Unraveling Attention-Deficit/Hyperactivity Disorder Etiology: Current Challenges and Future Directions in Treatment
Abstract
:1. Introduction
2. Methods
3. Understanding ADHD
3.1. Genetic Factors and Environmental Factors
3.1.1. Genetic Factors
3.1.2. Genetic Linkage Studies
3.1.3. Candidate Gene Association Studies
3.1.4. Genome-Wide Association Studies (GWAS)
3.1.5. Polygenic Risk and Cross-Disorder Associations
3.1.6. The Search for Rare Genetic Variants in ADHD
3.1.7. Environmental Factors and Gene-Environment Interactions
4. Current Treatment Landscape
5. Current Challenges in Addressing ADHD Etiology and Treatment Gaps
5.1. Long-Term Management of ADHD
5.2. Gaps in Current Research
5.3. Inherent Subjectivity of the Diagnostic Criteria
5.4. Sociocultural Factors
5.5. Comorbidity
5.6. Gender-Specific Diagnostic Criteria and Treatment Strategies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thapar, A.; Cooper, M. Attention deficit hyperactivity disorder. Lancet 2016, 387, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Furman, L. What is attention-deficit hyperactivity disorder (ADHD)? J. Child. Neurol. 2005, 20, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Strathearn, L.; Liu, B.; Yang, B.; Bao, W. Twenty-Year Trends in Diagnosed Attention-Deficit/Hyperactivity Disorder Among US Children and Adolescents, 1997–2016. JAMA Netw. Open 2018, 1, e181471. [Google Scholar] [CrossRef] [PubMed]
- Frick, P.J.; Lahey, B.B. The nature and characteristics of attention-deficit hyperactivity disorder. Sch. Psychol. Rev. 1991, 20, 163–173. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Li, Q.; Li, Q.; Xu, G.; Lu, J.; Yang, W. Prevalence and Trends in Diagnosed ADHD Among US Children and Adolescents, 2017–2022. JAMA Netw. Open 2023, 6, e2336872. [Google Scholar] [CrossRef]
- Sapkale, B.; Sawal, A. Attention Deficit Hyperactivity Disorder (ADHD) Causes and Diagnosis in Adults: A Review. Cureus 2023, 15, e49144. [Google Scholar] [CrossRef]
- Murphy, K.; Barkley, R.A. Attention deficit hyperactivity disorder adults: Comorbidities and adaptive impairments. Compr. Psychiatry 1996, 37, 393–401. [Google Scholar] [CrossRef]
- Heiligenstein, E.; Guenther, G.; Levy, A.; Savino, F.; Fulwiler, J. Psychological and academic functioning in college students with attention deficit hyperactivity disorder. J. Am. Coll. Health 1999, 47, 181–185. [Google Scholar] [CrossRef]
- French, B.; Nalbant, G.; Wright, H.; Sayal, K.; Daley, D.; Groom, M.J.; Cassidy, S.; Hall, C.L. The impacts associated with having ADHD: An umbrella review. Front. Psychiatry 2024, 15, 1343314. [Google Scholar] [CrossRef]
- Biederman, J.; Faraone, S.V. The effects of attention-deficit/hyperactivity disorder on employment and household income. Medscape Gen. Med. 2006, 8, 12. [Google Scholar]
- Eakin, L.; Minde, K.; Hechtman, L.; Ochs, E.; Krane, E.; Bouffard, R.; Greenfield, B.; Looper, K. The marital and family functioning of adults with ADHD and their spouses. J. Atten. Disord. 2004, 8, 1–10. [Google Scholar] [CrossRef]
- Zulauf, C.A.; Sprich, S.E.; Safren, S.A.; Wilens, T.E. The complicated relationship between attention deficit/hyperactivity disorder and substance use disorders. Curr. Psychiatry Rep. 2014, 16, 436. [Google Scholar] [CrossRef]
- Katzman, M.A.; Bilkey, T.S.; Chokka, P.R.; Fallu, A.; Klassen, L.J. Adult ADHD and comorbid disorders: Clinical implications of a dimensional approach. BMC Psychiatry 2017, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Asherson, P.; Akehurst, R.; Kooij, J.J.; Huss, M.; Beusterien, K.; Sasane, R.; Gholizadeh, S.; Hodgkins, P. Under diagnosis of adult ADHD: Cultural influences and societal burden. J. Atten. Disord. 2012, 16, 20S–38S. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Zhan, C.; Homer, C.J. Health care use and costs for children with attention-deficit/hyperactivity disorder: National estimates from the medical expenditure panel survey. Arch. Pediatr. Adolesc. Med. 2002, 156, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Doshi, J.A.; Hodgkins, P.; Kahle, J.; Sikirica, V.; Cangelosi, M.J.; Setyawan, J.; Erder, M.H.; Neumann, P.J. Economic impact of childhood and adult attention-deficit/hyperactivity disorder in the United States. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 990–1002.e2. [Google Scholar] [CrossRef]
