Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| total deformations of concrete along the x, y, and z axes, respectively. | |
| stresses in concrete according to x, y, z. | |
| stress in steel according to z. | |
| elastic modulus of concrete. | |
| elastic modulus of steel. | |
| Poisson’s ratio of concrete. | |
| Poisson’s ratio of steel. | |
| components of the total deformation of concrete along the x, y and z axes, including the dilatational deformations, temperature effects, shrinkage and creep of concrete. | |
| axial deformation. | |
| curvature of the element. | |
| load. | |
| axial force. | |
| bending moment. | |
| cross-sectional area of the concrete. | |
| cross-sectional area of the steel. | |
| cross-sectional stiffness in central tension (compression). | |
| cross-sectional bending stiffness. | |
| the product of the reduced modulus of elasticity and the static moment of the reduced section with respect to the geometric center of gravity. | |
| axial force eccentricity. | |
| displacement in the x direction. | |
| displacement in the y direction (deflection of the element). | |
| length of the column. | |
| stiffness matrix. | |
| vector of the displacement increments in the plane of the cross-section. | |
| {ΔFb} | the vector of load increments in the plane of the cross-section on the concrete part. |
| {ΔFs} | the vector of load increments in the plane of the cross-section on the steel part. |
| vector of load increments due to creep, shrinkage, dilatation and temperature effects. | |
| l | length of the one-dimensional finite element of the steel shell. |
| the matrix containing the gradients of triangular FE shape functions. | |
| cross-sectional area of the triangular FE. | |
| matrix of concrete elastic constants. | |
| yc | center of gravity coordinate for the triangular FE. |
| ys | center of gravity coordinate for the one-dimensional FE of the steel. |
| [L] | coordinate transformation matrix. |
| σsθ | hoop stresses in steel. |
| Г | shear strain intensity. |
| E0 | initial modulus of elasticity of concrete. |
| ε1, ε2, ε3 | principal strains. |
| Гs | ultimate intensity of shear deformations. |
| k, λ, δ, e, f, S | parameters in the G.A. Geniev theory. |
| T | shear stress intensity. |
| σ1, σ2, σ3 | principal stresses. |
| Tc | ultimate intensity of shear stresses in pure shear. |
| σ | mean stress. |
| Rb | compressive strength of concrete. |
| Rbt | tensile strength of concrete. |
| εd | dilatational deformations. |
| g0 | dilatation module. |
| G0 | initial shear modulus of concrete. |
| Ry | yield strength of steel. |
| R | cubic compressive strength of concrete. |
| ν0 | initial deflection. |
| maximum initial deflection. | |
| Nu,exp | experimental values of the ultimate load. |
| Nu, analysis | calculated values of the ultimate load. |
| percentage deviation of the theory from the experiment. | |
| d | diameter of circular cross-section. |
| h | thickness of the steel shell. |
| a | dimension of square cross-section. |
References
- Bai, Y.; Wang, J.; Liu, Y.; Lin, X. Thin-Walled CFST Columns for Enhancing Seismic Collapse Performance of High-Rise Steel Frames. Appl. Sci. 2017, 7, 53. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J. Application of Steel-tubed Concrete Structures in High-rise Buildings. Int. J. High-Rise Build. 2019, 8, 161–167. [Google Scholar] [CrossRef]
