Adjustment of Tall Building Behavior by Guided Optimization of Magneto-Rheological Damper Control Parameters
Abstract
:1. Introduction
2. Literature Review
- Design mode: This uses one earthquake to generate control parameters.Simulation mode: This is used to produce a controlled response for new earthquakes.Acting mode: This is a generated code that is installed on a special purpose computer or a micro controller to apply voltage to MR-Dampers in situ.
3. Graphical User Interface (GUI) Smart Control
4. The Control Scheme
4.1. Design Mode
4.2. Simulation Mode
4.3. Acting Mode
5. Case Study
PSO Floor-Specific Control Weighting Parameters Change
6. Selected Results and Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. State Space Representation and LQG
Appendix B. Damper Model
Parameter | Value |
---|---|
αa | 46.2 kN/m |
αb | 41.2 kN/m/V |
c0a | 110.0 kN s/m |
c0b | 114.3 kN s/m/V |
c1a | 8359.2 kN s/m |
c1b | 7482.9 kN s/m/V |
η | 100 s−1 |
k0 | 0.002 kN/m |
k1 | 0.0097 kN/m |
γ | 164.0 m−2 |
β | 164.0 m−2 |
A | 1107.2 |
n | 2 |
References
- El-Helou, R.; Graybeal, B.A. Flexural behavior and design of ultra-high-performance concrete beams. ASCE J. Struct. Eng. 2022, 148, 04022013. [Google Scholar] [CrossRef]
- Akhnoukh, A.K.; Buckhalter, C. Ultra-high-performance concrete: Constituents, mechanical properties, applications and current challenges. Case Stud. Constr. Mater. 2021, 15, e00559. [Google Scholar] [CrossRef]
- Akhnoukh, A.K.; Elia, H. Developing high performance concrete for precast/prestressed concrete industry. Case Stud. Constr. Mater. 2019, 11, e00290. [Google Scholar] [CrossRef]
- Akhnoukh, A.K. Overview of nanotechnology applications in construction industry in the United States. J. Micro Nano-Syst. 2013, 5, 147–153. [Google Scholar] [CrossRef]
- Akhnoukh, A.K. The use of micro and nano-sized particles in increasing concrete durability. Part. Sci. Technol. 2019, 38, 529–534. [Google Scholar] [CrossRef]
- Ontiveros-Perez, S.P.; Miguel, L.F.F.; Riera, J.D. Reliability-based optimum design of passive friction dampers in buildings in seismic regions. Eng. Struct. 2019, 190, 276–284. [Google Scholar] [CrossRef]
- Armali, M.; Damerji, H.; Hallal, J.; Fakih, M. Effectiveness of friction dampers on the seismic behavior of high rise building vs. shear wall system. Eng. Rep. 2019, 1, e12075. [Google Scholar] [CrossRef]
- Pall, A.; Pall, R.T. Performance-based design using pall friction dampers—An economical design solution. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Malhotra, A.; Roy, T.; Matsagar, V. Effectiveness of friction dampers in seismic and wind response control of connected adjacent steel buildings. Shock. Vib. 2020, 2020, 8304359. [Google Scholar] [CrossRef]
- Elias, S.; Rupakhety, R.; Olafsson, S. Tuned mass dampers for response reduction of a reinforced concrete chimney under near-fault pulse-like ground motions. Front. Built. Environ. 2020, 6. [Google Scholar] [CrossRef]
- Teplyshev, V.; Mylnik, A.; Pushkareva, M.; Agakhanov, M.; Burova, O. Application of tuned mass dampers in high-rise construction. In Proceedings of the E3S Web of Conferences, Paris, France, 6 March 2018. [Google Scholar] [CrossRef]