- Gupte-Singh, K.; Singh, R.R.; Lawson, K.A. Economic Burden of Attention-Deficit/Hyperactivity Disorder among Pediatric Patients in the United States. Value Health 2017, 20, 602–609. [Google Scholar] [CrossRef]
- Holden, S.E.; Jenkins-Jones, S.; Poole, C.D.; Morgan, C.L.; Coghill, D.; Currie, C.J. The prevalence and incidence, resource use and financial costs of treating people with attention deficit/hyperactivity disorder (ADHD) in the United Kingdom (1998 to 2010). Child Adolesc. Psychiatry Ment. Health 2013, 7, 34. [Google Scholar] [CrossRef]
- Matza, L.S.; Paramore, C.; Prasad, M. A review of the economic burden of ADHD. Cost Eff. Resour. Alloc. 2005, 3, 5. [Google Scholar] [CrossRef]
- Shi, Y.; Hunter Guevara, L.R.; Dykhoff, H.J.; Sangaralingham, L.R.; Phelan, S.; Zaccariello, M.J.; Warner, D.O. Racial Disparities in Diagnosis of Attention-Deficit/Hyperactivity Disorder in a US National Birth Cohort. JAMA Netw. Open 2021, 4, e210321. [Google Scholar] [CrossRef]
- Morgan, P.L.; Staff, J.; Hillemeier, M.M.; Farkas, G.; Maczuga, S. Racial and ethnic disparities in ADHD diagnosis from kindergarten to eighth grade. Pediatrics 2013, 132, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.O.; Madhoo, M. A review of attention-deficit/hyperactivity disorder in women and girls: Uncovering this hidden diagnosis. Prim. Care Companion CNS Disord. 2014, 16, PCC.13r01596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nussbaum, N.L. ADHD and female specific concerns: A review of the literature and clinical implications. J. Atten. Disord. 2012, 16, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Mowlem, F.D.; Rosenqvist, M.A.; Martin, J.; Lichtenstein, P.; Asherson, P.; Larsson, H. Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur. Child Adolesc. Psychiatry 2019, 28, 481–489. [Google Scholar] [CrossRef]
- Pastor, P.N.; Reuben, C.A. Racial and ethnic differences in ADHD and LD in young school-age children: Parental reports in the National Health Interview Survey. Public Health Rep. 2005, 120, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.L.; Hillemeier, M.M.; Farkas, G.; Maczuga, S. Racial/ethnic disparities in ADHD diagnosis by kindergarten entry. J. Child Psychol. Psychiatry 2014, 55, 905–913. [Google Scholar] [CrossRef]
- Getahun, D.; Jacobsen, S.J.; Fassett, M.J.; Chen, W.; Demissie, K.; Rhoads, G.G. Recent trends in childhood attention-deficit/hyperactivity disorder. JAMA Pediatr. 2013, 167, 282–288. [Google Scholar] [CrossRef]
- Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212. [Google Scholar] [CrossRef]
- Cuffe, S.P.; Moore, C.G.; McKeown, R.E. Prevalence and correlates of ADHD symptoms in the national health interview survey. J. Atten. Disord. 2005, 9, 392–401. [Google Scholar] [CrossRef]
- Chung, W.; Jiang, S.F.; Paksarian, D.; Nikolaidis, A.; Castellanos, F.X.; Merikangas, K.R.; Milham, M.P. Trends in the Prevalence and Incidence of Attention-Deficit/Hyperactivity Disorder Among Adults and Children of Different Racial and Ethnic Groups. JAMA Netw. Open 2019, 2, e1914344. [Google Scholar] [CrossRef]
- Advokat, C.; Scheithauer, M. Attention-deficit hyperactivity disorder (ADHD) stimulant medications as cognitive enhancers. Front. Neurosci. 2013, 7, 82. [Google Scholar] [CrossRef]
- Nazarova, V.A.; Sokolov, A.V.; Chubarev, V.N.; Tarasov, V.V.; Schioth, H.B. Treatment of ADHD: Drugs, psychological therapies, devices, complementary and alternative methods as well as the trends in clinical trials. Front. Pharmacol. 2022, 13, 1066988. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Torabi Parizi, G.; Kousha, M.; Saadat, F.; Modabbernia, M.J.; Najafi, K.; Atrkar Roushan, Z. Changes in plasma Brain-derived neurotrophic factor (BDNF) levels induced by methylphenidate in children with Attention deficit–hyperactivity disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 47, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Wehmeier, P.M.; Schacht, A.; Barkley, R.A. Social and emotional impairment in children and adolescents with ADHD and the impact on quality of life. J. Adolesc. Health 2010, 46, 209–217. [Google Scholar] [CrossRef]
