Impact of the Fly Ash/Alkaline Activator Ratio on the Microstructure and Dielectric Properties of Fly Ash KOH-Based Geopolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Geopolymers
2.3. Characterization
3. Results
3.1. Microstructure Analysis through Scanning Electron Microscopy
3.2. XRD Fly Ash and G1–4
3.3. Electrical Properties
4. Conclusions
- Scanning electron microscopy (SEM) images of the FA geopolymer samples confirm that structures with a lower FA/AA ratio of 1.00 display a more highly uniform structure than that of those with higher ratios (1.25, 1.50, and 1.75). Elevating the FA/AA ratio decelerates the geopolymerization kinetics, leading to a more compact morphology, as observed in the G1 sample. In contrast, G4 displays morphology similar to that of fly ash, which is attributed to insufficient activation by alkali.
- The electrical conductivity, dielectric constant, and dielectric loss of fly ash KOH-based geopolymer pastes vary depending on the frequency range and ratio of FA/AA. The conductivity increases across all samples (G1 to G4) within frequencies ranging from 101 to 106 Hz. The overall order of conductivity across all samples is G1 < G2 < G3 < G4. The geopolymer with FA/AA = 1.00 exhibits significantly lower electrical conductivity than that with FA/AA = 1.75.
- The electric conductivity increases with an increase in frequency, but the dielectric constant decreases with an increase in frequency in the order G4 > G3 > G2 > G1, with an FA/AA ratio of 1.75 demonstrating a relatively high dielectric constant and an FA/AA ratio of 1.00 showing a lower dielectric constant.
- The D factor/tangent loss shows an increase, indicated by a hump in the graph within the frequency range of 101–104 Hz owing to relaxing dipoles, then decreases in the frequency range of 104–106 Hz. The D factor/tangent loss is in the order G4 > G3 > G2 > G1, indicating that the geopolymer samples with high dielectric constants also displayed high tangent loss.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kravchenko, E.; Lazorenko, G.; Jiang, X.; Leng, Z. Alkali-activated materials made of construction and demolition waste as precursors: A review. Sustain. Mater. Technol. 2024, 39, e00829. [Google Scholar] [CrossRef]
- Umar, T.; Tahir, A.; Egbu, C.; Honnurvali, M.S.; Saidani, M.; Al-Bayati, A.J. Developing a Sustainable Concrete Using Ceramic Waste Powder. In Collaboration and Integration in Construction, Engineering, Management and Technology; Ahmed, S.M., Hampton, P., Azhar, S., Saul, A.D., Eds.; Advances in Science, Technology & Innovation; Springer International Publishing: Cham, Switzerland, 2021; pp. 157–162. [Google Scholar] [CrossRef]
- Umar, T.; Tahir, A.; Umeokafor, N.; Nawarathna, A.; Zia, A.; Vali, M.S.H. An Experimental Investigation on Strength Characteristics of Concrete Using Wastepaper Sludge Ash (WPSA). In Proceedings of the Twelth International Conference on Construction in the 21st Century (CITC-12), Amman, Jordan, 16–19 May 2022; Available online: https://researchonline.ljmu.ac.uk/id/eprint/16966 (accessed on 1 June 2024).
- Ingale, S.D.; Nemade, P.D. Effect of paper sludge ash on properties of cement concrete: A review. Mater. Today Proc. 2023, 492. [Google Scholar] [CrossRef]
- Narani, S.S.; Siddiqua, S.; Perumal, P. Wood fly ash and blast furnace slag management by alkali-activation: Trace elements solidification and composite application. J. Environ. Manag. 2024, 354, 120341. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. Engl. Ed. 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Bai, B.; Bai, F.; Nie, Q.; Jia, X. A high-strength red mud–fly ash geopolymer and the implications of curing temperature. Powder Technol. 2023, 416, 118242. [Google Scholar] [CrossRef]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Barreto, I.A.R.; Da Costa, M.L. Synthesis of geopolymer with KOH by two kaolinitic clays from the Amazon: Influence of different synthesis parameters on the compressive strength. Mater. Chem. Phys. 2022, 287, 126330. [Google Scholar] [CrossRef]
