The Impact of Multiple Sclerosis on Work Productivity: A Preliminary Look at the North American Registry for Care and Research in Multiple Sclerosis
Abstract
1. Introduction
2. Methods
Data and Analysis
3. Results
3.1. Demographics
3.1.1. MS Characteristics and Related Disability
3.1.2. Employment Status
3.2. MS Impact on Housework
3.3. Indirect Costs of Disability
3.4. Resources Used
3.5. Trends of Number of Relapses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclosures
References
- Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Murray, C.J. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef]
- Kister, I.; Chamot, E.; Salter, A.R.; Cutter, G.R.; Bacon, T.E.; Herbert, J. Disability in multiple sclerosis. Neurology 2013, 80, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Kister, I.; Bacon, T.E.; Chamot, E.; Salter, A.R.; Cutter, G.R.; Kalina, J.T.; Herbert, J. Natural History of Multiple Sclerosis Symptoms. Int. J. MS Care 2013, 15, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Taylor, B.; Palmer, A.J.; Kirk-Brown, A.; van Dijk, P.; Simpson, S.; Blizzard, L.; van der Mei, I. Estimating MS-related work productivity loss and factors associated with work productivity loss in a representative Australian sample of people with multiple sclerosis. Mult. Scler. 2019, 25, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Simmons, R.D.; Tribe, K.L.; McDonald, E.A. Living with multiple sclerosis: Longitudinal changes in employment and the importance of symptom management. J. Neurol. 2010, 257, 926–936. [Google Scholar] [CrossRef]
- Amato, M.P.; Battaglia, M.A.; Caputo, D.; Fattore, G.; Gerzeli, S.; Pitaro, M.; Reggio, A.; Trojano, M. The costs of multiple sclerosis: A cross-sectional, multicenter cost-of-illness study in Italy. J. Neurol. 2002, 249, 152–163. [Google Scholar] [CrossRef]
- Ma, V.Y.; Chan, L.; Carruthers, K.J. The Incidence, Prevalence, Costs and Impact on Disability of Common Conditions Requiring Rehabilitation in the US: Stroke, Spinal Cord Injury, Traumatic Brain Injury, Multiple Sclerosis, Osteoarthritis, Rheumatoid Arthritis, Limb Loss, and Back Pain. Arch. Phys. Med. Rehabil. 2014, 95, 986–995.e1. [Google Scholar] [CrossRef]
- Adelman, G.; Rane, S.G.; Villa, K.F. The cost burden of multiple sclerosis in the United States: A systematic review of the literature. J. Med. Econ. 2013, 16, 639–647. [Google Scholar] [CrossRef]
- Castelo-Branco, A.; Landfeldt, E.; Svedbom, A.; Löfroth, E.; Kavaliunas, A.; Hillert, J. Clinical course of multiple sclerosis and labour-force absenteeism: A longitudinal population-based study. Eur. J. Neurol. 2019, 26, 603–609. [Google Scholar] [CrossRef]
- Nana, A.; Ruth, A.M.; Christina, B.; Rochelle, G.; Douglas, G.M.; Ron, W.; Kim, R. Multiple sclerosis in Canada 2011 to 2031: Results of a microsimulation modelling study of epidemiological and economic impacts. Health Promot. Chronic Dis. Prev. Can. 2017, 37, 37–48. [Google Scholar]
- Kobelt, G.; Thompson, A.; Berg, J.; Gannedahl, M.; Eriksson, J. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler. 2017, 23, 1123–1136. [Google Scholar] [CrossRef]
