Perceptual Awareness and Its Relationship with Consciousness: Hints from Perceptual Multistability
Abstract
:1. Introduction
Multistable Phenomena and Perceptual Awareness
“If we can understand why it is these figures reverse then we’re in a position to understand something pretty fundamental to how the visual system contributes to the conscious experience”. (Toppino, T.C., in [29]).
2. Are Different Visual Multistable Phenomena Related?
3. Neural Bases of Perceptual Switching and Its Relationship with Consciousness
3.1. Functional Neuroimaging
3.2. Magneto- and Electro-Encephalography (MEEG)
4. Theoretical Frameworks and Multistability
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canales, A.F.; Gómez, D.M.; Maffet, C.R. A critical assessment of the consciousness by synchrony hypothesis. Biol. Res. 2007, 40, 517–519. [Google Scholar] [CrossRef] [Green Version]
- Revonsuo, A. Binding and the phenomenal unity of consciousness. Conscious. Cogn. 1999, 8, 173–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S.; Changeux, J.P.; Naccache, L.; Sackur, J.; Sergent, C. Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends Cogn. Sci. 2006, 10, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, L. To what extent are emotional visual stimuli processed without attention and awareness? Curr. Opin. Neurobiol. 2005, 15, 188–196. [Google Scholar] [CrossRef]
- Schwartz, J.L.; Grimault, N.; Hupé, J.M.; Moore, B.C.; Pressnitzer, D. Multistability in perception: Binding sensory modalities, an overview. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 896–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilg, R.; Wohlschläger, A.M.; Burazanis, S.; Wöller, A.; Nunnemann, S.; Mühlau, M. Neural correlates of spontaneous percept switches in ambiguous stimuli: An event-related functional magnetic resonance imaging study. Eur. J. Neurosci. 2008, 28, 2325–2332. [Google Scholar] [CrossRef]
- Long, G.M.; Toppino, T.C. Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychol. Bull. 2004, 130, 748. [Google Scholar] [CrossRef]
- Tong, F.; Meng, M.; Blake, R. Neural bases of binocular rivalry. Trends Cogn. Sci. 2006, 10, 502–511. [Google Scholar] [CrossRef]
- Wernery, J.; Atmanspacher, H.; Kornmeier, J.; Candia, V.; Folkers, G.; Wittmann, M. Temporal processing in bistable perception of the Necker cube. Perception 2015, 44, 157–168. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, G.A.; Castillo-Parra, H. Bistable perception: Neural bases and usefulness in psychological research. Int. J. Psychol. Res. 2018, 11, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Clifford, C.W. Binocular rivalry. Curr. Biol. 2009, 19, R1022–R1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alais, D.; O’Shea, R.P.; Mesana-Alais, C.; Wilson, I.G. On binocular alternation. Perception 2000, 29, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Einhäuser, W.; da Silva, L.F.; Bendixen, A. Intraindividual consistency between auditory and visual multistability. Perception 2020, 49, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Pressnitzer, D.; Hupé, J.M. Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Curr. Biol. 2006, 16, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Denham, S.L.; Farkas, D.; Van Ee, R.; Taranu, M.; Kocsis, Z.; Wimmer, M.; Carmel, D.; Winkler, I. Similar but separate systems underlie perceptual bistability in vision and audition. Sci. Rep. 2018, 8, 7106. [Google Scholar] [CrossRef] [PubMed]
- Canales-Johnson, A.; Billig, A.J.; Olivares, F.; Gonzalez, A.; Garcia, M.d.C.; Silva, W.; Vaucheret, E.; Ciraolo, C.; Mikulan, E.; Ibanez, A.; et al. Dissociable neural information dynamics of perceptual integration and differentiation during bistable perception. Cereb. Cortex 2020, 30, 4563–4580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barraza, P.; Jaume-Guazzini, F.; Rodríguez, E. Pre-stimulus EEG oscillations correlate with perceptual alternation of speech forms. Neurosci. Lett. 2016, 622, 24–29. [Google Scholar] [CrossRef]
- Kondo, H.M.; Kashino, M. Neural mechanisms of auditory awareness underlying verbal transformations. Neuroimage 2007, 36, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Carter, O.; Konkle, T.; Wang, Q.; Hayward, V.; Moore, C. Tactile rivalry demonstrated with an ambiguous apparent-motion quartet. Curr. Biol. 2008, 18, 1050–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunghi, C.; Alais, D. Touch interacts with vision during binocular rivalry with a tight orientation tuning. PLoS ONE 2013, 8, e58754. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, D. Binaral rivalry between the nostrils and in the cortex. Curr. Biol. 2009, 19, 1561–1565. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Jiang, Y.; He, S.; Chen, D. Olfaction modulates visual perception in binocular rivalry. Curr. Biol. 2010, 20, 1356–1358. [Google Scholar] [CrossRef]
- Holcombe, A.O.; Seizova-Cajic, T. Illusory motion reversals from unambiguous motion with visual, proprioceptive, and tactile stimuli. Vis. Res. 2008, 48, 1743–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, R.; Bodenheimer, B.; Blake, R. Does direction of walking impact binocular rivalry between competing patterns of optic flow? Atten. Percept. Psychophys. 2017, 79, 1182–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pace, E.; Saracini, C. Action imitation changes perceptual alternations in binocular rivalry. PLoS ONE 2014, 9, e98305. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J. Effects of multimodal association on ambiguous perception in binocular rivalry. Perception 2019, 48, 796–819. [Google Scholar] [CrossRef]
- Van Ee, R.; Van Boxtel, J.J.; Parker, A.L.; Alais, D. Multisensory congruency as a mechanism for attentional control over perceptual selection. J. Neurosci. 2009, 29, 11641–11649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weilnhammer, V.; Fritsch, M.; Chikermane, M.; Eckert, A.L.; Kanthak, K.; Stuke, H.; Kaminski, J.; Sterzer, P. An active role of inferior frontal cortex in conscious experience. Curr. Biol. 2021, 31, 2868–2880. [Google Scholar] [CrossRef]
- Parker-Pope, T. The Truth About the Spinning Dancer. New York Times Blog. 2008. Available online: https://archive.nytimes.com/well.blogs.nytimes.com/2008/04/28/the-truth-about-the-spinning-dancer/ (accessed on 27 August 2022).