- Krishan, A.L.; Chernyshova, E.P.; Sabirov, R.R. Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-Section. Procedia Eng. 2016, 150, 1878–1884. [Google Scholar] [CrossRef][Green Version]
- Krishan, A.L.; Astafeva, M.A.; Chernyshova, E.P. Strength Calculation of Short Concrete-filled Steel Tube Columns. Int. J. Concr. Struct. Mater. 2018, 12, 84. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Cao, W.; Qiao, Q.; Li, R. Uniaxial compression performance of rectangular CFST columns with different internal construction characteristics. Eng. Struct. 2018, 176, 763–775. [Google Scholar] [CrossRef]
- Narkevich, M.Y.; Sagadatov, A.I. Strength and deformation property enhancement of compressed steel tube-concrete elements using super concrete and thin-shell structure. IOP Conf. Ser. Mater. Sci. Eng. 2019, 687, 33031. [Google Scholar] [CrossRef]
- Romero, M.L.; Espinós, A.; Lapuebla-Ferri, A.; Albero, V.; Hospitaler, A. Recent developments and fire design provisions for CFST columns and slim-floor beams. J. Constr. Steel Res. 2020, 172, 106159. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, L.; Xu, S.; Wang, Q.; Wen, S.; Wang, Y. Study on the mechanical property of low magnesia ore high strength concrete-filled steel tubular columns. J. Phys. Conf. Ser. 2021, 1904, 12021. [Google Scholar] [CrossRef]
- Natalli, J.F.; Andrade, H.D.; Carvalho, J.M.F.; Defáveri, K.; Castro Mendes, J.; Sarmanho, A.M.C.; Peixoto, R.A.F. Performance of lightweight concrete with expansive and air-entraining admixtures in CFST columns. J. Mater. Civ. Eng. 2020, 32, 4020121. [Google Scholar] [CrossRef]
- Chen, J.; Chan, T.-M.; Chung, K.-F. Design of square and rectangular CFST cross-sectional capacities in compression. J. Constr. Steel Res. 2021, 176, 106419. [Google Scholar] [CrossRef]
- Qu, X.; Chen, Z.; Sun, G. Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods. Steel Compos. Struct. 2015, 18, 71–90. [Google Scholar] [CrossRef]
- Qu, X.; Chen, Z.; Sun, G. Experimental study of rectangular CFST columns subjected to eccentric loading. Thin-Walled Struct. 2013, 64, 83–93. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Patel, V.I. Round-ended rectangular concrete-filled steel tubular short columns: FE investigation under axial compression. J. Constr. Steel Res. 2018, 140, 222–236. [Google Scholar] [CrossRef]
- Ma, D.Y.; Han, L.H.; Ji, X.; Yang, W.B. Behaviour of hexagonal concrete-encased CFST columns subjected to cyclic bending. J. Constr. Steel Res. 2018, 144, 283–294. [Google Scholar] [CrossRef]
- Xu, W.; Han, L.H.; Li, W. Performance of hexagonal CFST members under axial compression and bending. J. Constr. Steel Res. 2016, 123, 162–175. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Patel, V.I.; Bock, M. Behaviour and design of hexagonal concrete-filled steel tubular short columns under axial compression. Eng. Struct. 2017, 153, 732–748. [Google Scholar] [CrossRef]
- Fang, H.; Chan, T.M.; Young, B. Structural performance of concrete-filled cold-formed high-strength steel octagonal tubular stub columns. Eng. Struct. 2021, 239, 112360. [Google Scholar] [CrossRef]
- Krishan, A.L.; Rimshin, V.I.; Troshkina, E.A. Strength of Short Concrete Filled Steel Tube columns of Annular Cross Section. IOP Conf. Ser. Mater. Sci. Eng. 2018, 463, 22062. [Google Scholar] [CrossRef]
