Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
total deformations of concrete along the x, y, and z axes, respectively. | |
stresses in concrete according to x, y, z. | |
stress in steel according to z. | |
elastic modulus of concrete. | |
elastic modulus of steel. | |
Poisson’s ratio of concrete. | |
Poisson’s ratio of steel. | |
components of the total deformation of concrete along the x, y and z axes, including the dilatational deformations, temperature effects, shrinkage and creep of concrete. | |
axial deformation. | |
curvature of the element. | |
load. | |
axial force. | |
bending moment. | |
cross-sectional area of the concrete. | |
cross-sectional area of the steel. | |
cross-sectional stiffness in central tension (compression). | |
cross-sectional bending stiffness. | |
the product of the reduced modulus of elasticity and the static moment of the reduced section with respect to the geometric center of gravity. | |
axial force eccentricity. | |
displacement in the x direction. | |
displacement in the y direction (deflection of the element). | |
length of the column. | |
stiffness matrix. | |
vector of the displacement increments in the plane of the cross-section. | |
{ΔFb} | the vector of load increments in the plane of the cross-section on the concrete part. |
{ΔFs} | the vector of load increments in the plane of the cross-section on the steel part. |
vector of load increments due to creep, shrinkage, dilatation and temperature effects. | |
l | length of the one-dimensional finite element of the steel shell. |
the matrix containing the gradients of triangular FE shape functions. | |
cross-sectional area of the triangular FE. | |
matrix of concrete elastic constants. | |
yc | center of gravity coordinate for the triangular FE. |
ys | center of gravity coordinate for the one-dimensional FE of the steel. |
[L] | coordinate transformation matrix. |
σsθ | hoop stresses in steel. |
Г | shear strain intensity. |
E0 | initial modulus of elasticity of concrete. |
ε1, ε2, ε3 | principal strains. |
Гs | ultimate intensity of shear deformations. |
k, λ, δ, e, f, S | parameters in the G.A. Geniev theory. |
T | shear stress intensity. |
σ1, σ2, σ3 | principal stresses. |
Tc | ultimate intensity of shear stresses in pure shear. |
σ | mean stress. |
Rb | compressive strength of concrete. |
Rbt | tensile strength of concrete. |
εd | dilatational deformations. |
g0 | dilatation module. |
G0 | initial shear modulus of concrete. |
Ry | yield strength of steel. |
R | cubic compressive strength of concrete. |
ν0 | initial deflection. |
maximum initial deflection. | |
Nu,exp | experimental values of the ultimate load. |
Nu, analysis | calculated values of the ultimate load. |
percentage deviation of the theory from the experiment. | |
d | diameter of circular cross-section. |
h | thickness of the steel shell. |
a | dimension of square cross-section. |
References
- Bai, Y.; Wang, J.; Liu, Y.; Lin, X. Thin-Walled CFST Columns for Enhancing Seismic Collapse Performance of High-Rise Steel Frames. Appl. Sci. 2017, 7, 53. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J. Application of Steel-tubed Concrete Structures in High-rise Buildings. Int. J. High-Rise Build. 2019, 8, 161–167. [Google Scholar] [CrossRef]