- Danckaerts, M.; Sonuga-Barke, E.J.; Banaschewski, T.; Buitelaar, J.; Dopfner, M.; Hollis, C.; Santosh, P.; Rothenberger, A.; Sergeant, J.; Steinhausen, H.C.; et al. The quality of life of children with attention deficit/hyperactivity disorder: A systematic review. Eur. Child Adolesc. Psychiatry 2010, 19, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Goldenberg, M.; Perry, R.; IsHak, W.W. The quality of life of adults with attention deficit hyperactivity disorder: A systematic review. Innov. Clin. Neurosci. 2012, 9, 10–21. [Google Scholar]
- Rivas-Vazquez, R.A.; Diaz, S.G.; Visser, M.M.; Rivas-Vazquez, A.A. Adult ADHD: Underdiagnosis of a Treatable Condition. J. Health Serv. Psychol. 2023, 49, 11–19. [Google Scholar] [CrossRef]
- Cortese, S.; Coghill, D. Twenty years of research on attention-deficit/hyperactivity disorder (ADHD): Looking back, looking forward. Evid. Based Ment. Health 2018, 21, 173–176. [Google Scholar] [CrossRef]
- Demontis, D.; Walters, G.B.; Athanasiadis, G.; Walters, R.; Therrien, K.; Nielsen, T.T.; Farajzadeh, L.; Voloudakis, G.; Bendl, J.; Zeng, B.; et al. Author Correction: Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 2023, 55, 730. [Google Scholar] [CrossRef]
- Faraone, S.V.; Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 2019, 24, 562–575. [Google Scholar] [CrossRef]
- Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.M.; Sunohara, G.A.; Kennedy, J.L.; Regino, R.; Fineberg, E.; Wigal, T.; Lerner, M.; Williams, L.; LaHoste, G.J.; Wigal, S. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): A family-based approach. Mol. Psychiatry 1998, 3, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.M.; Flodman, P.; Kennedy, J.; Spence, M.A.; Moyzis, R.; Schuck, S.; Murias, M.; Moriarity, J.; Barr, C.; Smith, M.; et al. Dopamine genes and ADHD. Neurosci. Biobehav. Rev. 2000, 24, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; Martin, J.; Butwicka, A.; Lichtenstein, P.; D’Onofrio, B.; Lundstrom, S.; Larsson, H.; Rosenqvist, M.A. A twin study of genetic and environmental contributions to attention-deficit/hyperactivity disorder over time. J. Child Psychol. Psychiatry 2023, 64, 1608–1616. [Google Scholar] [CrossRef]
- Xu, X.; Brookes, K.; Chen, C.K.; Huang, Y.S.; Wu, Y.Y.; Asherson, P. Association study between the monoamine oxidase A gene and attention deficit hyperactivity disorder in Taiwanese samples. BMC Psychiatry 2007, 7, 10. [Google Scholar] [CrossRef]
- Li, J.; Kang, C.; Zhang, H.; Wang, Y.; Zhou, R.; Wang, B.; Guan, L.; Yang, L.; Faraone, S.V. Monoamine oxidase A gene polymorphism predicts adolescent outcome of attention-deficit/hyperactivity disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144B, 430–433. [Google Scholar] [CrossRef]
- Karmakar, A.; Maitra, S.; Verma, D.; Chakraborti, B.; Goswami, R.; Ghosh, P.; Sinha, S.; Mohanakumar, K.P.; Usha, R.; Mukhopadhyay, K. Potential contribution of monoamine oxidase a gene variants in ADHD and behavioral co-morbidities: Scenario in eastern Indian probands. Neurochem. Res. 2014, 39, 843–852. [Google Scholar] [CrossRef]
- Karmakar, A.; Maitra, S.; Chakraborti, B.; Verma, D.; Sinha, S.; Mohanakumar, K.P.; Rajamma, U.; Mukhopadhyay, K. Monoamine oxidase B gene variants associated with attention deficit hyperactivity disorder in the Indo-Caucasoid population from West Bengal. BMC Genet. 2016, 17, 92. [Google Scholar] [CrossRef]
- Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children. Medicina 2018, 54, 32. [Google Scholar] [CrossRef]
- Schwabe, I.; Jovic, M.; Rimfeld, K.; Allegrini, A.G.; van den Berg, S.M. Genotype-Environment Interaction in ADHD: Genetic Predisposition Determines the Extent to Which Environmental Influences Explain Variability in the Symptom Dimensions Hyperactivity and Inattention. Behav. Genet. 2024, 54, 169–180. [Google Scholar] [CrossRef]