- Amjadian, M. A study on the use of an energy-regenerative tuned mass damper for vibration control and monitoring of base-isolated buildings. In Proceedings of the SPIE Smart Structures + Nondestructive Evaluation, Long Beach, CA, USA, 20 April 2022. [Google Scholar] [CrossRef]
- Infanti, S.; Robinson, J.; Smith, R. Viscous dampers for high-rise buildings. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Del Gobbo, G.M.; Blakeborough, A.; Williams, M.S. Improving total-building seismic performance using linear fluid viscous dampers. Bull. Earthq. Eng. 2018, 16, 4249–4272. [Google Scholar] [CrossRef]
- Chen, P.; Wu, X. Investigations on the dynamic response of adjacent buildings connected by viscous dampers. Buildings 2022, 12, 1480. [Google Scholar] [CrossRef]
- Kandemir-Mazanoglu, E.C.; Mazanoglu, K. An optimization study for viscous dampers between adjacent buildings. Mech. Syst. Signal Process. 2017, 89, 88–96. [Google Scholar] [CrossRef]
- Occhiuzzi, A.; Spizzuoco, M.; Serino, G. Experimental analysis of magnetorheological dampers for structural control. Smart Mater. Struct. 2003, 12, 703–711. [Google Scholar] [CrossRef]
- Zhu, X.; Jing, X.; Cheng, L. Magnetorheological fluid dampers: A review on structure design and analysis. J. Intell. Mater. Syst. Struct. 2012, 23, 839–873. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Xie, W.H.; Jing, X. Study on structures incorporated with MR damping material based on PSO algorithm. Front. Mater. 2019, 6. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.; Mohtasim, S.M.; Ahammed, R. State-of-the-art recent developments of large magnetorheological (MR) dampers: A review. Korea-Austria Rheol. J. 2022, 34, 105–136. [Google Scholar] [CrossRef]
- Baheti, A.S.; Matsagar, V.A. Wind and seismic response control of dynamic similar adjacent buildings connected using magneto-rheological dampers. Infrastructures 2022, 7, 167. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Aldwaik, M.; Adeli, H. Neurocomputing in civil infrastructure. Sci. Iran. 2016, 23, 2417–2428. [Google Scholar] [CrossRef]
- Salehi, H.; Burguen, R.; Chakrabartty, S.; Lajnef, N.; Alavi, A.H. A comprehensive review of self-powered sensors in civil infrastructure: State-of-the-art and future research trends. Eng. Struct. 2021, 234, 111963. [Google Scholar] [CrossRef]
- Muthalif, A.G.; Kasemi, H.G.; Nordin, N.D.; Rashid, M.; Razali, M.K.M. Semi-active vibration control using experimental model of magneto-rheological damper. Smart Struct. Syst. 2017, 20, 85–97. [Google Scholar] [CrossRef]
- Maciejewski, I.; Krzyzynski, T.; Pecolt, S.; Chamera, S. Semi-active vibration control of horizontal seat suspension by using magneto-rheological damper. J. Theor. Appl. Mech. 2019, 57, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.X.; Jiang, P. Qian Integrated semi-active seat suspension for both longitudinal and vertical isolation. J. Intell. Mater. Syst. Struct. 2017, 28, 1036–1049. [Google Scholar] [CrossRef]
- Dantas, C.; Gabriel, F.; da Costa Neto, R. Influence of the Distances between the Axles in the Vertical Dynamics of a Military Vehicle Equipped with Magnetorheological Dampers; SAE Technical Paper 2018-36-0232, 2018. [Google Scholar] [CrossRef]
