Lifecycle Cost Analysis of Recycled Asphalt Pavements: Determining Cost of Recycled Materials for an Urban Highway Section
Abstract
:1. Introduction
2. Methodology
2.1 Goal and Scope
System Boundary, Alternate Scenarios, and Lifecycle Inventory
3. Results and Discussion
3.1. Distribution of Baseline Cost Impacts across Pavement Cross Section and Concrete Works
3.2. Cost Impacts of All Recycled and Alternate Material Scenarios during Initial Road Construction
3.3. Reduction Potential of Cost Impacts across Lifecycle Stages for Optimum Recycled and Alternate Materials across All Roadwork Components
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, S.; Vanier, D.J. Life cycle cost analysis as a decision support tool for managing municipal infrastructure. In Proceedings of the Building for the Future: The 16th CIB World Building Congress, Toronto, ON, Canada, 1–7 May 2004; Volume 2004, pp. 1–12. [Google Scholar]
- IRF. World Road Statistics 2010; International Road Federation: Geneva, Switzerland, 2010. [Google Scholar]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Critical review and methodological issues in integrated life-cycle analysis on road networks. J. Clean. Prod. 2019, 206, 541–558. [Google Scholar] [CrossRef]
- Batouli, M.; Bienvenu, M.; Mostafavi, A. Putting sustainability theory into roadway design practice: Implementation of LCA and LCCA analysis for pavement type selection in real world decision making. Transp. Res. Part D Transp. Environ. 2017, 52, 289–302. [Google Scholar] [CrossRef]
- Hasan, U. Development of a Multi-Criteria Decision-Making Framework for Sustainable Road Transport Systems: Integrating Stakeholder-Cost-Environment-Energy Lifecycle Impacts; Curtin University: Perth, WA, Australia, 2019. [Google Scholar]
- Chen, S.-H.; Ni, F.M.-W. Explore pavement roughness under various funding for the Taiwan provincial highways using LCCA. Int. J. Pavement Eng. 2018, 20, 1392–1399. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Life cycle assessment of roadworks in United Arab Emirates: Recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach. J. Clean. Prod. 2020, 257, 120531. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Framework for delivering an AV-based mass mobility solution: Integrating government-consumer actors and life-cycle analysis of transportation systems. In Proceedings of the 46th European Transport Conference, Dublin, Ireland, 10–12 October 2018; p. 18. [Google Scholar]
- Ruparathna, R.; Hewage, K.; Sadiq, R. Multi-period maintenance planning for public buildings: A risk based approach for climate conscious operation. J. Clean. Prod. 2018, 170, 1338–1353. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z. Deterministic and probabilistic life-cycle cost analysis of pavement overlays with different pre-overlay conditions. Road Mater. Pavement Des. 2017, 20, 58–73. [Google Scholar] [CrossRef]
- Walls, J.; Smith, M.R. Life-Cycle Cost Analysis in Pavement Design: In Search of Better Investment Decisions; FHWA-SA-98-079; Federal Highway Administration: Washington, DC, USA, 1998; p. 107. [Google Scholar]
- Bandara, N.; Gunaratne, M. Current and future pavement maintenance prioritization based on rapid visual condition evaluation. J. Transp. Eng. 2001, 127, 116–123. [Google Scholar] [CrossRef]
- Cho, H.-N.; Kim, J.-H.; Choi, Y.-M.; Lee, K.-M. Practical application of life-cycle cost effective design and rehabilitation of civil infrastructures. In Proceedings of the 3rd International Workshop on Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems, Lausanne, Switzerland, 25–26 March 2003. [Google Scholar]