- Rasmussen, P.V.; Kobelt, G.; Berg, J.; Capsa, D.; Gannedahl, M. New insights into the burden and costs of multiple sclerosis in Europe: Results for Denmark. Mult. Scler. 2017, 23, 53–64. [Google Scholar] [CrossRef]
- Battaglia, M.; Kobelt, G.; Ponzio, M.; Berg, J.; Capsa, D.; Dalén, J.; European Multiple Sclerosis Platform. New insights into the burden and costs of multiple sclerosis in Europe: Results for Italy. Mult. Scler. 2017, 23, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Brundin, L.; Kobelt, G.; Berg, J.; Capsa, D.; Eriksson, J. New insights into the burden and costs of multiple sclerosis in Europe: Results for Sweden. Mult. Scler. 2017, 23, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Kobelt, G.; Teich, V.; Cavalcanti, M.; Canzonieri, A.M. Burden and cost of multiple sclerosis in Brazil. PLoS ONE 2019, 14, e0208837. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, F.; Fredrikson, S.; Masterman, T.; Jönsson, B. Costs, quality of life and disease severity in multiple sclerosis: A cross-sectional study in Sweden. Eur. J. Neurol. 2001, 8, 27–35. [Google Scholar] [CrossRef]
- Heinzlef, O.; Molinier, G.; van Hille, B.; Radoszycki, L.; Dourgnon, P.; Longin, J. Economic Burden of the Out-of-Pocket Expenses for People with Multiple Sclerosis in France. Pharmacoecon Open 2020, 4, 593–603. [Google Scholar] [CrossRef]
- Reese, J.P.; John, A.; Wienemann, G.; Wellek, A.; Sommer, N.; Tackenberg, B.; Balzer-Geldsetzer, M.; Dodel, R. Economic Burden in a German Cohort of Patients with Multiple Sclerosis. Eur. Neurol. 2011, 66, 311–321. [Google Scholar] [CrossRef]
- Svendsen, B.; Grytten, N.; Bø, L.; Aarseth, H.; Smedal, T.; Myhr, K.-M. The economic impact of multiple sclerosis to the patients and their families in Norway. Eur. J. Health Econ. 2018, 19, 1243–1257. [Google Scholar] [CrossRef]
- Jones, E.; Pike, J.; Marshall, T.; Ye, X. Quantifying the relationship between increased disability and health care resource utilization, quality of life, work productivity, health care costs in patients with multiple sclerosis in the US. BMC Health Serv. Res. 2016, 16, 294. [Google Scholar] [CrossRef]
- Neuberger, E.E.; Abbass, I.M.; Jones, E.; Engmann, N.J. Work Productivity Outcomes Associated with Ocrelizumab Compared with Other Disease-Modifying Therapies for Multiple Sclerosis. Neurol. Ther. 2021, 10, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Purmonen, T.; Hakkarainen, T.; Tervomaa, M.; Ruutiainen, J. Impact of multiple sclerosis phenotypes on burden of disease in Finland. J. Med. Econ. 2019, 23, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Campbell, J.A.; van der Mei, I.; Taylor, B.V.; Zhao, T.; Palmer, A.J. The increasing economic burden of multiple sclerosis by disability severity in Australia in 2017: Results from updated and detailed data on types of costs. Mult. Scler. Relat. Disord. 2020, 44, 102247. [Google Scholar] [CrossRef] [PubMed]
- Glanz, B.I.; Degano, I.R.; Rintell, D.J.; Chitnis, T.; Weiner, H.L.; Healy, B.C. Work Productivity in Relapsing Multiple Sclerosis: Associations with Disability, Depression, Fatigue, Anxiety, Cognition, and Health-Related Quality of Life. Value Health 2012, 15, 1029–1035. [Google Scholar] [CrossRef]