- Ashianti, M.; Hashemabadi, S.; Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015, 374, 716–730. [Google Scholar] [CrossRef]
- Kumar, J.S.; Paul, P.S.; Raghunathan, G.; Alex, D.G. A review of challenges and solutions in the preparation and use of magnetorheological fluids. Int. J. Mech. Mater. Eng. 2019, 14, 13. [Google Scholar] [CrossRef]
- Khedkar, Y.M.; Bhat, S.; an Adarsha, H. A review of magneto-rheological fluid damper technology and its applications. Int. Rev. Mech. Eng. 2019, 13, 256–264. [Google Scholar]
- Duchanoy, C.A.; Armendariz, M.; Torres, J.; Villar, C. A deep neural network-based model for a kind of magnetorheological dampers. Sensor 2019, 19, 1333. [Google Scholar] [CrossRef] [PubMed]
- Engin, T.; Cesmeci, S. Comparison of some existing parametric models for magnetorheological fluid dampers. Smart Mater. Struct. 2010, 19, 035012. [Google Scholar] [CrossRef]
- Yang, G.; Spencer, B.; Carlson, J.; Sain, M. Large-scale MR fluid dampers: Modeling and dynamic performance considerations. Eng. Struct. 2002, 24, 309–323. [Google Scholar] [CrossRef]
- Yang, G.; Spencer, B.F.; Jung, H.J.; Carlson, D. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications. J. Eng. Mech. 2004, 130, 1107–1114. [Google Scholar] [CrossRef]
- Fujitani, H.; Sodeyama, H.; Tomura, T.; Hiwatashi, T.; Shiozaki, Y.; Hata, K.; Sunakoda, K.; Morishita, S.; Soda, S. Development of 400 kN magnetorheological damper for a real base-isolated building. Proc. SPIE-Int. Soc. Opt. Eng. 2003, 5052, 265–276. [Google Scholar] [CrossRef]
- Xu, Z.D.; Sha, L.F.; Zhang, X.C.; Ye, H.H. Design, performance test and analysis on magnetorheological damper for earthquake mitigation. Struct. Control. Health Monit. 2013, 20, 956–970. [Google Scholar] [CrossRef]
- Jansen, L.M.; Dyke, S.J. Semiactive control strategies for MR. dampers: Comparative study. J. Eng. Mech. 2000, 126, 795–803. [Google Scholar] [CrossRef]
- Bhardwaj, M.K.; Datta, T.K. Semiactive fuzzy control of the seismic response of buildings frame. J. Struct. Eng. 2006, 132, 791–799. [Google Scholar] [CrossRef]
- Bitaraf, M.; Ozbulut, O.E.; Hurlebaus, S.; Barroso, L. Application of semi-active control strategies for seismic protection of buildings with MR Dampers. Eng. Struct. 2010, 32, 3040–3047. [Google Scholar] [CrossRef]
- Aly, A.M. Vibration control of buildings using magnetorheological damper: A new control algorithm. J. Eng. 2013, 2013, 596078. [Google Scholar] [CrossRef]
- Bozorgvar, M.; Zahari, S.M. Semi active seismic control of buildings using MR damper and adaptive neural-fuzzy intelligent controller optimized with genetic algorithm. JVC/J. Vib. Control. 2019, 25, 273–285. [Google Scholar] [CrossRef]
- Bathaei, A.; Zahari, S.M.; Ramezani, M. Semi-active seismic control of an 11-DOF building model with TMD + MR damper using type-1 and -2 fuzzy algorithms. JVC/J. Vib. Control. 2018, 24, 2938–2953. [Google Scholar] [CrossRef]
- Bagherkhani, A.; Baghlani, A. Reliability assessment of MR fluid dampers in passive and semi-active seismic control of structures. Probabilistic Eng. Mech. 2021, 63, 103114. [Google Scholar] [CrossRef]