- Flintsch, G.W.; Chen, C. Soft computing applications in infrastructure management. J. Infrastruct. Syst. 2004, 10, 157–166. [Google Scholar] [CrossRef]
- Chen, C. Soft Computing-Based Life-Cycle Cost Analysis Tools for Transportation Infrastructure Management; Virginia Polytechnic Institute: Blacksburg, VA, USA, 2007. [Google Scholar]
- Goh, K.C.; Yang, J. Developing a life-cycle costing analysis model for sustainability enhancement in road infrastructure project. In Rethinking Sustainable Development: Planning, Infrastructure Engineering, Design and Managing Urban Infrastructure; Queensland University of Technology: Brisbane, Australia, 2009; pp. 324–331. [Google Scholar]
- Han, C.; Ma, T.; Xu, G.; Chen, S. A multi-factor analysis approach for recycled asphalt mixture stockpile center location. Transp. Res. Part D Transp. Environ. 2020, 86, 102463. [Google Scholar] [CrossRef]
- Prakash, G.; Suman, S.K. An intensive overview of warm mix asphalt (WMA) technologies towards sustainable pavement construction. Innov. Infrastruct. Solut. 2022, 7, 1–26. [Google Scholar] [CrossRef]
- Hasan, U.; Chegenizadeh, A.; Budihardjo, M.A.; Nikraz, H. Experimental evaluation of construction waste and ground granulated blast furnace slag as alternative soil stabilisers. Geotech. Geol. Eng. 2016, 34, 1707–1722. [Google Scholar] [CrossRef]
- Hasan, U.; Chegenizadeh, A.; Budihardjo, M.A.; Nikraz, H. Shear strength evaluation of bentonite stabilised with recycled materials. J. GeoEngineering 2016, 11, 59–73. [Google Scholar]
- Bressi, S.; Santos, J.; Orešković, M.; Losa, M. A comparative environmental impact analysis of asphalt mixtures containing crumb rubber and reclaimed asphalt pavement using life cycle assessment. Int. J. Pavement Eng. 2021, 22, 524–538. [Google Scholar] [CrossRef]
- Ding, X.; Chen, L.; Ma, T.; Ma, H.; Gu, L.; Chen, T.; Ma, Y. Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder. Constr. Build. Mater. 2019, 203, 552–557. [Google Scholar] [CrossRef]
- Yu, B.; Liu, Q.; Gu, X. Data quality and uncertainty assessment methodology for pavement LCA. Int. J. Pavement Eng. 2018, 19, 519–525. [Google Scholar] [CrossRef]
- Waheed, U.; Hudson, W.R.; Ralph, H. Life-Cycle Cost and Benefit Analysis. In Public Infrastructure Asset Management; McGraw Hill: New York, NY, USA, 2013; p. 544. [Google Scholar]
- Hasan, A.; Hasan, U.; Whyte, A.; Al Jassmi, H. Lifecycle analysis of recycled asphalt pavements: Case study scenario analyses of an urban highway section. CivilEng 2022, 3, 242–262. [Google Scholar] [CrossRef]
- Abbas, W. UAE Invests More in Transportation. Khaleej Times, 23 December 2017. [Google Scholar]
- John, I. $1.6t Required for GCC Infrastructure Upgrade. Khaleej Times, 21 October 2019. [Google Scholar]
- El Gergawy, Y. Life Cycle Cost Analysis as a Technique to Reduce Project’s Cost Overruns of Assets in UAE: A Case Study-Based Research; British University in Dubai: Dubai, United Arab Emirates, 2011. [Google Scholar]
- Giani, M.I.; Dotelli, G.; Brandini, N.; Zampori, L. Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour. Conserv. Recycl. 2015, 104, 224–238. [Google Scholar] [CrossRef]
- Scheving, A.G. Life Cycle Cost Analysis of Asphalt and Concrete Pavements; Reykjavík University: Reykjavík, Iceland, 2011. [Google Scholar]
- Celauro, C.; Corriere, F.; Guerrieri, M.; Lo Casto, B.; Rizzo, A. Environmental analysis of different construction techniques and maintenance activities for a typical local road. J. Clean. Prod. 2017, 142, 3482–3489. [Google Scholar] [CrossRef]