- Gupta, S.; Goren, A.; Phillips, A.L.; Dangond, F.; Stewart, M. Self-reported severity among patients with multiple sclerosis in the U.S. and its association with health outcomes. Mult. Scler. Relat. Disord. 2014, 3, 78–88. [Google Scholar] [CrossRef]
- Chen, A.Y.; Chonghasawat, A.O.; Leadholm, K.L. Multiple sclerosis: Frequency, cost, and economic burden in the United States. J. Clin. Neurosci. 2017, 45, 180–186. [Google Scholar] [CrossRef]
- Nicholas, J.A.; Electricwala, B.; Lee, L.K.; Johnson, K.M. Burden of relapsing-remitting multiple sclerosis on workers in the US: A cross-sectional analysis of survey data. BMC Neurol. 2019, 19, 258. [Google Scholar] [CrossRef]
- Kobelt, G.; Berg, J.; Atherly, D.; Hadjimichael, O. Costs and quality of life in multiple sclerosis: A cross-sectional study in the United States. Neurology 2006, 66, 1696–1702. [Google Scholar] [CrossRef]
- Cavallari, M.; Palotai, M.; Glanz, B.I.; Egorova, S.; Prieto, J.C.; Healy, B.C.; Chitnis, T.; Guttmann, C.R. Fatigue predicts disease worsening in relapsing-remitting multiple sclerosis patients. Mult. Scler. 2016, 22, 1841–1849. [Google Scholar] [CrossRef]
- Dominguez, J.M.G.; Maurino, J.; Martínez-Ginés, M.L.; Carmona, O.; Caminero, A.B.; Medrano, N.; Ruíz-Beato, E.; Ares, A. Economic burden of multiple sclerosis in a population with low physical disability. BMC Public Health 2019, 19, 609. [Google Scholar]
- Hanken, K.; Sander, C.; Schlake, H.P.; Kastrup, A.; Eling, P.; Hildebrandt, H. Fatigue in Multiple Sclerosis is related to relapses, autonomic dysfunctions and introversion: A quasi-experimental study. Mult. Scler. Relat. Disord. 2019, 36, 101401. [Google Scholar] [CrossRef]
- Flensner, G.; Landtblom, A.-M.; Söderhamn, O.; Ek, A.-C. Work capacity and health-related quality of life among individuals with multiple sclerosis reduced by fatigue: A cross-sectional study. BMC Public Health 2013, 13, 224. [Google Scholar] [CrossRef]
- Capone, F.; Collorone, S.; Cortese, R.; Di Lazzaro, V.; Moccia, M. Fatigue in multiple sclerosis: The role of thalamus. Mult. Scler. 2020, 26, 6–16. [Google Scholar] [CrossRef]
- Palotai, M.; Nazeri, A.; Cavallari, M.; Healy, B.C.; Glanz, B.; Gold, S.M.; Weiner, H.L.; Chitnis, T.; Guttmann, C.R.G. History of fatigue in multiple sclerosis is associated with grey matter atrophy. Sci. Rep. 2019, 9, 14781. [Google Scholar] [CrossRef]
- Matesic, I.; Marcinko, I. Identifying the relevant determinants of MS related fatigue: The role of the clinical indicators of disease and personality. Mult. Scler. Relat. Disord. 2020, 42, 102054. [Google Scholar] [CrossRef]
- Krupp, L.B.; Serafin, D.J.; Christodoulou, C. Multiple sclerosis-associated fatigue. Expert Rev. Neurother. 2010, 10, 1437–1447. [Google Scholar] [CrossRef]
n (%) or Median (IQR) | |
---|---|
Total | 682 (100) |
Patient Demographics | |
Age at Diagnosis (yrs, continuous) | 33 (27, 41) |
Age at Diagnosis | |
12 to 19 years | 32 (5) |
20 to 29 years | 208 (30) |
30 to 39 years | 229 (34) |
40 to 49 years | 154 (23) |
50 to 59 years | 43 (6) |
Missing | 16 (2) |
Gender | |
Male | 161 (24) |
Female | 501 (73) |
Transgender Male | 2 (0) |
Missing | 18 (3) |
Race/ethnicity | |
Caucasian | 569 (83) |