- Arcos-Burgos, M.; Muenke, M. Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD. ADHD Atten. Deficit Hyperact. Disord. 2010, 2, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Singh, A.; Nthenge-Ngumbau, D.N.; Rajamma, U.; Sinha, S.; Mukhopadhyay, K.; Mohanakumar, K.P. Attention deficit-hyperactivity disorder suffers from mitochondrial dysfunction. BBA Clin. 2016, 6, 153–158. [Google Scholar] [CrossRef]
- Ogutlu, H.; Kasak, M.; Tutku Tabur, S. Mitochondrial Dysfunction in Attention Deficit Hyperactivity Disorder. Eurasian J. Med. 2022, 54, S187–S195. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.W.; Kwon, B.N.; Kim, H.J.; Han, S.H.; Lee, N.R.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Assessment of associations between mitochondrial DNA haplogroups and attention deficit and hyperactivity disorder in Korean children. Mitochondrion 2019, 47, 174–178. [Google Scholar] [CrossRef]
- Hwang, I.W.; Hong, J.H.; Kwon, B.N.; Kim, H.J.; Lee, N.R.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of mitochondrial DNA 10398 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2017, 630, 8–12. [Google Scholar] [CrossRef]
- Chang, X.; Liu, Y.; Mentch, F.; Glessner, J.; Qu, H.; Nguyen, K.; Sleiman, P.M.A.; Hakonarson, H. Mitochondrial DNA haplogroups and risk of attention deficit and hyperactivity disorder in European Americans. Transl. Psychiatry 2020, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Wermter, A.K.; Laucht, M.; Schimmelmann, B.G.; Banaschewski, T.; Sonuga-Barke, E.J.; Rietschel, M.; Becker, K. From nature versus nurture, via nature and nurture, to gene × environment interaction in mental disorders. Eur. Child Adolesc. Psychiatry 2010, 19, 199–210. [Google Scholar] [CrossRef]
- Ellis, B.J.; Boyce, W.T. Differential susceptibility to the environment: Toward an understanding of sensitivity to developmental experiences and context. Dev. Psychopathol. 2011, 23, 1–5. [Google Scholar] [CrossRef]
- Faraone, S.V.; Mick, E. Molecular genetics of attention deficit hyperactivity disorder. Psychiatr. Clin. N. Am. 2010, 33, 159–180. [Google Scholar] [CrossRef]
- Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J.; Buitelaar, J.; Castellanos, F.X.; Doyle, A.; Ebstein, R.P.; et al. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147B, 1392–1398. [Google Scholar] [CrossRef]
- Franke, B.; Faraone, S.V.; Asherson, P.; Buitelaar, J.; Bau, C.H.; Ramos-Quiroga, J.A.; Mick, E.; Grevet, E.H.; Johansson, S.; Haavik, J.; et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol. Psychiatry 2012, 17, 960–987. [Google Scholar] [CrossRef] [PubMed]
- Bonvicini, C.; Faraone, S.V.; Scassellati, C. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol. Psychiatry 2016, 21, 1643. [Google Scholar] [CrossRef] [PubMed]
- Zayats, T.; Athanasiu, L.; Sonderby, I.; Djurovic, S.; Westlye, L.T.; Tamnes, C.K.; Fladby, T.; Aase, H.; Zeiner, P.; Reichborn-Kjennerud, T.; et al. Genome-wide analysis of attention deficit hyperactivity disorder in Norway. PLoS ONE 2015, 10, e0122501. [Google Scholar] [CrossRef]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Baekvad-Hansen, M.; et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019, 51, 63–75. [Google Scholar] [CrossRef]
- Cross-Disorder Group of the Psychiatric Genomics Consortium; Lee, S.H.; Ripke, S.; Neale, B.M.; Faraone, S.V.; Purcell, S.M.; Perlis, R.H.; Mowry, B.J.; Thapar, A.; Goddard, M.E.; et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 2013, 45, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Bralten, J.; van Hulzen, K.J.; Martens, M.B.; Galesloot, T.E.; Arias Vasquez, A.; Kiemeney, L.A.; Buitelaar, J.K.; Muntjewerff, J.W.; Franke, B.; Poelmans, G. Autism spectrum disorders and autistic traits share genetics and biology. Mol. Psychiatry 2017, 23, 1205–1212. [Google Scholar] [CrossRef]
- Cortese, S.; Moreira-Maia, C.R.; St Fleur, D.; Morcillo-Penalver, C.; Rohde, L.A.; Faraone, S.V. Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. Am. J. Psychiatry 2016, 173, 34–43. [Google Scholar] [CrossRef]
- Lo-Castro, A.; D’Agati, E.; Curatolo, P. ADHD and genetic syndromes. Brain Dev. 2011, 33, 456–461. [Google Scholar] [CrossRef]