- Santos, J.; Ferreira, A.; Flintsch, G. A life cycle assessment model for pavement management: Road pavement construction and management in Portugal. Int. J. Pavement Eng. 2015, 16, 315–336. [Google Scholar] [CrossRef]
- Biswas, W.K. Carbon footprint and embodied energy assessment of a civil works program in a residential estate of Western Australia. Int. J. Life Cycle Assess. 2014, 19, 732–744. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Assessing lifecycle environmental footprint of autonomous mass-mobility for urban highways by microsimulation-modelling. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Life-cycle asset management in residential developments building on transport system critical attributes via a data-mining algorithm. Buildings 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Public bus transport service satisfaction: Understanding its value to urban passengers towards improved uptake. Trans. Transp. Sci. 2021, 12, 25–37. [Google Scholar] [CrossRef]
- Arulrajah, A.; Piratheepan, J.; Bo, M.W.; Sivakugan, N. Geotechnical characteristics of recycled crushed brick blends for pavement sub-base applications. Can. Geotech. J. 2012, 49, 796–811. [Google Scholar] [CrossRef]
- Arulrajah, A.; Disfani, M.M.; Horpibulsuk, S.; Suksiripattanapong, C.; Prongmanee, N. Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Constr. Build. Mater. 2014, 58, 245–257. [Google Scholar] [CrossRef]
- Hasan, U.; Chegenizadeh, A.; Budihardjo, M.; Nikraz, H. A review of the stabilisation techniques on expansive soils. Aust. J. Basic Appl. Sci. 2015, 9, 541–548. [Google Scholar]
- Hasan, U. Experimental Study on Bentonite Stabilisation Using Construction Waste and Slag; Curtin University: Perth, Australia, 2015. [Google Scholar]
- Debbarma, S.; Ransinchung, R.N.G.D.; Singh, S. Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement. Constr. Build. Mater. 2019, 199, 508–525. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Shu, X.; Woods, M. Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Constr. Build. Mater. 2013, 44, 92–100. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Shu, X.; Jia, X.; Woods, M. Laboratory Performance Evaluation of Warm-Mix Asphalt Containing High Percentages of Reclaimed Asphalt Pavement. Transp. Res. Rec. 2012, 2294, 98–105. [Google Scholar] [CrossRef]
- Alshamsi, K.H.; Hussin, M.R.; Azam, M. The impact of inflation and GDP per capita on foreign direct investment: The case of United Arab Emirates. Invest. Manag. Financ. Innov. 2017, 12, 132–141. [Google Scholar]
- ADM. Standard Specifications for Road and Bridge Construction. 1997, p. 652. Available online: https://jawdah.qcc.abudhabi.ae/en/Registration/QCCServices/Services/STD/ISGL/ISGL-LIST/TR-542-1.pdf (accessed on 14 March 2022).
- Salman, S.; Alaswad, S. Alleviating road network congestion: Traffic pattern optimization using Markov chain traffic assignment. Comput. Oper. Res. 2018, 99, 191–205. [Google Scholar] [CrossRef]
- Yagoub, M.M. Monitoring of urban growth of a desert city through remote sensing: Al-Ain, UAE, between 1976 and 2000. Int. J. Remote Sens. 2004, 25, 1063–1076. [Google Scholar] [CrossRef]
- Elchalakani, M.; Aly, T.; Abu-Aisheh, E. Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Stud. Constr. Mater. 2014, 1, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Giustozzi, F.; Toraldo, E.; Crispino, M. Recycled airport pavements for achieving environmental sustainability: An Italian case study. Resour. Conserv. Recycl. 2012, 68, 67–75. [Google Scholar] [CrossRef]