Non-Caucasian | 80 (12) |
Missing | 33 (5) |
Educational Attainment | |
High School Graduate or Less | 159 (24) |
Associate’s Degree/Vocational Certificate | 141 (21) |
Bachelor’s Degree | 225 (34) |
Master’s/Doctorate/Professional Degree | 140 (21) |
Household Income | |
<$75,000 | 303 (44) |
≥$75,000 | 330 (48) |
Missing | 49 (7) |
Urbanicity | |
Urban | 135 (20) |
Suburban | 172 (25) |
Small Town/City | 177 (26) |
Rural | 75 (11) |
Missing | 123 (18) |
Living Situation | |
Living with Significant Other & Children | 265 (39) |
Living with Significant Other | 190 (28) |
Living with Parent, Sibling, or Other Family | 130 (19) |
Living Alone | 77 (11) |
Missing | 20 (3) |
Changed Insurance in 3 Years Prior | |
Yes | 222 (33) |
No | 417 (61) |
Missing | 43 (6) |
Disease Characteristics | |
Disease Duration (yrs, continuous) | 5.0 (2.0, 8.0) |
Pain Rating Score | |
0 | 420 (62) |
>0 | 134 (20) |
Missing | 128 (19) |
EDSS at Enrollment (continuous) | 1.5 (1.0, 2.5) |
EDSS at Enrollment | |
0.0 to 1.5 | 358 (52) |
2.0 to 6.5 | 309 (45) |
Missing | 15 (2) |
Receiving Disability Income | |
Yes | 73 (11) |
No | 591 (87) |
Missing | 18 (3) |
Receiving Disability Income (yrs, continuous) | 4.0 (2.0, 6.0) |
Utilized Aids in 3 Months Prior | |
Yes | 125 (18) |
No | 539 (79) |
Missing | 18 (3) |
Type of Aid Utilized in 3 Months Prior | |
Walking Aid | 75 (11) |
Stairlift/Elevator | 60 (9) |
Modification to Home | 23 (3) |
Bedlift/Ramp/Rails | 22 (3) |
Wheelchair | 11 (2) |
Electric Wheelchair/Scooter | 16 (2) |
Special Utensils | 9 (1) |
Modification to Car | 4 (1) |
Other | 7 (1) |
Type of Healthcare Provider Visits in 3 Months Prior | |
Neurologist | 553 (81) |
General Practitioner | 137 (20) |
Ophthalmologist | 95 (14) |
Physical Therapist | 54 (8) |
Massage Therapist | 53 (8) |
Psychiatrist | 39 (6) |
Psychologist | 36 (5) |
Occupational Therapist | 25 (4) |
Chiropractor | 19 (3) |
Type of Hospitalizations in 3 Months Prior | |
Emergency Room Visits | 38 (6) |
Inpatient Hospitalizations | 21 (3) |
Rehabilitation Center Admission | 4 (1) |
Length of Inpatient Hospitalizations (days, continuous) | 4.0 (2.0, 7.0) |
Number of changes to DMT | |
0 | 237 (35) |
1 | 200 (29) |
2 | 53 (8) |
3 | 71 (10) |
4+ | 121 (18) |
Relapse | |
Time to First Relapse (months, continuous) | 12.9 (11.9, 14.7) |
Number of Relapses | |
0 | 356 (52) |
1 | 251 (37) |
2 | 72 (11) |
3 | 3 (0) |
Impact of Disability on Work/Housework | |
Employment Status | |
Employed Full Time | 416 (61) |
Employed Part Time | 72 (11) |
Employed Not Specified | 21 (3) |
Not Employed | 150 (22) |
Missing | 23 (3) |
Scheduled to Work in Week Prior | |
Yes | 469 (92) |
No | 38 (7) |
Missing | 2 (0) |
Missed Work due to MS in Week Prior | |
Yes | 62 (13) |
No | 403 (86) |
Missing | 4 (1) |
Number of Work Hours Missed (continuous) | 6.8 (3.0, 9.0) |
MS Impacted Work Output in Week Prior | |
Yes | 163 (35) |
No | 301 (64) |
Missing | 5 (1) |
MS Symptom Impacted Work | |
Fatigue | 101 (22) |
Cognition | 26 (6) |
Weakness | 19 (4) |
Pain | 18 (4) |
Bladder/Bowel | 3 (1) |
Other | 48 (10) |
Missing | 34 (7) |
Work Output Reduction | |
0% | 301 (64) |
1–25% | 122 (26) |
>25% | 41 (9) |