- Yang, L.; Neale, B.M.; Liu, L.; Lee, S.H.; Wray, N.R.; Ji, N.; Li, H.; Qian, Q.; Wang, D.; Li, J.; et al. Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: Genome-wide association study of both common and rare variants. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2013, 162B, 419–430. [Google Scholar] [CrossRef]
- Elia, J.; Glessner, J.T.; Wang, K.; Takahashi, N.; Shtir, C.J.; Hadley, D.; Sleiman, P.M.; Zhang, H.; Kim, C.E.; Robison, R.; et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat. Genet. 2011, 44, 78–84. [Google Scholar] [CrossRef]
- Williams, N.M.; Franke, B.; Mick, E.; Anney, R.J.; Freitag, C.M.; Gill, M.; Thapar, A.; O’Donovan, M.C.; Owen, M.J.; Holmans, P.; et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: The role of rare variants and duplications at 15q13.3. Am. J. Psychiatry 2012, 169, 195–204. [Google Scholar] [CrossRef]
- Akutagava-Martins, G.C.; Salatino-Oliveira, A.; Genro, J.P.; Contini, V.; Polanczyk, G.; Zeni, C.; Chazan, R.; Kieling, C.; Anselmi, L.; Menezes, A.M.; et al. Glutamatergic copy number variants and their role in attention-deficit/hyperactivity disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2014, 165, 502–509. [Google Scholar] [CrossRef]
- Mick, E.; Neale, B.; Middleton, F.A.; McGough, J.J.; Faraone, S.V. Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Carrey, N.J.; MacMaster, F.P.; Gaudet, L.; Schmidt, M.H. Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 2007, 17, 11–17. [Google Scholar] [CrossRef]
- Demontis, D.; Lescai, F.; Borglum, A.; Glerup, S.; Ostergaard, S.D.; Mors, O.; Li, Q.; Liang, J.; Jiang, H.; Li, Y.; et al. Whole-Exome Sequencing Reveals Increased Burden of Rare Functional and Disruptive Variants in Candidate Risk Genes in Individuals With Persistent Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 521–523. [Google Scholar] [CrossRef]
- Hawi, Z.; Cummins, T.D.; Tong, J.; Arcos-Burgos, M.; Zhao, Q.; Matthews, N.; Newman, D.P.; Johnson, B.; Vance, A.; Heussler, H.S.; et al. Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: A next-generation sequencing study. Mol. Psychiatry 2017, 22, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Thapar, A.; Cooper, M.; Jefferies, R.; Stergiakouli, E. What causes attention deficit hyperactivity disorder? Arch. Dis. Child. 2012, 97, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Colvin, L.; Hagemann, E.; Bower, C. Environmental risk factors by gender associated with attention-deficit/hyperactivity disorder. Pediatrics 2014, 133, e14–e22. [Google Scholar] [CrossRef]
- Lam, J.; Lanphear, B.P.; Bellinger, D.; Axelrad, D.A.; McPartland, J.; Sutton, P.; Davidson, L.; Daniels, N.; Sen, S.; Woodruff, T.J. Developmental PBDE Exposure and IQ/ADHD in Childhood: A Systematic Review and Meta-analysis. Environ. Health Perspect. 2017, 125, 086001. [Google Scholar] [CrossRef]
- Eubig, P.A.; Aguiar, A.; Schantz, S.L. Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environ. Health Perspect. 2010, 118, 1654–1667. [Google Scholar] [CrossRef]
- Banerjee, T.D.; Middleton, F.; Faraone, S.V. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr. 2007, 96, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.N.; Cho, S.C.; Kim, Y.; Shin, M.S.; Yoo, H.J.; Kim, J.W.; Yang, Y.H.; Kim, H.W.; Bhang, S.Y.; Hong, Y.C. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol. Psychiatry 2009, 66, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cano, S.; Zapata-Ospina, J.P.; Arcos-Burgos, M.; Palacio-Ortiz, J.D. The role of psychosocial adversity in the aetiology and course of attention deficit hyperactivity disorder. Rev. Colomb. Psiquiatr. 2021, 52, 65–72. [Google Scholar] [CrossRef]
- Claussen, A.H.; Holbrook, J.R.; Hutchins, H.J.; Robinson, L.R.; Bloomfield, J.; Meng, L.; Bitsko, R.H.; O’Masta, B.; Cerles, A.; Maher, B.; et al. All in the Family? A Systematic Review and Meta-analysis of Parenting and Family Environment as Risk Factors for Attention-Deficit/Hyperactivity Disorder (ADHD) in Children. Prev. Sci. 2024, 25, 249–271. [Google Scholar] [CrossRef]
- Brown, N.M.; Brown, S.N.; Briggs, R.D.; German, M.; Belamarich, P.F.; Oyeku, S.O. Associations Between Adverse Childhood Experiences and ADHD Diagnosis and Severity. Acad. Pediatr. 2017, 17, 349–355. [Google Scholar] [CrossRef]