- Turk, J.; Mauko Pranjić, A.; Mladenovič, A.; Cotič, Z.; Jurjavčič, P. Environmental comparison of two alternative road pavement rehabilitation techniques: Cold-in-place-recycling versus traditional reconstruction. J. Clean. Prod. 2016, 121, 45–55. [Google Scholar] [CrossRef]
- Harvey, J.; Meijer, J.; Ozer, H.; Al-Qadi, I.L.; Saboori, A.; Kendall, A. Pavement Life Cycle Assessment Framework; United States Federal Highway Administration: Urbana, IL, USA, 2016; p. 244. [Google Scholar]
- Vidal, R.; Moliner, E.; Martínez, G.; Rubio, M.C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour. Conserv. Recycl. 2013, 74, 101–114. [Google Scholar] [CrossRef]
- Jacobs, M.; van den Beemten, C.; Sluer, B.W. Successful Dutch experiences with low energy asphalt concrete. In Proceedings of the 11th International Conference on Asphalt Pavements, Nagoya, Japan, 1–6 August 2010; pp. 1459–1568. [Google Scholar]
Preconstruction Earthworks and Initial Construction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Backfill Component | Water | Sand | Local Silica sand | Geotextile Fabric (Polypropylene) | 20 MPa Concrete | Gravel | RCW | Unit Cost (USD) | ||
Virgin backfill | 454.6 × 103 L | 19.8 × 103 m3 | 13.10 × 103 m3 | 93,650 m2 | 650 m3 | 9100 m3 | - | 12,001,567 | ||
60% RCW backfill | 454.6 × 103 L | 19.8 × 103 m3 | 13.10 × 103 m3 | 93,650 m2 | 650 m3 | 3640 m3 | 5460 m3 | 6,820,652,699 | ||
Construction pavement stage and roadside concrete works | ||||||||||
Pavement Courses Varied between Alternates (Material Unit: Tonnes) | Crushed gravel | Sand | Virgin Bitumen | Hydrated lime | RCW | RAP | Unit cost (USD per tonne) | |||
Baseline (virgin HMA) | Granular sub-base course | 448 | - | - | - | - | - | 0.03376 | ||
Unbound-base course | 12,600 | - | - | - | - | - | 0.03498 | |||
4% bitumen asphalt-base course | 6177 | 2901 | 384.3 | 144.1 | - | - | 2.75602 | |||
4% bitumen asphalt binder course | 5719 | 2686 | 355.8 | 133.4 | - | - | 2.45536 | |||
4.5% bitumen asphalt wearing course | 9242 | 4353 | 650.9 | 216.9 | - | - | 11.42118 | |||
80% RCW u-base course | Unbound-base course | 10,080 | - | - | - | 2520 | - | 0.016220 | ||
25% sub-base, and 80% RCW unbound-base course | Granular sub-base course | 336 | - | - | - | 112 | - | 0.028202 | ||
Unbound-base course | 10,080 | - | - | - | 2520 | - | 0.016220 | |||
10% RAP asphalt base, binder and wearing courses | 4% bitumen asphalt-base course | 5563 | 2613 | 345.9 | 122.9 | - | 960.7 | 2.639400 | ||
4% bitumen asphalt binder course | 5149 | 2419 | 321.2 | 113.8 | - | 889.5 | 2.351500 | |||
4.5% bitumen asphalt wearing course | 8331 | 3920 | 585.8 | 183.7 | - | 1446 | 11.416232 | |||
15% RAP asphalt base, binder and wearing courses | 4% bitumen asphalt-base course | 5255 | 2469 | 326.6 | 116.3 | - | 1441 | 2.581091 | ||
4% bitumen asphalt binder course | 4865 | 2286 | 302.4 | 107.6 | - | 1334 | 2.299570 | |||
4.5% bitumen asphalt wearing course | 7868 | 3703 | 552.5 | 173.6 | - | 2170 | 11.413758 | |||
25% RAP asphalt base, 15% RAP binder and wearing courses | 4% bitumen asphalt-base course | 4640 | 2181 | 288.2 | 101.8 | - | 2402 | 2.569224 | ||
4% bitumen asphalt binder course | 4865 | 2286 | 302.4 | 107.6 | - | 1334 | 2.299570 | |||
4.5% bitumen asphalt wearing course | 7868 | 3703 | 552.5 | 173.6 | - | 2170 | 11.413758 | |||
Warm-mix asphalt case | Granular sub-base course | 448 | - | - | - | - | - | 0.033760 | ||