- Krishan, A.; Astafeva, M. Strength and Deformability of the Concrete Core of Precompressed Concrete Filled Steel Tube Columns of Annular Cross-Section. MATEC Web Conf. 2019, 278, 3002. [Google Scholar] [CrossRef]
- Jamaluddin, N.; Lam, D.; Dai, X.H.; Ye, J. An experimental study on elliptical concrete filled columns under axial compression. J. Constr. Steel Res. 2013, 87, 6–16. [Google Scholar] [CrossRef]
- Uenaka, K. Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression. Thin-Walled Struct. 2014, 78, 131–137. [Google Scholar] [CrossRef]
- Dolzhenko, A.V.; Naumov, A.E.; Klyuev, A.V.; Stoykovich, N. Experimental studies of the parameters of the contact problem in the design of plastic tube concrete structures. Mater. Sci. Forum 2020, 974, 542–550. [Google Scholar] [CrossRef]
- Krishan, A.L.; Narkevich, M.Y.; Sagadatov, A.I.; Rimshin, V.I. The strength of short compressed concrete elements in a fiberglass shell. Mag. Civ. Eng. 2020, 94, 3–10. [Google Scholar] [CrossRef]
- Mirza, S.A.; Lacroix, E.A. Comparative strength analyses of concrete-encased steel composite columns. J. Struct. Eng. ASCE 2004, 13012, 1941–1953. [Google Scholar] [CrossRef]
- Ouyang, Y.; Kwan, A.K.H. Finite element analysis of square concrete-filled steel tube (CFST) columns under axial compressive load. Eng. Struct. 2018, 156, 443–459. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Yazyev, B.; Meskhi, B.; Beskopylny, A.; Khashkhozhev, K.; Chepurnenko, V. Simplified 2D Finite Element Model for Calculation of the Bearing Capacity of Eccentrically Compressed Concrete-Filled Steel Tubular Columns. Appl. Sci. 2021, 11, 11645. [Google Scholar] [CrossRef]
- Chepurnenko, V.S.; Khashkhozhev, K.N.; Yazyev, S.B.; Avakov, A.A. Improving the calculation of flexible CFST-columns taking into account stresses in the section planes. Constr. Mater. Prod. 2021, 4, 41–53. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Lipovich, A.; Beskopylny, A.N.; Meskhi, B. Reinforced Concrete Columns with Local Prestressing Rebars: A Calculation Theory and an Experimental Study. Buildings 2022, 12, 1152. [Google Scholar] [CrossRef]
- Andreev, V.; Potekhin, I. Calculation of Equal Strength Thick-Walled Concrete Cylinder with Free Ends. IOP Conf. Ser. Mater. Sci. Eng. 2019, 661, 12023. [Google Scholar] [CrossRef]
- Krishan, A.L.; Surovtsov, M.M. Experimental Researches of Strength of Flexible Concrete-Filled Tube (CFT) Columns. Vestn. MGTU Named G.I. Nosov. 2013, 1, 90–92. Available online: https://cyberleninka.ru/article/n/eksperimentalnye-issledovaniya-prochnosti-gibkih-trubobetonnyh-kolonn (accessed on 14 July 2023).
- Krishan, A.L.; Troshkina, E.A.; Astafyeva, M.A. Strength of compressed concrete filled steel tube elements of circular and square cross-section. IOP Conf. Ser. Mater. Sci. Eng. 2018, 451, 12053. [Google Scholar] [CrossRef]
- Chepurnenko, A.; Nesvetaev, G.; Koryanova, Y.; Yazyev, B. Simplified model for determining the stress-strain state in massive monolithic foundation slabs during construction. Int. J. Comput. Civ. Struct. Eng. 2022, 18, 126–136. [Google Scholar] [CrossRef]
- Yazyev, S.B.; Chepurnenko, V.S.; Chepurnenko, A.S.; Sabitov, L.S. Calculation of the stability of compressed wooden rods under nonlinear creep. Struct. Mech. Calc. Struct. 2020, 4, 67–71. Available online: https://elibrary.ru/item.asp?id=43977092 (accessed on 14 July 2023).