- Nilsen, F.M.; Tulve, N.S. A systematic review and meta-analysis examining the interrelationships between chemical and non-chemical stressors and inherent characteristics in children with ADHD. Environ. Res. 2020, 180, 108884. [Google Scholar] [CrossRef]
- Cortese, S.; Adamo, N.; Del Giovane, C.; Mohr-Jensen, C.; Hayes, A.J.; Carucci, S.; Atkinson, L.Z.; Tessari, L.; Banaschewski, T.; Coghill, D.; et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: A systematic review and network meta-analysis. Lancet Psychiatry 2018, 5, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Catala-Lopez, F.; Hutton, B.; Nunez-Beltran, A.; Page, M.J.; Ridao, M.; Macias Saint-Gerons, D.; Catala, M.A.; Tabares-Seisdedos, R.; Moher, D. The pharmacological and non-pharmacological treatment of attention deficit hyperactivity disorder in children and adolescents: A systematic review with network meta-analyses of randomised trials. PLoS ONE 2017, 12, e0180355. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Wang, G.; Ding, Y.; Gatley, S.J. Mechanism of action of methylphenidate: Insights from PET imaging studies. J. Atten. Disord. 2002, 6, S31–S43. [Google Scholar] [CrossRef]
- Kooij, J.J.S.; Bijlenga, D.; Salerno, L.; Jaeschke, R.; Bitter, I.; Balazs, J.; Thome, J.; Dom, G.; Kasper, S.; Nunes Filipe, C.; et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry 2019, 56, 14–34. [Google Scholar] [CrossRef]
- Semrud-Clikeman, M.; Filipek, P.A.; Biederman, J.; Steingard, R.; Kennedy, D.; Renshaw, P.; Bekken, K. Attention-deficit hyperactivity disorder: Magnetic resonance imaging morphometric analysis of the corpus callosum. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Pitzianti, M.B.; Spiridigliozzi, S.; Bartolucci, E.; Esposito, S.; Pasini, A. New Insights on the Effects of Methylphenidate in Attention Deficit Hyperactivity Disorder. Front. Psychiatry 2020, 11, 531092. [Google Scholar] [CrossRef]
- Connor, D.F.; Steingard, R.J. New formulations of stimulants for attention-deficit hyperactivity disorder: Therapeutic potential. CNS Drugs 2004, 18, 1011–1030. [Google Scholar] [CrossRef]
- Maldonado, R. Comparison of the pharmacokinetics and clinical efficacy of new extended-release formulations of methylphenidate. Expert. Opin. Drug Metab. Toxicol. 2013, 9, 1001–1014. [Google Scholar] [CrossRef] [PubMed]
- Quintero, J.; Gutierrez-Casares, J.R.; Alamo, C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol. Ther. 2022, 11, 1489–1517. [Google Scholar] [CrossRef] [PubMed]
- Rajala, A.Z.; Populin, L.C.; Jenison, R.L. Methylphenidate affects task-switching and neural signaling in non-human primates. Psychopharmacology 2020, 237, 1533–1543. [Google Scholar] [CrossRef]
- Markowitz, J.S.; DeVane, C.L.; Ramamoorthy, S.; Zhu, H.J. The psychostimulant d-threo-(R,R)-methylphenidate binds as an agonist to the 5HT(1A) receptor. Pharmazie 2009, 64, 123–125. [Google Scholar]
- Markowitz, J.S.; DeVane, C.L.; Pestreich, L.K.; Patrick, K.S.; Muniz, R. A comprehensive in vitro screening of d-, l-, and dl-threo-methylphenidate: An exploratory study. J. Child Adolesc. Psychopharmacol. 2006, 16, 687–698. [Google Scholar] [CrossRef]
- Zhang, C.L.; Feng, Z.J.; Liu, Y.; Ji, X.H.; Peng, J.Y.; Zhang, X.H.; Zhen, X.C.; Li, B.M. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: A novel mechanism for methylphenidate action. PLoS ONE 2012, 7, e51910. [Google Scholar] [CrossRef]
- Pascoli, V.; Valjent, E.; Corbille, A.G.; Corvol, J.C.; Tassin, J.P.; Girault, J.A.; Herve, D. cAMP and extracellular signal-regulated kinase signaling in response to d-amphetamine and methylphenidate in the prefrontal cortex in vivo: Role of β1-adrenoceptors. Mol. Pharmacol. 2005, 68, 421–429. [Google Scholar] [CrossRef]