- Krishan, A.L.; Chernyshova, E.P.; Sabirov, R.R. Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-Section. Procedia Eng. 2016, 150, 1878–1884. [Google Scholar] [CrossRef]
- Krishan, A.L.; Astafeva, M.A.; Chernyshova, E.P. Strength Calculation of Short Concrete-filled Steel Tube Columns. Int. J. Concr. Struct. Mater. 2018, 12, 84. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Cao, W.; Qiao, Q.; Li, R. Uniaxial compression performance of rectangular CFST columns with different internal construction characteristics. Eng. Struct. 2018, 176, 763–775. [Google Scholar] [CrossRef]
- Narkevich, M.Y.; Sagadatov, A.I. Strength and deformation property enhancement of compressed steel tube-concrete elements using super concrete and thin-shell structure. IOP Conf. Ser. Mater. Sci. Eng. 2019, 687, 33031. [Google Scholar] [CrossRef]
- Romero, M.L.; Espinós, A.; Lapuebla-Ferri, A.; Albero, V.; Hospitaler, A. Recent developments and fire design provisions for CFST columns and slim-floor beams. J. Constr. Steel Res. 2020, 172, 106159. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, L.; Xu, S.; Wang, Q.; Wen, S.; Wang, Y. Study on the mechanical property of low magnesia ore high strength concrete-filled steel tubular columns. J. Phys. Conf. Ser. 2021, 1904, 12021. [Google Scholar] [CrossRef]
- Natalli, J.F.; Andrade, H.D.; Carvalho, J.M.F.; Defáveri, K.; Castro Mendes, J.; Sarmanho, A.M.C.; Peixoto, R.A.F. Performance of lightweight concrete with expansive and air-entraining admixtures in CFST columns. J. Mater. Civ. Eng. 2020, 32, 4020121. [Google Scholar] [CrossRef]
- Chen, J.; Chan, T.-M.; Chung, K.-F. Design of square and rectangular CFST cross-sectional capacities in compression. J. Constr. Steel Res. 2021, 176, 106419. [Google Scholar] [CrossRef]
- Qu, X.; Chen, Z.; Sun, G. Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods. Steel Compos. Struct. 2015, 18, 71–90. [Google Scholar] [CrossRef]
- Qu, X.; Chen, Z.; Sun, G. Experimental study of rectangular CFST columns subjected to eccentric loading. Thin-Walled Struct. 2013, 64, 83–93. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Patel, V.I. Round-ended rectangular concrete-filled steel tubular short columns: FE investigation under axial compression. J. Constr. Steel Res. 2018, 140, 222–236. [Google Scholar] [CrossRef]
- Ma, D.Y.; Han, L.H.; Ji, X.; Yang, W.B. Behaviour of hexagonal concrete-encased CFST columns subjected to cyclic bending. J. Constr. Steel Res. 2018, 144, 283–294. [Google Scholar] [CrossRef]
- Xu, W.; Han, L.H.; Li, W. Performance of hexagonal CFST members under axial compression and bending. J. Constr. Steel Res. 2016, 123, 162–175. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Patel, V.I.; Bock, M. Behaviour and design of hexagonal concrete-filled steel tubular short columns under axial compression. Eng. Struct. 2017, 153, 732–748. [Google Scholar] [CrossRef]
- Fang, H.; Chan, T.M.; Young, B. Structural performance of concrete-filled cold-formed high-strength steel octagonal tubular stub columns. Eng. Struct. 2021, 239, 112360. [Google Scholar] [CrossRef]
- Krishan, A.L.; Rimshin, V.I.; Troshkina, E.A. Strength of Short Concrete Filled Steel Tube columns of Annular Cross Section. IOP Conf. Ser. Mater. Sci. Eng. 2018, 463, 22062. [Google Scholar] [CrossRef]