- Yazyev, S.B.; Andreev, V.I.; Chepurnenko, A.S. Stability analysis of wooden arches with account for nonlinear creep. Adv. Eng. Res. 2021, 21, 114–122. [Google Scholar] [CrossRef]









| Sample | L, mm | Rb, MPa | at Various Eccentricities of the Axial Force | |||||
|---|---|---|---|---|---|---|---|---|
| 1 mm | 2 mm | 3 mm | 4 mm | 5 mm | ||||
| C.20.35 | 560 | 33.6 | 1100 | 920 | 910 | 880 | 860 | 840 |
| C.20.55 | 560 | 55.0 | 1127 | 1116 | 1092 | 1044 | 1032 | 990 |
| C.40.35 | 1120 | 30.4 | 760 | 842 | 815 | 795 | 769 | 744 |
| C.40.55 | 1120 | 53.4 | 907 | 1008 | 966 | 935 | 910 | 890 |
| C.60.35 | 1640 | 30.4 | 735 | 828 | 783 | 752 | 720 | 693 |
| C.60.55 | 1640 | 53.4 | 797 | 960 | 910 | 870 | 840 | 805 |
| C.80.35 | 2200 | 33.6 | 714 | 792 | 736 | 696 | 664 | 640 |
| C.80.55 | 2200 | 55.0 | 762 | 890 | 828 | 783 | 743 | 711 |
| Sample | L, mm | Rb, MPa | ||||||
|---|---|---|---|---|---|---|---|---|
| 1 mm | 2 mm | 3 mm | 4 mm | 5 mm | ||||
| C.20.35 | 560 | 33.6 | 1100 | 935 | 924 | 902 | 891 | 880 |
| C.20.55 | 560 | 55.0 | 1127 | 1116 | 1104 | 1068 | 1014 | 990 |
| C.40.35 | 1120 | 30.4 | 760 | 855 | 828 | 801 | 779 | 761 |
| C.40.55 | 1120 | 53.4 | 907 | 1007 | 979 | 957 | 940 | 908 |
| C.60.35 | 1640 | 30.4 | 735 | 833 | 792 | 761 | 734 | 707 |
| C.60.55 | 1640 | 53.4 | 797 | 965 | 925 | 890 | 855 | 830 |
| C.80.35 | 2200 | 33.6 | 714 | 806 | 761 | 716 | 684 | 657 |
| C.80.55 | 2200 | 55.0 | 762 | 912 | 851 | 806 | 770 | 743 |
| kN | kN | ||
|---|---|---|---|
| L = 3.3 m | |||
| 0 | 15,212 | 13,040 | 14.2 |
| 0.125 | 10,182 | 9295 | 8.7 |
| 0.15 | 9395 | 8645 | 8 |
| 0.2 | 8015 | 7695 | 4 |
| 0.25 | 7085 | 6860 | 3.2 |
| 0.375 | 5086 | 5130 | 0.9 |
| 0.5 | 3790 | 3870 | 2.1 |
| L = 6.6 m | |||
| 0 | 13,133 | 12,950 | 1.4 |
| 0.125 | 8440 | 8100 | 4 |
| 0.15 | 7742 | 7520 | 2.9 |
| 0.2 | 6711 | 6615 | 1.4 |
| 0.25 | 5822 | 5850 | 0.5 |
| 0.375 | 4186 | 4365 | 4.3 |
| 0.5 | 3411 | 3384 | 0.8 |
| kN | kN | ||
|---|---|---|---|
| L = 3.3 m | |||
| 0 | 13,376 | 12,320 | 7.9 |
| 0.125 | 9414 | 9550 | 1.4 |
| 0.15 | 8894 | 9100 | 2.3 |
| 0.2 | 7828 | 8160 | 4.2 |
| 0.25 | 7048 | 7350 | 4.3 |
| 0.375 | 5357 | 5820 | 8.6 |
| 0.5 | 4186 | 4752 | 13.5 |
| L = 6.6 m | |||
| 0 | 11,960 | 12,285 | 2.7 |
| 0.125 | 8261 | 8460 | 2.4 |
| 0.15 | 7689 | 8000 | 4 |
| 0.2 | 6693 | 7200 | 7 |
| 0.25 | 5938 | 6435 | 8.4 |
| 0.375 | 4504 | 4998 | 11 |
| 0.5 | 3952 | 4008 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chepurnenko, A.; Turina, V.; Akopyan, V. Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns. CivilEng 2023, 4, 1000-1015. https://doi.org/10.3390/civileng4030054
Chepurnenko A, Turina V, Akopyan V. Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns. CivilEng. 2023; 4(3):1000-1015. https://doi.org/10.3390/civileng4030054
Chicago/Turabian StyleChepurnenko, Anton, Vasilina Turina, and Vladimir Akopyan. 2023. "Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns" CivilEng 4, no. 3: 1000-1015. https://doi.org/10.3390/civileng4030054
APA StyleChepurnenko, A., Turina, V., & Akopyan, V. (2023). Simplified Method for Calculating the Bearing Capacity of Slender Concrete-Filled Steel Tubular Columns. CivilEng, 4(3), 1000-1015. https://doi.org/10.3390/civileng4030054

