Exploring the Benefits of 3D Smart MRI in Resident Training and Surgical Planning for Transcervical Radiofrequency Ablation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christoffel, L.; Römer, T.; Schiermeier, S. Transcervical Radiofrequency Ablation of Uterine Fibroids Global Registry (SAGE): Study Protocol and Preliminary Results. Med. Devices 2021, 14, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.H.; Lindner, L.H.; Gill, T.L.; Hurst, B.S. Transcervical Fibroid Ablation (TFA): Current Status and New Developments. Curr. Obstet. Gynecol. Rep. 2024, 13, 237–245. [Google Scholar] [CrossRef]
- Woźniak, A.; Woźniak, S. Ultrasonography of uterine leiomyomas. Prz. Menopauzalny 2017, 16, 113–117. [Google Scholar] [CrossRef]
- Hindman, N.; Kang, S.; Fournier, L.; Lakhman, Y.; Nougaret, S.; Reinhold, C.; Sadowski, E.; Huang, J.Q.; Ascher, S. MRI Evaluation of Uterine Masses for Risk of Leiomyosarcoma: A Consensus Statement. Radiology 2023, 306, e211658. [Google Scholar] [CrossRef]
- DeMulder, D.; Ascher, S.M. Uterine Leiomyosarcoma: Can MRI Differentiate Leiomyosarcoma From Benign Leiomyoma Before Treatment? AJR Am. J. Roentgenol. 2018, 211, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zheng, X.; Zhou, Z.; Shi, Y.; Wu, Q.; Lin, K. Differentiating cellular leiomyoma from uterine sarcoma and atypical leiomyoma using multi-parametric MRI. Front. Oncol. 2022, 12, 1005191. [Google Scholar] [CrossRef] [PubMed]
- Loughborough, W.W.; Rockall, A.G.; Gagliardi, T.T.; Satchwell, L.; Greenlay, E.; Osborne, P.; Bharwani, N.; Ind, T.; Attygalle, A.; Lother, D.; et al. Comparison of MRI imaging features to differentiate degenerating fibroids from uterine leiomyosarcomas. Rare Tumors 2025, 17, 20363613251327080. [Google Scholar] [CrossRef]
- Toub, D.B. A New Paradigm for Uterine Fibroid Treatment: Transcervical, Intrauterine Sonography-Guided Radiofrequency Ablation of Uterine Fibroids with the Sonata System. Curr. Obstet. Gynecol. Rep. 2017, 6, 67–73. [Google Scholar] [CrossRef]
- Levens, E.D.; Wesley, R.; Premkumar, A.; Blocker, W.; Nieman, L.K. Magnetic resonance imaging and transvaginal ultrasound for determining fibroid burden: Implications for research and clinical care. Am. J. Obstet. Gynecol. 2009, 200, 537.e1–537.e7. [Google Scholar] [CrossRef]
- Dueholm, M.; Lundorf, E.; Hansen, E.S.; Ledertoug, S.; Olesen, F. Accuracy of magnetic resonance imaging and transvaginal ultrasonography in the diagnosis, mapping, and measurement of uterine myomas. Am. J. Obstet. Gynecol. 2002, 186, 409–415. [Google Scholar] [CrossRef]
- Lee, B.B.; Yu, S.P. Radiofrequency Ablation of Uterine Fibroids: A Review. Curr. Obstet. Gynecol. Rep. 2016, 5, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Maizel, J.; Guyomarc’h, L.; Henon, P.; Modeliar, S.S.; de Cagny, B.; Choukroun, G.; Slama, M. Residents learning ultrasound-guided catheterization are not sufficiently skilled to use landmarks. Crit. Care 2014, 18, R36. [Google Scholar] [CrossRef]
- Sites, B.D.; Gallagher, J.D.; Cravero, J.; Lundberg, J.; Blike, G. The learning curve associated with a simulated ultrasound-guided interventional task by inexperienced anesthesia residents. Reg. Anesth. Pain Med. 2004, 29, 544–548. [Google Scholar] [CrossRef]
