 | 7.3 | 170.77 |
50% GGBS | 3.94 × 10−3 | 5.7 | 164.44 |
70% GGBS | 3.07 × 10−3 | 4.7 | 136.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Tang, K. Modelling In Situ Concrete Temperature Development: The Impact of Ambient Temperature and GGBS Replacement. CivilEng 2024, 5, 694-716. https://doi.org/10.3390/civileng5030037
Tan Y, Tang K. Modelling In Situ Concrete Temperature Development: The Impact of Ambient Temperature and GGBS Replacement. CivilEng. 2024; 5(3):694-716. https://doi.org/10.3390/civileng5030037
Chicago/Turabian StyleTan, Yaowen, and Kangkang Tang. 2024. "Modelling In Situ Concrete Temperature Development: The Impact of Ambient Temperature and GGBS Replacement" CivilEng 5, no. 3: 694-716. https://doi.org/10.3390/civileng5030037
APA StyleTan, Y., & Tang, K. (2024). Modelling In Situ Concrete Temperature Development: The Impact of Ambient Temperature and GGBS Replacement. CivilEng, 5(3), 694-716. https://doi.org/10.3390/civileng5030037