Missing | 5 (1) |
Planned Housework in Week Prior | |
Yes | 589 (86) |
No | 70 (10) |
Missing | 23 (3) |
Missed Housework due to MS in Week Prior | |
Yes | 192 (33) |
No | 394 (67) |
Missing | 3 (1) |
Number of Housework Hours Missed (continuous) | 3.0 (2.0, 5.0) |
MS Impacted Housework Output in Week Prior | |
Yes | 264 (45) |
No | 309 (52) |
Missing | 16 (3) |
MS Symptom Impacted Housework | |
Fatigue | 209 (35) |
Cognition | 7 (1) |
Weakness | 32 (5) |
Pain | 27 (5) |
Bladder/Bowel | 4 (1) |
Other | 44 (7) |
Missing | 44 (7) |
Housework Output Reduction | |
0–25% | 446 (76) |
26–50% | 66 (11) |
>50% | 61 (10) |
Missing | 16 (3) |
(a) Bivariate Associations by Race | ||||
Caucasian | Non-Caucasian | |||
n (%) or Median (IQR) | n (%) or Median (IQR) | p-Value | ||
Total | 569 (100) | 80 (100) | ||
Age at Diagnosis (yrs, continuous) | 33 (27, 41) | 30 (25, 37) | 0.013 | |
Gender | 0.326 | |||
Male | 141 (25) | 16 (20) | ||
Female | 422 (75) | 64 (80) | ||
Educational Attainment | 0.779 | |||
High School Graduate or Less | 136 (24) | 17 (22) | ||
Associate’s Degree/Vocational Certificate | 122 (21) | 17 (22) | ||
Bachelor’s Degree | 194 (34) | 25 (32) | ||
Master’s/Doctorate/Professional Degree | 116 (20) | 20 (25) | ||
Household Income | <0.001 | |||
<$75,000 | 239 (44) | 50 (68) | ||
≥$75,000 | 303 (56) | 24 (32) | ||
Urbanicity | 0.001 | |||
Urban | 98 (21) | 28 (41) | ||
Suburban | 151 (32) | 19 (28) | ||
Small Town/City/Rural | 227 (48) | 21 (31) | ||
Changed Insurance in 3 Years Prior | 0.530 | |||
Yes | 188 (34) | 29 (38) | ||
No | 357 (66) | 47 (62) | ||
Disease Duration (yrs, continuous) | 5.0 (2.0, 8.0) | 5.0 (2.0, 9.0) | 0.796 | |
Pain Rating Score | 0.074 | |||
0 | 107 (23) | 22 (33) | ||
>0 | 354 (77) | 44 (67) | ||
EDSS at Enrollment (continuous) | 1.5 (1.0, 2.0) | 2.0 (1.0, 2.5) | 0.079 | |
EDSS at Enrollment | 0.089 | |||
0.0 to 1.5 | 307 (55) | 35 (45) | ||
2.0 to 6.5 | 250 (45) | 43 (55) | ||
Receiving Disability Income | 0.121 | |||
Yes | 59 (10) | 13 (16) | ||
No | 507 (90) | 67 (84) | ||
Receiving Disability Income (yrs, continuous) | 5.0 (2.0, 6.0) | 3.0 (2.0, 5.0) | 0.345 | |
Utilized Aids in 3 Months Prior | 0.004 | |||
Yes | 99 (18) | 25 (31) | ||
No | 466 (82) | 55 (69) | ||
Number of changes to DMT | <0.001 | |||
0 | 174 (31) | 44 (55) | ||
1 | 172 (30) | 21 (26) | ||
2+ | 223 (39) | 15 (19) | ||
Time to First Relapse (months, continuous) | 12.7 (11.8, 14.5) | 14.0 (12.5, 16.9) | 0.013 | |
Number of Relapses | 0.091 | |||
0 | 287 (50) | 42 (53) | ||
1 | 223 (39) | 24 (30) | ||
2+ | 59 (10) | 14 (18) | ||
Employment Status | 0.141 | |||
Employed | 440 (78) | 56 (71) | ||
Not Employed | 122 (22) | 23 (29) | ||
Missed Work due to MS in Week Prior | 0.681 | |||
Yes | 56 (14) | 6 (12) | ||
No | 348 (86) | 45 (88) | ||
Number of Work Hours Missed (continuous) | 6.8 (3.0, 9.5) | 6.0 (3.0, 9.0) | 0.962 | |
MS Impacted Work Output in Week Prior | 0.611 | |||
Yes | 144 (36) | 16 (32) | ||
No | 260 (64) | 34 (68) | ||
Fatigue Impacted Work | 0.665 | |||
Yes | 88 (23) | 12 (26) | ||
No | 291 (77) | 34 (74) | ||
Work Output Reduction | 0.764 | |||
0% | 260 (64) | 34 (68) | ||
1–25% | 108 (27) | 13 (26) | ||