Unbound-base course | 12,600 | - | - | - | - | - | 0.034979 | |||
4% bitumen asphalt-base course | 6177 | 2901 | 384.3 | 144.1 | - | - | 2.497642 | |||
4% bitumen asphalt binder course | 5719 | 2686 | 355.8 | 133.4 | - | - | 2.225168 | |||
4.5% bitumen asphalt wearing course | 9242 | 4353 | 650.9 | 216.9 | - | - | 11.410277 | |||
25% RCW sub-base, 80% RCW unbound-base, 25% WMA RAP asphalt-base, 15% WMA RAP binder and wearing courses | Granular sub-base course | 336 | - | - | - | 112 | - | 0.028203 | ||
Unbound-base course | 10,080 | - | - | - | 2520 | - | 0.01622 | |||
4% bitumen asphalt-base course | 4640 | 2181 | 288.2 | 101.8 | - | 2402 | 2.328360 | |||
4% bitumen asphalt binder course | 4865 | 2286 | 302.4 | 107.6 | - | 1334 | 2.083986 | |||
4.5% bitumen asphalt wearing course | 7868 | 3703 | 552.5 | 173.6 | - | 2170 | 11.403551 | |||
Concrete Works Component (Material Unit: Tonnes) | Clinker | Gypsum | Limestone | GGBFS | Sand | Gravel | Unit cost (USD) | |||
Baseline scenario (100% OPC) | 416.053 | 21.897 | 23.050 | - | 2090.330 | 2280.153 | 4.19946/tonne | |||
Recycled material scenario (65% GGBFS) | 216.809 | 11.387 | - | 232.806 | 2090.330 | 2280.153 | 4.16667/tonne | |||
Maintenance and Rehabilitation Stage Pavement and Roadside Concrete Works | ||||||||||
Pavement Courses Varied between Alternates (Material Unit: Tonnes) | Crushed gravel | Sand | Virgin bitumen | Hydrated Lime | RCW | RAP | Removed RAP | Unit cost (USD) | ||
Baseline (virgin HMA) | Premaintenance surveying, site clearance and traffic control during construction | - | - | - | - | - | - | - | 145,841/month | |
Pavement wearing course milling (cold planning) | 4413.533 | 0.07293/tonne | ||||||||
4.5% bitumen asphalt wearing course | 2820 | 1328 | 198.6 | 66.2 | - | - | - | 13.846/tonne | ||
15% RAP asphalt wearing course | Premaintenance surveying and Traffic control during construction | - | - | - | - | - | - | - | 145,841/month | |
Pavement wearing course milling (cold planning) | 4413.533 | 0.0729/tonne | ||||||||
4.5% bitumen asphalt wearing course | 2401 | 1130 | 168.6 | 53.0 | - | 662.2 | - | 13.4725/tonne | ||
Concrete Works Component (Material Unit: Tonnes) | Clinker | Gypsum | Limestone | GGBFS | Sand | Gravel | Unit cost (USD) | |||
Baseline scenario (100% OPC) | 8.321 | 0.438 | 0.461 | - | 41.807 | 45.603 | 4.19946/tonne | |||
Recycled material scenario (65% GGBFS) | 4.336 | 0.228 | - | 4.656 | 41.807 | 45.603 | 4.16667/tonne |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, U.; Whyte, A.; Al Jassmi, H.; Hasan, A. Lifecycle Cost Analysis of Recycled Asphalt Pavements: Determining Cost of Recycled Materials for an Urban Highway Section. CivilEng 2022, 3, 316-331. https://doi.org/10.3390/civileng3020019
Hasan U, Whyte A, Al Jassmi H, Hasan A. Lifecycle Cost Analysis of Recycled Asphalt Pavements: Determining Cost of Recycled Materials for an Urban Highway Section. CivilEng. 2022; 3(2):316-331. https://doi.org/10.3390/civileng3020019
Chicago/Turabian StyleHasan, Umair, Andrew Whyte, Hamad Al Jassmi, and Aisha Hasan. 2022. "Lifecycle Cost Analysis of Recycled Asphalt Pavements: Determining Cost of Recycled Materials for an Urban Highway Section" CivilEng 3, no. 2: 316-331. https://doi.org/10.3390/civileng3020019
APA StyleHasan, U., Whyte, A., Al Jassmi, H., & Hasan, A. (2022). Lifecycle Cost Analysis of Recycled Asphalt Pavements: Determining Cost of Recycled Materials for an Urban Highway Section. CivilEng, 3(2), 316-331. https://doi.org/10.3390/civileng3020019