- Mendiratta-Lala, M.; Williams, T.; de Quadros, N.; Bonnett, J.; Mendiratta, V. The use of a simulation center to improve resident proficiency in performing ultrasound-guided procedures. Acad. Radiol. 2010, 17, 535–540. [Google Scholar] [CrossRef]
- Bourdel, N.; Collins, T.; Pizarro, D.; Debize, C.; Grémeau, A.-s.; Bartoli, A.; Canis, M. Use of augmented reality in laparoscopic gynecology to visualize myomas. Fertil. Steril. 2017, 107, 737–739. [Google Scholar] [CrossRef]
- Aluwee, S.A.Z.B.S.; Kato, H.; Zhou, X.; Hara, T.; Fujita, H.; Kanematsu, M.; Furui, T.; Yano, R.; Miyai, N.; Morishige, K.-i. Magnetic resonance imaging of uterine fibroids: A preliminary investigation into the usefulness of 3D-rendered images for surgical planning. Springerplus 2015, 4, 1–8. [Google Scholar] [CrossRef]
- Collins, T.; Pizarro, D.; Gasparini, S.; Bourdel, N.; Chauvet, P.; Canis, M.; Calvet, L.; Bartoli, A. Augmented reality guided laparoscopic surgery of the uterus. IEEE Trans. Med. Imaging 2020, 40, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Sayed Aluwee, S.A.Z.B.; Zhou, X.; Kato, H.; Makino, H.; Muramatsu, C.; Hara, T.; Matsuo, M.; Fujita, H. Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiol. Phys. Technol. 2017, 10, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Mercorio, A.; Zizolfi, B.; Barbuto, S.; Danzi, R.; Sardo, A.D.S.; Moawad, G.; Bifulco, G.; Giampaolino, P. Three-dimensional imaging reconstruction and laparoscopic robotic surgery: A winning combination for a complex case of multiple myomectomy. Fertil. Steril. 2023, 120, 202–204. [Google Scholar] [CrossRef]
- Yang, L.; Bu, G.; Zhao, J.; La, X.; Ma, C. Comparison of 3D and 2D laparoscopy: Initial experience of perioperative outcomes and clinical assessment. J. Gynecol. Obstet. Hum. Reprod. 2024, 53, 102754. [Google Scholar] [CrossRef]
- Han, Y.G.; Lim, K.M.; Song, T. Comparison of surgical outcomes between 3-dimensional and 2-dimensional laparoscopy of ovarian cyst (LOOC): A randomised controlled trial. J. Obstet. Gynaecol. 2022, 42, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Janghorbani, S.A.C.; Nchako, C.; Musselman, K.; Polanco, J.; Lamparello, N.A.; Schiffman, M.; Cantillo, E.; Fenster, T.; Mosadegh, B. Advancing Minimally Invasive Myomectomy: A Pilot Study on the Benefits of 3D Visualization for Uterine Fibroid Removal. npj Women’s Health 2025. under review. [Google Scholar]
- Bui, I.; Bhattacharya, A.; Wong, S.H.; Singh, H.R.; Agarwal, A. Role of Three-Dimensional Visualization Modalities in Medical Education. Front. Pediatr. 2021, 9, 760363. [Google Scholar] [CrossRef]
- Brooke, J. SUS-A quick and dirty usability scale. Usability Eval. Ind. 1996, 189, 4–7. [Google Scholar]
- Geoffrion, R.; Lee, T.; Singer, J. Validating a self-confidence scale for surgical trainees. J. Obstet. Gynaecol. Can. 2013, 35, 355–361. [Google Scholar] [CrossRef]
- Geoffrion, R.; Koenig, N.A.; Cundiff, G.W.; Flood, C.; Hyakutake, M.T.; Schulz, J.; Brennand, E.A.; Lee, T.; Singer, J.; Todd, N.J. Procedure-specific simulation for vaginal surgery training: A randomized controlled trial. Acta Obstet. Gynecol. Scand. 2024, 103, 1165–1174. [Google Scholar] [CrossRef]