- Fakhry, A.A.; Torky, A.A.; Rashed, Y.F. Optimized seismic response control of coupled FEM-BEM high-rise structural models using magnetorheological dampers. J. Earthq. Eng. 2021, 11, 8092–8119. [Google Scholar] [CrossRef]
- Ohtori, Y.; Christenson, R.E.; Asce, A.M.; Spencer, B.F.; Asce, M.; Dyke, S.J. Benchmark control problems for seismically excited nonlinear buildings. ASCE J. Eng. Mech. 2004, 130, 366–385. [Google Scholar] [CrossRef]
- Hasan, A.; Torky, A.; Rashed, Y. Geometrically accurate structural analysis models in BIM-centered software. Autom. Constr. Vol. 2019, 104, 299–321. [Google Scholar] [CrossRef]
- Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: A review. Evol. Comput. 2017, 25, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Spencer, B.F.; Dyke, S.J.; Sain, M.K.; Carlson, J.D. Phenomenological model for magnetorheological dampers. J. Eng. Mech. 1997, 123, 230–238. [Google Scholar] [CrossRef]
- Jung, H.J.; Spencer, B.F.; Lee, I.W. Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers. J. Struct. Eng. 2003, 129, 873–883. [Google Scholar] [CrossRef]
Building 1 (9 Floors) | Building 2 (18 Floors) | |||||
---|---|---|---|---|---|---|
Target Response | Acc. | Disp. | Inter-Story Drift | Acc. | Disp. | Inter-Story Drift |
ECP | D | D | D | D | D | D |
ASCE | D | D | D | D | D | D |
Egypt 92 | S | S | S | S | S | S |
Aqabaa | S | S | S | S | S | S |
Northridge | S | S | S | S | S | S |
El Centro | S | S | S | S | S | S |
Building 1 (9 Floors) | Building 2 (18 Floors) | |
---|---|---|
Case | Target Floors | Target Floors |
1 | 3 | 6 |
2 | 6 | 12 |
3 | 9 | 18 |
4 | 3, 6 | 6, 12 |
5 | 3, 6, 9 | 12, 18 |
6 | 6, 9 | 6, 12, 18 |
7 | 3, 4 | 6, 7 |
8 | 3, 4, 5 | 6, 7, 8 |
9 | 6, 7 | 12, 13 |
10 | 6, 7, 8 | 12, 13, 14 |
11 | 2, 3, 4, 5 | 4, 5, 6, 7 |
12 | 6, 7, 8, 9 | 12, 13, 14, 15 |
Building 1 (9 Floors) | Building 2 (18 Floors) | |
---|---|---|
Case | Target floors | Target floors |
1 | 3 | 6 |
2 | 6 | 12 |
3 | 9 | 18 |
4 | 3, 6 | 6, 12 |
5 | 3, 6, 9 | 12, 18 |
6 | 6, 9 | 6, 12, 18 |
7 | 3, 4 | 6, 7 |
8 | 3, 4, 5 | 6, 7, 8 |
9 | 6, 7 | 12, 13 |
10 | 6, 7, 8 | 12, 13, 14 |
11 | 2, 3, 4, 5 | 4, 5, 6, 7 |
12 | 6, 7, 8, 9 | 12, 13, 14, 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhnoukh, A.; Farid, A.F.; Hasan, A.M.M.; Rashed, Y.F. Adjustment of Tall Building Behavior by Guided Optimization of Magneto-Rheological Damper Control Parameters. CivilEng 2023, 4, 596-617. https://doi.org/10.3390/civileng4020035
Akhnoukh A, Farid AF, Hasan AMM, Rashed YF. Adjustment of Tall Building Behavior by Guided Optimization of Magneto-Rheological Damper Control Parameters. CivilEng. 2023; 4(2):596-617. https://doi.org/10.3390/civileng4020035
Chicago/Turabian StyleAkhnoukh, Amin, Ahmed Fady Farid, Ahmed M. M. Hasan, and Youssef F. Rashed. 2023. "Adjustment of Tall Building Behavior by Guided Optimization of Magneto-Rheological Damper Control Parameters" CivilEng 4, no. 2: 596-617. https://doi.org/10.3390/civileng4020035
APA StyleAkhnoukh, A., Farid, A. F., Hasan, A. M. M., & Rashed, Y. F. (2023). Adjustment of Tall Building Behavior by Guided Optimization of Magneto-Rheological Damper Control Parameters. CivilEng, 4(2), 596-617. https://doi.org/10.3390/civileng4020035