- Wetzell, B.B.; Muller, M.M.; Cobuzzi, J.L.; Hurwitz, Z.E.; DeCicco-Skinner, K.; Riley, A.L. Effect of age on methylphenidate-induced conditioned taste avoidance and related BDNF/TrkB signaling in the insular cortex of the rat. Psychopharmacology 2014, 231, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Lisdexamfetamine Dimesylate: A Review in Paediatric ADHD. Drugs 2018, 78, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Hutson, P.H.; Pennick, M.; Secker, R. Preclinical pharmacokinetics, pharmacology and toxicology of lisdexamfetamine: A novel d-amphetamine pro-drug. Neuropharmacology 2014, 87, 41–50. [Google Scholar] [CrossRef]
- Ekstrand, E.; Murphy, H.M.; Wideman, C.H. The effects of the prodrug Vyvanse on spatial working memory and adiposity in rats. Pharmacol. Biochem. Behav. 2019, 186, 172765. [Google Scholar] [CrossRef]
- Dew, R.E.; Kollins, S.H. Lisdexamfetamine dimesylate: A new option in stimulant treatment for ADHD. Expert. Opin. Pharmacother. 2010, 11, 2907–2913. [Google Scholar] [CrossRef]
- Valvassori, S.S.; Resende, W.R.; Varela, R.B.; Arent, C.O.; Gava, F.F.; Peterle, B.R.; Dal-Pont, G.C.; Carvalho, A.F.; Andersen, M.L.; Quevedo, J. The Effects of Histone Deacetylase Inhibition on the Levels of Cerebral Cytokines in an Animal Model of Mania Induced by Dextroamphetamine. Mol. Neurobiol. 2018, 55, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Solanto, M.V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behav. Brain Res. 1998, 94, 127–152. [Google Scholar] [CrossRef]
- Spencer, T.; Biederman, J. Non-stimulant treatment for Attention-Deficit/Hyperactivity Disorder. J. Atten. Disord. 2002, 6, S109–S119. [Google Scholar] [CrossRef]
- Michelson, D.; Faries, D.; Wernicke, J.; Kelsey, D.; Kendrick, K.; Sallee, F.R.; Spencer, T.; the Atomoxetine ADHD Study Group. Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: A randomized, placebo-controlled, dose-response study. Pediatrics 2001, 108, E83. [Google Scholar] [CrossRef]
- Garnock-Jones, K.P.; Keating, G.M. Atomoxetine: A review of its use in attention-deficit hyperactivity disorder in children and adolescents. Pediatr. Drugs 2009, 11, 203–226. [Google Scholar] [CrossRef]
- Kratochvil, C.J.; Bohac, D.; Harrington, M.; Baker, N.; May, D.; Burke, W.J. An open-label trial of tomoxetine in pediatric attention deficit hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 2001, 11, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Bello, N.T. Clinical utility of guanfacine extended release in the treatment of ADHD in children and adolescents. Patient Prefer. Adherence 2015, 9, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, S.R. Non-stimulant treatment of attention-deficit/hyperactivity disorder. CNS Spectr. 2003, 8, 253–258. [Google Scholar] [CrossRef]
- Arnold, L.E.; Hodgkins, P.; Caci, H.; Kahle, J.; Young, S. Effect of treatment modality on long-term outcomes in attention-deficit/hyperactivity disorder: A systematic review. PLoS ONE 2015, 10, e0116407. [Google Scholar] [CrossRef]
- Shastry, B.S. Molecular genetics of attention-deficit hyperactivity disorder (ADHD): An update. Neurochem. Int. 2004, 44, 469–474. [Google Scholar] [CrossRef]
- Sharp, S.I.; McQuillin, A.; Gurling, H.M. Genetics of attention-deficit hyperactivity disorder (ADHD). Neuropharmacology 2009, 57, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Mirkovic, B.; Chagraoui, A.; Gerardin, P.; Cohen, D. Epigenetics and Attention-Deficit/Hyperactivity Disorder: New Perspectives? Front. Psychiatry 2020, 11, 579. [Google Scholar] [CrossRef]
- Cortese, S. The neurobiology and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD): What every clinician should know. Eur. J. Paediatr. Neurol. 2012, 16, 422–433. [Google Scholar] [CrossRef]
- Tripp, G.; Wickens, J.R. Neurobiology of ADHD. Neuropharmacology 2009, 57, 579–589. [Google Scholar] [CrossRef]
- Larson, K.; Russ, S.A.; Kahn, R.S.; Halfon, N. Patterns of comorbidity, functioning, and service use for US children with ADHD, 2007. Pediatrics 2011, 127, 462–470. [Google Scholar] [CrossRef]
- Goodman, D.W. The consequences of attention-deficit/hyperactivity disorder in adults. J. Psychiatr. Pract. 2007, 13, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, P.; D’Agati, E.; Moavero, R. The neurobiological basis of ADHD. Ital. J. Pediatr. 2010, 36, 79. [Google Scholar] [CrossRef] [PubMed]
- First, M.B. Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. J. Nerv. Ment. Dis. 2013, 201, 727–729. [Google Scholar] [CrossRef]