- Schlegel, L.; Ho, M.; Fields, J.M.; Backlund, E.; Pugliese, R.; Shine, K.M. Standardizing evaluation of patient-specific 3D printed models in surgical planning: Development of a cross-disciplinary survey tool for physician and trainee feedback. BMC Med. Educ. 2022, 22, 614. [Google Scholar] [CrossRef]
- Lee, E.C.; Whitehead, A.L.; Jacques, R.M.; Julious, S.A. The statistical interpretation of pilot trials: Should significance thresholds be reconsidered? BMC Med. Res. Methodol. 2014, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Altom, E.; Fouad, A.; Bilal, D.; Alsudairy, N. Awareness, Training, and Perceived Needs of Gynecologists in Interpreting Basic Imaging Studies: A Cross-Sectional Survey in Saudi Arabia. Cureus 2024, 16, e73748. [Google Scholar] [CrossRef]
- Yoo, E.-H.; Lee, P.I.; Huh, C.-Y.; Kim, D.-H.; Lee, B.-S.; Lee, J.-K.; Kim, D. Predictors of leiomyoma recurrence after laparoscopic myomectomy. J. Minim. Invasive Gynecol. 2007, 14, 690–697. [Google Scholar] [CrossRef]
- Kotani, Y.; Tobiume, T.; Fujishima, R.; Shigeta, M.; Takaya, H.; Nakai, H.; Suzuki, A.; Tsuji, I.; Mandai, M.; Matsumura, N. Recurrence of uterine myoma after myomectomy: Open myomectomy versus laparoscopic myomectomy. J. Obstet. Gynaecol. Res. 2018, 44, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Lindner, L.H.; Roy, K.; Toub, D.B. Transcervical Fibroid Ablation (TFA) with the Sonata System: Updated Review of a New Paradigm for Myoma Treatment. Curr. Obstet. Gynecol. Rep. 2022, 11, 238–248. [Google Scholar] [CrossRef]
- Hansen-Lindner, L.; Schmid-Lossberg, J.; Toub, D. Transcervical Fibroid Ablation (TFA): Update on Pregnancy Outcomes. J. Clin. Med. 2024, 13, 2892. [Google Scholar] [CrossRef] [PubMed]
- Khaw, S.C.; Anderson, R.A.; Lui, M.W. Systematic review of pregnancy outcomes after fertility-preserving treatment of uterine fibroids. Reprod. Biomed. Online 2020, 40, 429–444. [Google Scholar] [CrossRef]
- Li, H.; Hu, Z.; Fan, Y.; Hao, Y. The influence of uterine fibroids on adverse outcomes in pregnant women: A meta-analysis. BMC Pregnancy Childbirth 2024, 24, 345. [Google Scholar] [CrossRef]
- Hazimeh, D.; Coco, A.; Casubhoy, I.; Segars, J.; Singh, B. The Annual Economic Burden of Uterine Fibroids in the United States (2010 Versus 2022): A Comparative Cost-Analysis. Reprod. Sci. 2024, 31, 3743–3756. [Google Scholar] [CrossRef]
- Armano, G.; Barbuto, S.; Wagner, S.; Carugno, J.; Bifulco, G.; Di Spiezio Sardo, A. Incorporating 3D reconstruction in preoperative surgical planning of Multiple Myomectomy. Facts Views Vis. Obgyn 2022, 14, 87–89. [Google Scholar] [CrossRef]
- Bourdel, N.; Chauvet, P.; Calvet, L.; Magnin, B.; Bartoli, A.; Canis, M. Use of augmented reality in gynecologic surgery to visualize adenomyomas. J. Minim. Invasive Gynecol. 2019, 26, 1177–1180. [Google Scholar] [CrossRef]
- Torabinia, M.; Caprio, A.; Fenster, T.B.; Mosadegh, B. Single evaluation of use of a mixed reality headset for intra-procedural image-guidance during a mock laparoscopic myomectomy on an ex-vivo fibroid model. Appl. Sci. 2022, 12, 563. [Google Scholar] [CrossRef]
