Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Preparation
2.2. Molecular Biology
2.2.1. Sample Preparation
2.2.2. RNA Isolation and Reverse Transcription
2.2.3. Quantitative Real-Time RT-PCR
2.2.4. Statistics
3. Results
3.1. Protein Kinase Genes
3.2. Apoptotic Genes
3.3. Poly ADP-Ribose Polymerase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 1999, 79, 1431–1568. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.I.; Martinez-Alonso, E.; Regidor, I.; Alcazar, A. Stress Granule Induction after Brain Ischemia Is Independent of Eukaryotic Translation Initiation Factor (eIF) 2alpha Phosphorylation and Is Correlated with a Decrease in eIF4B and eIF4E Proteins. J. Biol. Chem. 2016, 291, 27252–27264. [Google Scholar] [CrossRef] [PubMed]
- DeGracia, D.J.; Hu, B.R. Irreversible translation arrest in the reperfused brain. J. Cereb. Blood Flow Metab. 2007, 27, 875–893. [Google Scholar] [CrossRef] [PubMed]
- Gidday, J.M. Cerebral preconditioning and ischaemic tolerance. Nat. Rev. Neurosci. 2006, 7, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, F.; Cottrell, J.E.; Sacktor, T.C.; Kass, I.S. Metabotropic actions of the volatile anaesthetic sevoflurane increase protein kinase M synthesis and induce immediate preconditioning protection of rat hippocampal slices. J. Physiol. 2012, 590, 4093–4107. [Google Scholar] [CrossRef] [PubMed]
- Bickler, P.E.; Fahlman, C.S. Enhanced hypoxic preconditioning by isoflurane: Signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors. Brain Res. 2010, 1340, 86–95. [Google Scholar] [CrossRef]
- Bickler, P.E.; Zhan, X.; Fahlman, C.S. Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: Role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology 2005, 103, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, X.; Shi, E.; Ma, H.; Wang, J. Sevoflurane preconditioning reverses impairment of hippocampal long-term potentiation induced by myocardial ischaemia-reperfusion injury. Eur. J. Anaesthesiol. 2009, 26, 961–968. [Google Scholar] [CrossRef]
- Wang, J.; Lei, B.; Popp, S.; Meng, F.; Cottrell, J.E.; Kass, I.S. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. Neuroscience 2007, 145, 1097–1107. [Google Scholar] [CrossRef]
- Wei, H.; Kang, B.; Wei, W.; Liang, G.; Meng, Q.C.; Li, Y.; Eckenhoff, R.G. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res. 2005, 1037, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Engelhard, K.W.C.; Eberspacher, E.; Pape, M.; Blobner, M.; Hutzler, P.; Kochs, E. Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats. Eur. J. Anaesthesiol. 2004, 21, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Sacktor, T.C. How does PKMzeta maintain long-term memory? Nat. Rev. Neurosci. 2011, 12, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, F.; Cottrell, J.E.; Kass, I.S. The differential effects of volatile anesthetics on electrophysiological and biochemical changes during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience 2006, 140, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.C.; Medhurst, A.D.; Bond, B.C.; Campbell, C.A.; Davis, R.P.; Philpott, K.L. The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia—Caspase-3 as a case study. Brain Res. Mol. Brain Res. 2000, 75, 143–149. [Google Scholar] [CrossRef]