- Krishan, A.; Astafeva, M. Strength and Deformability of the Concrete Core of Precompressed Concrete Filled Steel Tube Columns of Annular Cross-Section. MATEC Web Conf. 2019, 278, 3002. [Google Scholar] [CrossRef]
- Jamaluddin, N.; Lam, D.; Dai, X.H.; Ye, J. An experimental study on elliptical concrete filled columns under axial compression. J. Constr. Steel Res. 2013, 87, 6–16. [Google Scholar] [CrossRef]
- Uenaka, K. Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression. Thin-Walled Struct. 2014, 78, 131–137. [Google Scholar] [CrossRef]
- Dolzhenko, A.V.; Naumov, A.E.; Klyuev, A.V.; Stoykovich, N. Experimental studies of the parameters of the contact problem in the design of plastic tube concrete structures. Mater. Sci. Forum 2020, 974, 542–550. [Google Scholar] [CrossRef]
- Krishan, A.L.; Narkevich, M.Y.; Sagadatov, A.I.; Rimshin, V.I. The strength of short compressed concrete elements in a fiberglass shell. Mag. Civ. Eng. 2020, 94, 3–10. [Google Scholar] [CrossRef]
- Mirza, S.A.; Lacroix, E.A. Comparative strength analyses of concrete-encased steel composite columns. J. Struct. Eng. ASCE 2004, 13012, 1941–1953. [Google Scholar] [CrossRef]
- Ouyang, Y.; Kwan, A.K.H. Finite element analysis of square concrete-filled steel tube (CFST) columns under axial compressive load. Eng. Struct. 2018, 156, 443–459. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Yazyev, B.; Meskhi, B.; Beskopylny, A.; Khashkhozhev, K.; Chepurnenko, V. Simplified 2D Finite Element Model for Calculation of the Bearing Capacity of Eccentrically Compressed Concrete-Filled Steel Tubular Columns. Appl. Sci. 2021, 11, 11645. [Google Scholar] [CrossRef]
- Chepurnenko, V.S.; Khashkhozhev, K.N.; Yazyev, S.B.; Avakov, A.A. Improving the calculation of flexible CFST-columns taking into account stresses in the section planes. Constr. Mater. Prod. 2021, 4, 41–53. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Lipovich, A.; Beskopylny, A.N.; Meskhi, B. Reinforced Concrete Columns with Local Prestressing Rebars: A Calculation Theory and an Experimental Study. Buildings 2022, 12, 1152. [Google Scholar] [CrossRef]
- Andreev, V.; Potekhin, I. Calculation of Equal Strength Thick-Walled Concrete Cylinder with Free Ends. IOP Conf. Ser. Mater. Sci. Eng. 2019, 661, 12023. [Google Scholar] [CrossRef]
- Krishan, A.L.; Surovtsov, M.M. Experimental Researches of Strength of Flexible Concrete-Filled Tube (CFT) Columns. Vestn. MGTU Named G.I. Nosov. 2013, 1, 90–92. Available online: https://cyberleninka.ru/article/n/eksperimentalnye-issledovaniya-prochnosti-gibkih-trubobetonnyh-kolonn (accessed on 14 July 2023).
- Krishan, A.L.; Troshkina, E.A.; Astafyeva, M.A. Strength of compressed concrete filled steel tube elements of circular and square cross-section. IOP Conf. Ser. Mater. Sci. Eng. 2018, 451, 12053. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Nesvetaev, G.; Koryanova, Y.; Yazyev, B. Simplified model for determining the stress-strain state in massive monolithic foundation slabs during construction. Int. J. Comput. Civ. Struct. Eng. 2022, 18, 126–136. [Google Scholar] [CrossRef]
- Yazyev, S.B.; Chepurnenko, V.S.; Chepurnenko, A.S.; Sabitov, L.S. Calculation of the stability of compressed wooden rods under nonlinear creep. Struct. Mech. Calc. Struct. 2020, 4, 67–71. Available online: https://elibrary.ru/item.asp?id=43977092 (accessed on 14 July 2023).