- Romanò, G.; Klarskov, N.; Lassen, P.D.; Bennich, G.; Hoffmann, E. 3-Dimensional versus standard 2-D laparoscopy for benign hysterectomy: A randomized clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 298, 187–191. [Google Scholar] [CrossRef]
- Akdemir, A.; Sendağ, F.; Oztekin, M.K. Laparoscopic virtual reality simulator and box trainer in gynecology. Int. J. Gynecol. Obstet. 2014, 125, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Bourdel, N.; Collins, T.; Pizarro, D.; Bartoli, A.; Da Ines, D.; Perreira, B.; Canis, M. Augmented reality in gynecologic surgery: Evaluation of potential benefits for myomectomy in an experimental uterine model. Surg. Endosc. 2017, 31, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Lesch, H.; Johnson, E.; Peters, J.; Cendán, J.C. VR Simulation Leads to Enhanced Procedural Confidence for Surgical Trainees. J. Surg. Educ. 2020, 77, 213–218. [Google Scholar] [CrossRef]
- Taunk, N.K.; Shah, N.K.; Hubley, E.; Anamalayil, S.; Trotter, J.W.; Li, T. Virtual reality-based simulation improves gynecologic brachytherapy proficiency, engagement, and trainee self-confidence. Brachytherapy 2021, 20, 695–700. [Google Scholar] [CrossRef]
- Flaxman, T.E.; Cooke, C.M.; Miguel, O.X.; Sheikh, A.; McInnes, M.; Duigenan, S.; Singh, S.S. The Value of Using Patient-Specific 3D-Printed Anatomical Models in Surgical Planning for Patients With Complex Multifibroid Uteri. J. Obstet. Gynaecol. Can. 2024, 46, 102435. [Google Scholar] [CrossRef] [PubMed]
- Rygiel, C.A.; Dolinoy, D.C.; Bakulski, K.M.; Aung, M.T.; Perng, W.; Jones, T.R.; Solano-González, M.; Hu, H.; Tellez-Rojo, M.M.; Schnaas, L.; et al. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. Environ. Epigenet. 2021, 7, dvab005. [Google Scholar] [CrossRef]
- Pelton, G.H.; Soleimani, L.; Roose, S.P.; Tabert, M.H.; Devanand, D.P. Olfactory Deficits Predict Cognitive Improvement on Donepezil in Patients With Depression and Cognitive Impairment: A Randomized Controlled Pilot Study. Alzheimer Dis. Assoc. Disord. 2016, 30, 67–69. [Google Scholar] [CrossRef]
- Devanand, D.P.; Pelton, G.H.; Cunqueiro, K.; Sackeim, H.A.; Marder, K. A 6-month, randomized, double-blind, placebo-controlled pilot discontinuation trial following response to haloperidol treatment of psychosis and agitation in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2011, 26, 937–943. [Google Scholar] [CrossRef]
Fibroid Treatment | Control (n = 8) | Test (n = 6) | p-Value | Effect Size | 95% CI |
---|---|---|---|---|---|
All Fibroids | 75% ± 26% | 90% ± 11% | 0.19 | 0.67 | [−0.36, 1.69] |
| 100% | 100% | — | — | — |
| 25% | 83% | 0.10 | 1.25 | [0.25, 3.14] |
| 75% | 83% | 0.99 | 0.20 | [−1.13, 1.57] |
| 100% | 100% | — | — | — |
| 88% | 83% | 0.99 | −0.12 | [−1.47, 1.21] |
Procedure Time | Unit | Control (n = 8) | Test (n = 6) | p-Value | Effect Size | 95% CI |
---|---|---|---|---|---|---|
Total Time | Min | 2.69 ± 0.97 | 3.46 ± 2.09 | 0.33 | 0.47 | [−0.54, 1.47] |
| Sec | 17.7 ± 10.1 | 39.5 ± 36.5 | 0.13 | 0.82 | [−0.21, 1.86] |
| Sec | — | — | — | — | — |
| Sec | 40.5 ± 31.3 | 22.0 ± 6.9 | 0.23 | −0.71 | [−1.84, 0.41] |
| Sec | 28.0 ± 23.8 | 53.5 ± 70.5 | 0.35 | 0.49 | [0.52, 1.49] |