- Abbas, R.; Abdelzaher, M.A.; Shehata, N.; Tantawy, M.A. Production, characterization and performance of green geopolymer modified with industrial by-products. Sci. Rep. 2024, 14, 5104. [Google Scholar] [CrossRef]
- Ahmad Zailani, W.W.; Bouaissi, A.; Abdullah, M.M.A.B.; Abd Razak, R.; Yoriya, S.; Mohd Salleh, M.A.A.; M.A.Z., M.R.; Fansuri, H. Bonding Strength Characteristics of FA-Based Geopolymer Paste as a Repair Material When Applied on OPC Substrate. Appl. Sci. 2020, 10, 3321. [Google Scholar] [CrossRef]
- Alzeebaree, R.; Çevik, A.; Mohammedameen, A.; Niş, A.; Gülşan, M.E. Mechanical performance of FRP-confined geopolymer concrete under seawater attack. Adv. Struct. Eng. 2020, 23, 1055–1073. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, X.; Liu, P.; Wang, D.; Vollpracht, A.; Oeser, M. Study of alkali activated slag as alternative pavement binder. Constr. Build. Mater. 2018, 186, 626–634. [Google Scholar] [CrossRef]
- Gao, H.; Liu, H.; Liao, L.; Mei, L.; Zhang, F.; Zhang, L.; Li, S.; Lv, G. A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation. Constr. Build. Mater. 2020, 251, 118888. [Google Scholar] [CrossRef]
- Shuai, Q.; Xu, Z.; Yao, Z.; Chen, X.; Jiang, Z.; Peng, X.; An, R.; Li, Y.; Jiang, X.; Li, H. Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide. Mater. Lett. 2020, 263, 127228. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Zhao, D.; Zhong, G.; Sun, Y.; Hu, X.; Sun, J.; Li, X.; Zhu, W.; Li, M.; et al. “Research and Application Progress of Geopolymers in Adsorption: A Review. Nanomaterials 2022, 12, 3002. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U. Synthesis of porous alkali-activated materials for high-acidic wastewater treatment. J. Water Process Eng. 2020, 33, 101118. [Google Scholar] [CrossRef]
- Sanalkumar, K.U.A.; Yang, E.-H. Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers. Cem. Concr. Compos. 2021, 115, 103847. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, L.; Yadav, V.; Jagannathan, K.; Singh, V.N.; Singh, S.P.; Ezhilselvi, V. Optimizing the Fly Ash/Activator Ratio for a Fly Ash-Based Geopolymer through a Study of Microstructure, Thermal Stability, and Electrical Properties. Ceramics 2023, 6, 2352–2366. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef]
- Zhang, L. Production of bricks from waste materials—A review. Constr. Build. Mater. 2013, 47, 643–655. [Google Scholar] [CrossRef]
- Castillo, H.; Collado, H.; Droguett, T.; Sánchez, S.; Vesely, M.; Garrido, P.; Palma, S. Factors Affecting the Compressive Strength of Geopolymers: A Review. Minerals 2021, 11, 1317. [Google Scholar] [CrossRef]
- De Moraes, M.J.B.; Nagata, E.Y.; Duran, A.J.F.P.; Rossignolo, J.A. Alkali activated materials applied in 3D printing construction: A review. Heliyon 2024, 10, e26696. [Google Scholar] [CrossRef]
- Pratap, B.; Mondal, S.; Rao, B.H. NaOH molarity influence on mechanical and durability properties of geopolymer concrete made with fly ash and phosphogypsum. Structures 2023, 56, 105035. [Google Scholar] [CrossRef]
- Gultekin, A.; Ramyar, K. Effect of curing type on microstructure and compressive strength of geopolymer mortars. Ceram. Int. 2022, 48, 16156–16172. [Google Scholar] [CrossRef]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.; Meikle, S. Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 2016, 120, 198–211. [Google Scholar] [CrossRef]
- Swain, D.; Row, T.N.G. Structure, Ionic Conduction and Dielectric Relaxation in a Novel Fast Ion Conductor, Na2Cd(SO4)2. Chem. Mater. 2007, 19, 347–349. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D. Innovative applications of inorganic polymers (geopolymers). In Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Amsterdam, The Netherlands, 2015; pp. 777–805. [Google Scholar] [CrossRef]
- Malkawi, A.B.; Al-Mattarneh, H.; Achara, B.E.; Mohammed, B.S.; Nuruddin, M.F. Dielectric properties for characterization of fly ash-based geopolymer binders. Constr. Build. Mater. 2018, 189, 19–32. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, J. Characterization of mechanical and electric properties of geopolymers synthesized using four locally available fly ashes. Constr. Build. Mater. 2016, 121, 386–399. [Google Scholar] [CrossRef]