>25% | 36 (9) | 3 (6) | ||
Missed Housework due to MS in Week Prior | 0.030 | |||
Yes | 158 (31) | 29 (45) | ||
No | 349 (69) | 36 (55) | ||
Number of Housework Hours Missed (continuous) | 3.0 (2.0, 6.0) | 2.0 (2.0, 5.0) | 0.374 | |
MS Impacted Housework Output in Week Prior | 0.167 | |||
Yes | 222 (45) | 35 (54) | ||
No | 274 (55) | 30 (46) | ||
Fatigue Impacted Housework | 0.149 | |||
Yes | 176 (37) | 29 (47) | ||
No | 296 (63) | 33 (53) | ||
Housework Output Reduction | 0.872 | |||
0–25% | 388 (78) | 49 (75) | ||
26–50% | 55 (11) | 8 (12) | ||
>50% | 53 (11) | 8 (12) | ||
(b) Bivariate Associations by EDSS Category | ||||
EDSS: 0.0 to 1.5 | EDSS: 2.0 to 6.5 | |||
n (%) or Median (IQR) | n (%) or Median (IQR) | p-Value | ||
Total | 358 (100) | 309 (100) | ||
Age at Diagnosis (yrs, continuous) | 32 (26, 39) | 34 (28, 42) | 0.247 | |
Gender | 0.005 | |||
Male | 72 (20) | 89 (30) | ||
Female | 280 (80) | 208 (70) | ||
Race/ethnicity | 0.089 | |||
Caucasian | 307 (90) | 250 (85) | ||
Non-Caucasian | 35 (10) | 43 (15) | ||
Educational Attainment | <0.001 | |||
High School Graduate or Less | 61 (17) | 96 (32) | ||
Associate’s Degree/Vocational Certificate | 61 (17) | 75 (25) | ||
Bachelor’s Degree | 145 (41) | 76 (26) | ||
Master’s/Doctorate/Professional Degree | 87 (25) | 50 (17) | ||
Household Income | 0.007 | |||
<$75,000 | 141 (42) | 152 (53) | ||
≥$75,000 | 192 (58) | 134 (47) | ||
Urbanicity | 0.544 | |||
Urban | 72 (24) | 57 (23) | ||
Suburban | 95 (32) | 71 (29) | ||
Small Town/City/Rural | 130 (44) | 120 (48) | ||
Changed Insurance in 3 Years Prior | 0.753 | |||
Yes | 118 (35) | 103 (36) | ||
No | 221 (65) | 183 (64) | ||
Disease Duration (yrs, continuous) | 4.0 (2.0, 7.0) | 6.0 (3.0, 9.0) | <0.001 | |
Pain Rating Score | <0.001 | |||
0 | 262 (85) | 148 (64) | ||
>0 | 48 (15) | 83 (36) | ||
Receiving Disability Income | <0.001 | |||
Yes | 13 (4) | 58 (19) | ||
No | 339 (96) | 240 (81) | ||
Receiving Disability Income (yrs, continuous) | 3.0 (2.0, 6.0) | 4.5 (2.0, 6.0) | 0.994 | |
Utilized Aids in 3 Months Prior | <0.001 | |||
Yes | 28 (8) | 90 (30) | ||
No | 324 (92) | 208 (70) | ||
Number of changes to DMT | 0.227 | |||
0 | 131 (37) | 95 (31) | ||
1 | 99 (28) | 100 (32) | ||
2+ | 128 (36) | 114 (37) | ||
Time to First Relapse (months, continuous) | 12.7 (11.9, 14.7) | 12.9 (12.0, 14.6) | 0.856 | |
Number of Relapses | 0.381 | |||
0 | 191 (53) | 152 (49) | ||
1 | 125 (35) | 124 (40) | ||
2+ | 42 (12) | 33 (11) | ||
Employment Status | <0.001 | |||
Employed | 300 (86) | 198 (67) | ||
Not Employed | 50 (14) | 97 (33) | ||
Missed Work due to MS in Week Prior | 0.222 | |||
Yes | 33 (12) | 28 (16) | ||
No | 246 (88) | 149 (84) | ||
Number of Work Hours Missed (continuous) | 8.0 (3.0, 12.0) | 5.8 (3.0, 9.0) | 0.431 | |
MS Impacted Work Output in Week Prior | <0.001 | |||
Yes | 78 (28) | 80 (45) | ||
No | 201 (72) | 96 (55) | ||
Fatigue Impacted Work | 0.398 | |||
Yes | 56 (22) | 42 (25) | ||
No | 203 (78) | 125 (75) | ||
Work Output Reduction | 0.001 | |||
0% | 201 (72) | 96 (55) | ||
1–25% | 57 (20) | 63 (36) | ||
>25% | 21 (8) | 17 (10) | ||
Missed Housework due to MS in Week Prior | <0.001 | |||
Yes | 79 (25) | 105 (41) | ||