- Battle, D.E. Diagnostic and Statistical Manual of Mental Disorders (DSM). Codas 2013, 25, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Reale, L.; Bartoli, B.; Cartabia, M.; Zanetti, M.; Costantino, M.A.; Canevini, M.P.; Termine, C.; Bonati, M.; Lombardy, A.G. Comorbidity prevalence and treatment outcome in children and adolescents with ADHD. Eur. Child Adolesc. Psychiatry 2017, 26, 1443–1457. [Google Scholar] [CrossRef]
- Newcorn, J.H.; Halperin, J.M.; Jensen, P.S.; Abikoff, H.B.; Arnold, L.E.; Cantwell, D.P.; Conners, C.K.; Elliott, G.R.; Epstein, J.N.; Greenhill, L.L.; et al. Symptom profiles in children with ADHD: Effects of comorbidity and gender. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 137–146. [Google Scholar] [CrossRef]
- Jensen, P.S.; Martin, D.; Cantwell, D.P. Comorbidity in ADHD: Implications for research, practice, and DSM-V. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 1065–1079. [Google Scholar] [CrossRef]
Features | Stimulant Medications | Non-Stimulant Medications |
---|---|---|
Common Medications | Methylphenidate (Ritalin, Concerta), Amphetamine (Adderall, Vyvanse) | Atomoxetine (Strattera), Guanfacine (Intuniv), Clonidine (Kapvay) |
Mechanism of Action | Increases dopamine and norepinephrine activity in the brain by blocking their reuptake at synapses | Regulates norepinephrine levels or affects adrenergic receptors, without directly boosting dopamine levels |
Onset of Action | Fast-acting (within 30–60 min) | Slower onset (can take 2–6 weeks for full effect) |
Window of Effectiveness | Shorter half-life, often requiring multiple doses per day or extended-release forms | Longer half-life, typically taken once a day |
Effectiveness | Highly effective in ~70–80% of patients | Effective in ~50–70% of patients, often considered secondary when stimulants fail |
Side Effects | Insomnia, appetite suppression, increased heart rate, anxiety, tics | Fatigue, drowsiness, dry mouth, irritability, gastrointestinal issues |
Risk of Addiction | Higher risk, controlled substances with potential for misuse and dependence | Low to no risk of addiction or dependence |
Use in Pregnancy and Breastfeeding | Generally not recommended due to potential risks to the fetus and infant | Caution required; atomoxetine may be safer than stimulants |
Drug Interactions | Can interact with antidepressants, antacids, and medications for high blood pressure or hyperthyroidism | Fewer drug interactions, but can exacerbate conditions like fatigue or low blood pressure |
Best Suited For | Patients who need rapid symptom control and have no contraindications for stimulant use | Patients who cannot tolerate stimulant side effects, or have coexisting conditions like tics or anxiety |
Who Should Avoid | People with a history of substance abuse, heart conditions, or certain psychiatric disorders | Those with severe hypertension, or conditions aggravated by fatigue or low blood pressure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poddar, A.; Gaddam, S.; Sonnaila, S.; Bavaraju, V.S.M.; Agrawal, S. Unraveling Attention-Deficit/Hyperactivity Disorder Etiology: Current Challenges and Future Directions in Treatment. NeuroSci 2025, 6, 41. https://doi.org/10.3390/neurosci6020041
Poddar A, Gaddam S, Sonnaila S, Bavaraju VSM, Agrawal S. Unraveling Attention-Deficit/Hyperactivity Disorder Etiology: Current Challenges and Future Directions in Treatment. NeuroSci. 2025; 6(2):41. https://doi.org/10.3390/neurosci6020041
Chicago/Turabian StylePoddar, Abhishek, Sreelatha Gaddam, Shivakumar Sonnaila, Venkata Suryanarayana Murthy Bavaraju, and Shilpi Agrawal. 2025. "Unraveling Attention-Deficit/Hyperactivity Disorder Etiology: Current Challenges and Future Directions in Treatment" NeuroSci 6, no. 2: 41. https://doi.org/10.3390/neurosci6020041
APA StylePoddar, A., Gaddam, S., Sonnaila, S., Bavaraju, V. S. M., & Agrawal, S. (2025). Unraveling Attention-Deficit/Hyperactivity Disorder Etiology: Current Challenges and Future Directions in Treatment. NeuroSci, 6(2), 41. https://doi.org/10.3390/neurosci6020041