| Sec | 48.1 ± 45.2 | 27.8 ± 14.9 | 0.36 | −0.52 | [−1.60, 0.56] |
Question | Control (n = 8) | Test (n = 6) | p-Value | Effect Size | 95% CI |
---|---|---|---|---|---|
Prior Clinical Experience | |||||
Q1. Have you completed US/Family Planning elective? | 63% | 67% | 1.0 | 0.09 | [−1.2, 1.6] |
Q2. How many TVUS have you performed? | 11.2 ± 7.2 | 13.5 ± 6.5 | 0.71 | 0.31 | [−0.7, 1.4] |
Q3. How many US ablations performed as primary surgeon? | 2.8 ± 1.3 | 2.3 ± 1.3 | 0.65 | −0.36 | [−1.4, 0.6] |
Q4. How many US-guided ablations have you assisted? | 2.4 ± 1.3 | 2.9 ± 2.5 | 0.99 | 0.25 | [−0.8, 1.2] |
Q5. With how many attendings have you done ablations? | 1.4 ± 0.7 | 1.7 ± 0.5 | 0.56 | 0.45 | [−0.6, 1.5] |
User Comfort | |||||
Q6. How comfortable are you with US-guided ablations? | 2.0 ± 1.2 | 2.5 ± 1.2 | 0.44 | 0.39 | [−0.6, 1.4] |
Q7. How comfortable with identifying fibroids on TVUS? | 2.7 ± 1.3 | 3.2 ± 1.0 | 0.60 | 0.40 | [−0.6, 1.4] |
Q8. Comfortable doing TVUS ablation w/o company rep? | 62% | 67% | 1.0 | 0.09 | [−1.2, 1.6] |
Benefits of 3D Smart MRI vs. Reports | |||||
Q9. Did you locate and treat all the treatable fibroids? | 43% | 83% | 0.27 | 0.87 | [−0.3, 2.4] |
Q10. I had a good understanding of fibroids’ location in the uterus. | 4.0 ± 0.5 | 4.7 ± 0.5 | 0.08 | 1.31 | [0.2, 2.4] |
Q11. I am confident in my spatial understanding between the fibroids. | 3.3 ± 0.9 | 4.6 ± 0.6 | 0.02 | 1.50 | [0.3, 2.7] |
Q12. I am confident in my spatial understanding of fibroids & uterus. | 3.8 ± 0.9 | 4.3 ± 0.8 | 0.27 | 0.54 | [−0.5, 1.6] |
Clinical Utility of 3D Smart MRI | |||||
Q13. Smart MRI was helpful for surgery decision making. | — | 4.8 ± 0.4 | — | — | — |
Q14. Smart MRI made me more accurate in treating fibroids. | — | 4.7 ± 0.8 | — | — | — |
Q15. Smart MRI was helpful for intra-operative efficiency. | — | 4.5 ± 0.8 | — | — | — |
Q16. Smart MRI made me more confident treating all fibroids. | — | 4.3 ± 1.2 | — | — | — |
Q17. Smart MRI was helpful for complex decision-making. | — | 4.7 ± 0.5 | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janghorbani, S.; Weprinsky, V.; Caprio, A.; Fenster, T.; Mosadegh, B. Exploring the Benefits of 3D Smart MRI in Resident Training and Surgical Planning for Transcervical Radiofrequency Ablation. Surgeries 2025, 6, 46. https://doi.org/10.3390/surgeries6020046
Janghorbani S, Weprinsky V, Caprio A, Fenster T, Mosadegh B. Exploring the Benefits of 3D Smart MRI in Resident Training and Surgical Planning for Transcervical Radiofrequency Ablation. Surgeries. 2025; 6(2):46. https://doi.org/10.3390/surgeries6020046
Chicago/Turabian StyleJanghorbani, Sepehr, Victoria Weprinsky, Alexandre Caprio, Tamatha Fenster, and Bobak Mosadegh. 2025. "Exploring the Benefits of 3D Smart MRI in Resident Training and Surgical Planning for Transcervical Radiofrequency Ablation" Surgeries 6, no. 2: 46. https://doi.org/10.3390/surgeries6020046
APA StyleJanghorbani, S., Weprinsky, V., Caprio, A., Fenster, T., & Mosadegh, B. (2025). Exploring the Benefits of 3D Smart MRI in Resident Training and Surgical Planning for Transcervical Radiofrequency Ablation. Surgeries, 6(2), 46. https://doi.org/10.3390/surgeries6020046