No | 238 (75) | 154 (59) | ||
Number of Housework Hours Missed (continuous) | 3.0 (2.0, 5.0) | 3.0 (2.0, 6.0) | 0.264 | |
MS Impacted Housework Output in Week Prior | <0.001 | |||
Yes | 113 (37) | 144 (56) | ||
No | 196 (63) | 111 (44) | ||
Fatigue Impacted Housework | 0.002 | |||
Yes | 95 (32) | 110 (45) | ||
No | 198 (68) | 133 (55) | ||
Housework Output Reduction | <0.001 | |||
0–25% | 262 (85) | 177 (69) | ||
26–50% | 25 (8) | 39 (15) | ||
>50% | 22 (7) | 39 (15) | ||
(c) Bivariate Associations by Number of Relapses | ||||
0 Relapses | 1 Relapse | 2+ Relapses | ||
n (%) or Median (IQR) | n (%) or Median (IQR) | n(%) or Median (IQR) | p-Value | |
Total | 356 (100) | 251 (100) | 75 (100) | |
Age at Diagnosis (yrs, continuous) | 33 (27, 41) | 34 (28, 42) | 30 (26, 37) | 0.035 |
Gender | 0.226 | |||
Male | 76 (23) | 61 (24) | 24 (32) | |
Female | 261 (77) | 189 (76) | 51 (68) | |
Race/ethnicity | 0.091 | |||
Caucasian | 287 (87) | 223 (90) | 59 (81) | |
Non-Caucasian | 42 (13) | 24 (10) | 14 (19) | |
Educational Attainment | 0.575 | |||
High School Graduate or Less | 83 (24) | 63 (25) | 13 (17) | |
Associate’s Degree/Vocational Certificate | 72 (21) | 52 (21) | 17 (23) | |
Bachelor’s Degree | 119 (35) | 76 (30) | 30 (40) | |
Master’s/Doctorate/Professional Degree | 66 (19) | 59 (24) | 15 (20) | |
Household Income | 0.113 | |||
<$75,000 | 161 (50) | 103 (43) | 39 (55) | |
≥$75,000 | 161 (50) | 137 (57) | 32 (45) | |
Urbanicity | 0.048 | |||
Urban | 78 (29) | 42 (19) | 15 (22) | |
Suburban | 87 (32) | 67 (30) | 18 (27) | |
Small Town/City/Rural | 106 (39) | 112 (51) | 34 (51) | |
Changed Insurance in 3 Years Prior | 0.770 | |||
Yes | 111 (33) | 86 (36) | 25 (36) | |
No | 221 (67) | 152 (64) | 44 (64) | |
Disease Duration (yrs, continuous) | 4.0 (1.0, 8.0) | 6.0 (3.0, 9.0) | 4.5 (2.0, 7.0) | <0.001 |
Pain Rating Score | 0.139 | |||
0 | 247 (78) | 125 (71) | 48 (80) | |
>0 | 70 (22) | 52 (29) | 12 (20) | |
EDSS at Enrollment (continuous) | 1.5 (1.0, 2.5) | 1.5 (1.0, 2.5) | 1.5 (1.0, 2.0) | 0.267 |
EDSS at Enrollment | 0.381 | |||
0.0 to 1.5 | 191 (56) | 125 (50) | 42 (56) | |
2.0 to 6.5 | 152 (44) | 124 (50) | 33 (44) | |
Receiving Disability Income | 0.605 | |||
Yes | 39 (12) | 24 (10) | 10 (13) | |
No | 300 (88) | 266 (90) | 65 (87) | |
Receiving Disability Income (yrs, continuous) | 4.0 (1.0, 6.0) | 5.0 (3.0, 6.0) | 2.5 (1.0, 5.0) | 0.462 |
Utilized Aids in 3 Months Prior | 0.951 | |||
Yes | 64 (19) | 48 (19) | 13 (18) | |
No | 276 (81) | 202 (81) | 61 (82) | |
Number of changes to DMT | <0.001 | |||
0 | 158 (44) | 64 (25) | 15 (20) | |
1 | 110 (31) | 73 (29) | 17 (23) | |
2+ | 88 (25) | 114 (45) | 43 (57) | |
Time to First Relapse (months, continuous) | NA | 12.8 (12.0. 14.6) | 13.2 (11.6, 14.7) | 0.805 |
Employment Status | 0.697 | |||
Employed | 259 (77) | 194 (79) | 56 (75) | |
Not Employed | 79 (23) | 52 (21) | 19 (25) | |
Missed Work due to MS in Week Prior | 0.097 | |||
Yes | 39 (17) | 17 (9) | 6 (12) | |
No | 195 (83) | 162 (91) | 46 (88) | |
Number of Work Hours Missed (continuous) | 8.0 (3.0, 12.0) | 4.0 (3.0, 8.0) | 4.0 (4.0, 8.0) | 0.147 |
MS Impacted Work Output in Week Prior | 0.624 | |||
Yes | 87 (37) | 58 (33) | 18 (35) | |