- Asanuma, M.; Ogawa, N.; Hirata, H.; Chou, H.H.; Kondo, Y.; Mori, A. Ischemia-induced changes in alpha-tubulin and beta-actin mRNA in the gerbil brain and effects of bifemelane hydrochloride. Brain Res. 1993, 600, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Meldgaard, M.; Fenger, C.; Lambertsen, K.L.; Pedersen, M.D.; Ladeby, R.; Finsen, B. Validation of two reference genes for mRNA level studies of murine disease models in neurobiology. J. Neurosci. Methods 2006, 156, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Langnaese, K.; John, R.; Schweizer, H.; Ebmeyer, U.; Keilhoff, G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol. Biol. 2008, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, O.; Bar-Am, O.; Amit, T.; Chillag-Talmor, O.; Youdim, M.B. Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J. 2004, 18, 1471–1473. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Pozzato, C.; Andreetta, V.; Jansson, B.; Arban, R.; Domenici, E.; Carboni, L. Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Res. 2006, 1067, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Medhurst, A.D.; Harrison, D.C.; Read, S.J.; Campbell, C.A.; Robbins, M.J.; Pangalos, M.N. The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J. Neurosci. Methods 2000, 98, 9–20. [Google Scholar] [CrossRef]
- Churchill, E.N.; Mochly-Rosen, D. The roles of PKCdelta and epsilon isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans. 2007, 35, 1040–1042. [Google Scholar] [CrossRef] [PubMed]
- Raval, A.P.; Dave, K.R.; Mochly-Rosen, D.; Sick, T.J.; Perez-Pinzon, M.A. Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J. Neurosci. 2003, 23, 384–391. [Google Scholar] [CrossRef]
- Obal, D.; Weber, N.C.; Zacharowski, K.; Toma, O.; Dettwiler, S.; Wolter, J.I.; Kratz, M.; Mullenheim, J.; Preckel, B.; Schlack, W. Role of protein kinase C-epsilon (PKCepsilon) in isoflurane-induced cardioprotection. Br. J. Anaesth. 2005, 94, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Huang, Y.M.; Wang, E.; Zuo, Z.Y.; Guo, Q.L. Sevoflurane-induced delayed neuroprotection involves mitoK(ATP) channel opening and PKC epsilon activation. Mol. Biol. Rep. 2012, 39, 5049–5057. [Google Scholar] [CrossRef] [PubMed]
- Okusa, C.; Miyamae, M.; Sugioka, S.; Kaneda, K.; Inamura, Y.; Onishi, A.; Domae, N.; Kotani, J.; Figueredo, V.M. Acute memory phase of sevoflurane preconditioning is associated with sustained translocation of protein kinase C-alpha and epsilon, but not delta, in isolated guinea pig hearts. Eur. J. Anaesthesiol. 2009, 26, 582–588. [Google Scholar] [CrossRef]
- Niizuma, K.; Yoshioka, H.; Chen, H.; Kim, G.S.; Jung, J.E.; Katsu, M.; Okami, N.; Chan, P.H. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim. Biophys. Acta 2010, 1802, 92–99. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Tang, T.; Guo, C. The role of PARP1 in the DNA damage response and its application in tumor therapy. Front. Med. 2012, 6, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.; Kern, T.S.; Zheng, L. Inhibition of poly(ADP-ribose) polymerase inhibits ischemia/reperfusion induced neurodegeneration in retina via suppression of endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 2012, 423, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Schriewer, J.M.; Peek, C.B.; Bass, J.; Schumacker, P.T. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J. Am. Heart Assoc. 2013, 2, e000159. [Google Scholar] [CrossRef]
- Bianchetti, E.; Mladinic, M.; Nistri, A. Mechanisms underlying cell death in ischemia-like damage to the rat spinal cord in vitro. Cell Death Dis. 2013, 4, e707. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Liu, J.; Florveus, A.; Ganesan, V.; Cottrell, J.E.; Kass, I.S. Exposure to Sevoflurane, But Not Ketamine, During Early-life Brain Development has Long-Lasting Effects on GABA(A) Receptor Mediated Inhibitory Neurotransmission. Neuroscience 2021, 472, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Jevtovic-Todorovic, V.; Boscolo, A.; Sanchez, V.; Lunardi, N. Anesthesia-induced developmental neurodegeneration: The role of neuronal organelles. Front. Neurol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Warner, D.O.; Shi, Y.; Flick, R.P. Anesthesia and Neurodevelopment in Children: Perhaps the End of the Beginning. Anesthesiology 2018, 128, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Tsokas, P.; Hsieh, C.; Flores-Obando, R.E.; Bernabo, M.; Tcherepanov, A.; Hernandez, A.I.; Thomas, C.; Bergold, P.J.; Cottrell, J.E.; Kremerskothen, J.; et al. KIBRA anchoring the action of PKMzeta maintains the persistence of memory. Sci. Adv. 2024, 10, eadl0030. [Google Scholar] [CrossRef] [PubMed]
- Tsokas, P.; Hsieh, C.; Yao, Y.; Lesburgueres, E.; Wallace, E.J.; Tcherepanov, A.; Jothianandan, D.; Hartley, B.R.; Pan, L.; Rivard, B.; et al. Compensation for PKMzeta in long-term potentiation and spatial long-term memory in mutant mice. Elife 2016, 5, e14846. [Google Scholar] [CrossRef] [PubMed]
- Bedirli, N.; Bagriacik, E.U.; Emmez, H.; Yilmaz, G.; Unal, Y.; Ozkose, Z. Sevoflurane and isoflurane preconditioning provides neuroprotection by inhibition of apoptosis-related mRNA expression in a rat model of focal cerebral ischemia. J. Neurosurg. Anesthesiol. 2012, 24, 336–344. [Google Scholar] [CrossRef]
- Zhang, S.D.; Zhai, J.; Zhang, H.; Wan, H.; Li, D.Z. Protective effect of isoflurane and sevoflurane on ischemic neurons and expression of Bcl-2 and ICE genes in rat brain. Biomed. Environ. Sci. 2006, 19, 143–146. [Google Scholar] [PubMed]
- Zhang, J.; Wang, C.; Yu, S.; Luo, Z.; Chen, Y.; Liu, Q.; Hua, F.; Xu, G.; Yu, P. Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci. Rep. 2014, 4, 7317. [Google Scholar] [CrossRef]
- Libien, J.; Sacktor, T.C.; Kass, I.S. Magnesium blocks the loss of protein kinase C, leads to a transient translocation of PKC(alpha) and PKC(epsilon), and improves recovery after anoxia in rat hippocampal slices. Brain Res. Mol. Brain Res. 2005, 136, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.D.; Gourov, A.V.; Harte, C.; Gao, P.; Lee, C.; Sylvain, D.; Splett, J.M.; Oxberry, W.C.; van de Nes, P.S.; Troy-Regier, M.J.; et al. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity. PLoS ONE 2014, 9, e104364. [Google Scholar] [CrossRef]
mRNA | Forward Primer Sequence (5′→3′) | Reverse Primer Sequence (5′→3′) | Size of Product (Bp) |
---|---|---|---|
Bad | GCT TAG CCC TTT TCG AGG AC | GAT CCC ACC AGG ACT GGA T | 200 |
Bcl-xL | GGT GAG TCG GAT TGC AAG TT | GAG CCC AGC AGA ACT ACA CC | 198 |
Bcl2 | AGGGGCTACGAGTGGGATAC | TCAGGCTGGAAGGAGAAGATG | 86 |
PKMζ | GGC TCC TTA AAG GGA CGG AA | TGC TCT ACC GAA GGT GGG C | 54 |
PKCε | CCC CTT GTG ACC AGG AAC TA | GCC TTT GCC TAA CAC CTT GA | 203 |
PKCγ | TTC TTC AAG CAG CCA ACC TT | TGT AGC TGT GCA GAC GGA AC | 202 |
Parp 1 | AGTATGCCAAGTCCAACAGGAGCA | ATCATACCCAGTTGCGGCTTCTCT | 114 |
GAPDH | GAACATCATCCCTGCATCCA | CCAGTGAGCTTCCCGTTCA | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.Y.; Allen, K.D.; Hernandez, A.I.; Cottrell, J.E.; Kass, I.S. Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery. NeuroSci 2025, 6, 9. https://doi.org/10.3390/neurosci6010009
Hou JY, Allen KD, Hernandez AI, Cottrell JE, Kass IS. Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery. NeuroSci. 2025; 6(1):9. https://doi.org/10.3390/neurosci6010009
Chicago/Turabian StyleHou, Joan Y., Kim D. Allen, A. Iván Hernandez, James E. Cottrell, and Ira S. Kass. 2025. "Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery" NeuroSci 6, no. 1: 9. https://doi.org/10.3390/neurosci6010009
APA StyleHou, J. Y., Allen, K. D., Hernandez, A. I., Cottrell, J. E., & Kass, I. S. (2025). Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery. NeuroSci, 6(1), 9. https://doi.org/10.3390/neurosci6010009