- Jumrat, S.; Chatveera, B.; Rattanadecho, P. Dielectric properties and temperature profile of fly ash-based geopolymer mortar. Int. Commun. Heat Mass Transf. 2011, 38, 242–248. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Hunpratub, S.; Thongbai, P.; Maensiri, S.; Sata, V.; Chindaprasirt, P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014, 45, 9–14. [Google Scholar] [CrossRef]
- Bakthavatchalam, K.; Rajendran, M. An experimental investigation on potassium activator based geopolymer concrete incorporated with hybrid fibers. Mater. Today Proc. 2021, 46, 8494–8501. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Chindaprasirt, P.; Pimraksa, K. Electrical conductivity and dielectric property of fly ash geopolymer pastes. Int. J. Miner. Metall. Mater. 2011, 18, 94–99. [Google Scholar] [CrossRef]
- Das, D.; Rout, P.K. Synthesis, Characterization and Properties of Fly Ash Based Geopolymer Materials. J. Mater. Eng. Perform. 2021, 30, 3213–3231. [Google Scholar] [CrossRef]
- Pradhan, D.K.; Choudhary, R.N.P.; Samantaray, B.K. Studies of Dielectric Relaxation and AC Conductivity Behavior of Plasticized Polymer Nanocomposite Electrolytes. Int. J. Electrochem. Sci. 2008, 3, 597–608. [Google Scholar] [CrossRef]
Different Types of Precursors and Alkaline Media for the Synthesis of Geopolymers and the Properties Investigated in the Literature | |||
---|---|---|---|
Precursors | Alkaline Medium | Properties Studied | Reference |
Fly ash | NaOH + Na2SiO3 | Mechanical and morphological properties | [11] |
Pumice Perlite Burnt clay fly ash | NaOH + Na2SiO3 | Compressive strength and microstructure | [26] |
Fly ash Phosphogypsum | NaOH | Mechanical and durability properties | [25] |
Belterra clay Kaolin Micro silica | KOH | Mechanical strength | [9] |
Fly ash Ground granulated blast furnace slag Hybrid fibers | KOH+ K2SiO3 | Mechanical properties | [34] |
Fly ash | NaOH + Na2SiO3 | Dielectric properties | [30] |
Fly ash | NaOH + Na2SiO3 | Mechanical and electric properties | [31] |
Fly ash | NaOH + Na2SiO3 | Dielectric properties and temperature profile | [32] |
Fly ash | NaOH + Na2SiO3 | Electrical conductivity and dielectric property | [35] |
Fly ash | KOH + Na2SiO3 | Microstructure and dielectric properties | Current study |
COMPONENT | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | K2O | CaO | TiO2 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
Wt.% | 0.45 | 0.51 | 31.14 | 40.56 | 0.50 | 3.99 | 1.29 | 1.06 | 2.09 | 0.55 |
Geopolymer Sample | FA/AA | Fly Ash (g) | Na2SiO3 (g) | KOH (g) |
---|---|---|---|---|
Na2SiO3/KOH = 2.5 | ||||
G1 | 1.00 | 210 | 149.73 | 60.06 |
G2 | 1.25 | 210 | 119.91 | 48.09 |
G3 | 1.50 | 210 | 99.96 | 39.90 |
G4 | 1.75 | 210 | 85.47 | 34.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, M.; Saini, N.; Kumar, L.; Singh, V.N.; Jagannathan, K.; Ezhilselvi, V. Impact of the Fly Ash/Alkaline Activator Ratio on the Microstructure and Dielectric Properties of Fly Ash KOH-Based Geopolymer. CivilEng 2024, 5, 537-548. https://doi.org/10.3390/civileng5020028
Yadav M, Saini N, Kumar L, Singh VN, Jagannathan K, Ezhilselvi V. Impact of the Fly Ash/Alkaline Activator Ratio on the Microstructure and Dielectric Properties of Fly Ash KOH-Based Geopolymer. CivilEng. 2024; 5(2):537-548. https://doi.org/10.3390/civileng5020028
Chicago/Turabian StyleYadav, Meenakshi, Neha Saini, Lalit Kumar, Vidya Nand Singh, Karthikeyan Jagannathan, and V. Ezhilselvi. 2024. "Impact of the Fly Ash/Alkaline Activator Ratio on the Microstructure and Dielectric Properties of Fly Ash KOH-Based Geopolymer" CivilEng 5, no. 2: 537-548. https://doi.org/10.3390/civileng5020028
APA StyleYadav, M., Saini, N., Kumar, L., Singh, V. N., Jagannathan, K., & Ezhilselvi, V. (2024). Impact of the Fly Ash/Alkaline Activator Ratio on the Microstructure and Dielectric Properties of Fly Ash KOH-Based Geopolymer. CivilEng, 5(2), 537-548. https://doi.org/10.3390/civileng5020028