No | 147 (63) | 120 (67) | 34 (65) | |
Fatigue Impacted Work | 0.011 | |||
Yes | 63 (28) | 25 (15) | 13 (28) | |
No | 163 (72) | 138 (85) | 33 (72) | |
Work Output Reduction | 0.006 | |||
0% | 147 (63) | 120 (67) | 34 (65) | |
1–25% | 55 (24) | 51 (29) | 16 (31) | |
>25% | 32 (14) | 7 (4) | 2 (4) | |
Missed Housework due to MS in Week Prior | 0.219 | |||
Yes | 107 (36) | 64 (29) | 21 (33) | |
No | 192 (64) | 160 (71) | 42 (67) | |
Number of Housework Hours Missed (continuous) | 3.0 (2.0, 5.0) | 3.0 (2.0, 6.0) | 2.0 (2.0, 3.0) | 0.239 |
MS Impacted Housework Output in Week Prior | 0.758 | |||
Yes | 138 (48) | 98 (44) | 28 (45) | |
No | 152 (52) | 123 (56) | 34 (55) | |
Fatigue Impacted Housework | 0.172 | |||
Yes | 115 (41) | 70 (33) | 24 (44) | |
No | 166 (59) | 139 (67) | 31 (56) | |
Housework Output Reduction | 0.348 | |||
0–25% | 222 (77) | 172 (78) | 52 (84) | |
26–50% | 31 (11) | 30 (14) | 5 (8) | |
>50% | 37 (13) | 19 (9) | 5 (8) |
Disease Severity (REF = EDSS: 0.0 to 1.5) | |||
---|---|---|---|
EDSS: 2.0 to 6.5 | |||
Effect | Unit | OR (95% CI) | p-Value |
Fatigue affects work output | Yes vs. No | 1.25 (0.77–2.03) | 0.375 |
Fatigue affects housework output | Yes vs. No | 1.70 (1.17–2.49) | 0.006 |
MS kept from work | 1 h | 1.02 (0.97–1.08) | 0.357 |
MS kept from housework | 1 h | 1.13 (1.04–1.23) | 0.003 |
Work output reduction | >25% vs. 0% | 2.29 (1.08–4.88) | 0.011 |
Housework output reduction | >50% vs. 0–25% | 2.49 (1.37–4.53) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Rammohan, K.; Halper, J.; Livingston, T.; Murphy, S.M.; Patton, L.; Wilkerson, J.; Mao-Draayer, Y.; on behalf of the NARCRMS Healthcare Economics Outcomes Research Advisory Group. The Impact of Multiple Sclerosis on Work Productivity: A Preliminary Look at the North American Registry for Care and Research in Multiple Sclerosis. NeuroSci 2025, 6, 82. https://doi.org/10.3390/neurosci6030082
Ali A, Rammohan K, Halper J, Livingston T, Murphy SM, Patton L, Wilkerson J, Mao-Draayer Y, on behalf of the NARCRMS Healthcare Economics Outcomes Research Advisory Group. The Impact of Multiple Sclerosis on Work Productivity: A Preliminary Look at the North American Registry for Care and Research in Multiple Sclerosis. NeuroSci. 2025; 6(3):82. https://doi.org/10.3390/neurosci6030082
Chicago/Turabian StyleAli, Ahya, Kottil Rammohan, June Halper, Terrie Livingston, Sara McCurdy Murphy, Lisa Patton, Jesse Wilkerson, Yang Mao-Draayer, and on behalf of the NARCRMS Healthcare Economics Outcomes Research Advisory Group. 2025. "The Impact of Multiple Sclerosis on Work Productivity: A Preliminary Look at the North American Registry for Care and Research in Multiple Sclerosis" NeuroSci 6, no. 3: 82. https://doi.org/10.3390/neurosci6030082
APA StyleAli, A., Rammohan, K., Halper, J., Livingston, T., Murphy, S. M., Patton, L., Wilkerson, J., Mao-Draayer, Y., & on behalf of the NARCRMS Healthcare Economics Outcomes Research Advisory Group. (2025). The Impact of Multiple Sclerosis on Work Productivity: A Preliminary Look at the North American Registry for Care and Research in Multiple Sclerosis. NeuroSci, 6(3), 82. https://doi.org/10.3390/neurosci6030082