- Yazyev, S.B.; Andreev, V.I.; Chepurnenko, A.S. Stability analysis of wooden arches with account for nonlinear creep. Adv. Eng. Res. 2021, 21, 114–122. [Google Scholar] [CrossRef]
Sample | L, mm | Rb, MPa | at Various Eccentricities of the Axial Force | |||||
---|---|---|---|---|---|---|---|---|
1 mm | 2 mm | 3 mm | 4 mm | 5 mm | ||||
C.20.35 | 560 | 33.6 | 1100 | 920 | 910 | 880 | 860 | 840 |
C.20.55 | 560 | 55.0 | 1127 | 1116 | 1092 | 1044 | 1032 | 990 |
C.40.35 | 1120 | 30.4 | 760 | 842 | 815 | 795 | 769 | 744 |
C.40.55 | 1120 | 53.4 | 907 | 1008 | 966 | 935 | 910 | 890 |
C.60.35 | 1640 | 30.4 | 735 | 828 | 783 | 752 | 720 | 693 |
C.60.55 | 1640 | 53.4 | 797 | 960 | 910 | 870 | 840 | 805 |
C.80.35 | 2200 | 33.6 | 714 | 792 | 736 | 696 | 664 | 640 |
C.80.55 | 2200 | 55.0 | 762 | 890 | 828 | 783 | 743 | 711 |
Sample | L, mm | Rb, MPa | ||||||
---|---|---|---|---|---|---|---|---|
1 mm | 2 mm | 3 mm | 4 mm | 5 mm | ||||
C.20.35 | 560 | 33.6 | 1100 | 935 | 924 | 902 | 891 | 880 |
C.20.55 | 560 | 55.0 | 1127 | 1116 | 1104 | 1068 | 1014 | 990 |
C.40.35 | 1120 | 30.4 | 760 | 855 | 828 | 801 | 779 | 761 |
C.40.55 | 1120 | 53.4 | 907 | 1007 | 979 | 957 | 940 | 908 |
C.60.35 | 1640 | 30.4 | 735 | 833 | 792 | 761 | 734 | 707 |
C.60.55 | 1640 | 53.4 | 797 | 965 | 925 | 890 | 855 | 830 |
C.80.35 | 2200 | 33.6 | 714 | 806 | 761 | 716 | 684 | 657 |
C.80.55 | 2200 | 55.0 | 762 | 912 | 851 | 806 | 770 | 743 |
kN | kN | ||
---|---|---|---|
L = 3.3 m | |||
0 | 15,212 | 13,040 | 14.2 |
0.125 | 10,182 | 9295 | 8.7 |
0.15 | 9395 | 8645 | 8 |
0.2 | 8015 | 7695 | 4 |
0.25 | 7085 | 6860 | 3.2 |
0.375 | 5086 | 5130 | 0.9 |
0.5 | 3790 | 3870 | 2.1 |
L = 6.6 m | |||
0 | 13,133 | 12,950 | 1.4 |
0.125 | 8440 | 8100 | 4 |
0.15 | 7742 | 7520 | 2.9 |
0.2 | 6711 | 6615 | 1.4 |
0.25 | 5822 | 5850 | 0.5 |
0.375 | 4186 | 4365 | 4.3 |
0.5 | 3411 | 3384 | 0.8 |
kN | kN | ||
---|---|---|---|
L = 3.3 m | |||
0 | 13,376 | 12,320 | 7.9 |
0.125 | 9414 | 9550 | 1.4 |
0.15 | 8894 | 9100 | 2.3 |
0.2 | 7828 | 8160 | 4.2 |
0.25 | 7048 | 7350 | 4.3 |
0.375 | 5357 | 5820 | 8.6 |
0.5 | 4186 | 4752 | 13.5 |
L = 6.6 m | |||
0 | 11,960 | 12,285 | 2.7 |
0.125 | 8261 | 8460 | 2.4 |
0.15 | 7689 | 8000 | 4 |
0.2 | 6693 | 7200 | 7 |
0.25 | 5938 | 6435 | 8.4 |
0.375 | 4504 | 4998 | 11 |
0.5 | 3952 | 4008 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chepurnenko, A.; Turina, V.; Akopyan, V. Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns. CivilEng 2023, 4, 1000-1015. https://doi.org/10.3390/civileng4030054
Chepurnenko A, Turina V, Akopyan V. Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns. CivilEng. 2023; 4(3):1000-1015. https://doi.org/10.3390/civileng4030054
Chicago/Turabian StyleChepurnenko, Anton, Vasilina Turina, and Vladimir Akopyan. 2023. "Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns" CivilEng 4, no. 3: 1000-1015. https://doi.org/10.3390/civileng4030054
APA StyleChepurnenko, A., Turina, V., & Akopyan, V. (2023). Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns. CivilEng, 4(3), 1000-1015. https://doi.org/10.3390/civileng4030054