- Meng, M.; Tong, F. Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. J. Vis. 2004, 4, 539–551. [Google Scholar] [CrossRef]
- van Ee, R.; Van Dam, L.; Brouwer, G. Voluntary control and the dynamics of perceptual bi-stability. Vis. Res. 2005, 45, 41–55. [Google Scholar] [CrossRef]
- Walker, P. Stochastic properties of binocular rivalry alternations. Percept. Psychophys. 1975, 18, 467–473. [Google Scholar] [CrossRef]
- Leopold, D.A.; Logothetis, N.K. Multistable phenomena: Changing views in perception. Trends Cogn. Sci. 1999, 3, 254–264. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, J.; White, K.D.; Merk, I.; Yao, K. Perceptual dominance time distributions in multistable visual perception. Biol. Cybern. 2004, 90, 256–263. [Google Scholar] [CrossRef]
- Brascamp, J.W.; Van Ee, R.; Pestman, W.R.; Van Den Berg, A.V. Distributions of alternation rates in various forms of bistable perception. J. Vis. 2005, 5, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Filevich, E.; Becker, M.; Wu, Y.H.; Kühn, S. Seeing Double: Exploring the Phenomenology of Self-Reported Absence of Rivalry in Bistable Pictures. Front. Hum. Neurosci. 2017, 11, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.M. The Constitution of Visual Consciousness: Lessons from Binocular Rivalry; John Benjamins Publishing: Amsterdam, The Netherlands, 2013; Volume 90. [Google Scholar]
- Wilson, H.R.; Blake, R.; Lee, S.H. Dynamics of travelling waves in visual perception. Nature 2001, 412, 907–910. [Google Scholar] [CrossRef]
- Lee, S.H.; Blake, R.; Heeger, D.J. Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 2005, 8, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Sterzer, P.; Kleinschmidt, A.; Rees, G. The neural bases of multistable perception. Trends Cogn. Sci. 2009, 13, 310–318. [Google Scholar] [CrossRef]
- Lumer, E.D.; Friston, K.J.; Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 1998, 280, 1930–1934. [Google Scholar] [CrossRef] [Green Version]
- Frässle, S.; Sommer, J.; Jansen, A.; Naber, M.; Einhäuser, W. Binocular rivalry: Frontal activity relates to introspection and action but not to perception. J. Neurosci. 2014, 34, 1738–1747. [Google Scholar] [CrossRef] [Green Version]
- Einhäuser, W.; Stout, J.; Koch, C.; Carter, O. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc. Natl. Acad. Sci. USA 2008, 105, 1704–1709. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, N.; Wilke, M.; Frässle, S.; Lamme, V.A. No-report paradigms: Extracting the true neural correlates of consciousness. Trends Cogn. Sci. 2015, 19, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R. The role of frontal and parietal brain areas in bistable perception. J. Neurosci. 2011, 31, 10293–10301. [Google Scholar] [CrossRef] [PubMed]
- Brascamp, J.; Sterzer, P.; Blake, R.; Knapen, T. Multistable perception and the role of the frontoparietal cortex in perceptual inference. Annu. Rev. Psychol. 2018, 69, 77–103. [Google Scholar] [CrossRef] [Green Version]
- Weilnhammer, V.; Stuke, H.; Hesselmann, G.; Sterzer, P.; Schmack, K. A predictive coding account of bistable perception-a model-based fMRI study. PLoS Comput. Biol. 2017, 13, e1005536. [Google Scholar] [CrossRef]
- Carmel, D.; Walsh, V.; Lavie, N.; Rees, G. Right parietal TMS shortens dominance durations in binocular rivalry. Curr. Biol. 2010, 20, R799–R800. [Google Scholar] [CrossRef] [Green Version]
- Kanai, R.; Bahrami, B.; Rees, G. Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr. Biol. 2010, 20, 1626–1630. [Google Scholar] [CrossRef] [Green Version]
- Megumi, F.; Bahrami, B.; Kanai, R.; Rees, G. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception. NeuroImage 2015, 107, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.H.; Karapanagiotidis, T.; Coggan, D.D.; Wailes-Newson, K.; Smallwood, J. Brain networks underlying bistable perception. NeuroImage 2015, 119, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Kanai, R.; Carmel, D.; Bahrami, B.; Rees, G. Structural and functional fractionation of right superior parietal cortex in bistable perception. Curr. Biol. 2011, 21, R106–R107. [Google Scholar] [CrossRef]
- Bartels, A. Consciousness: What is the role of prefrontal cortex? Curr. Biol. 2021, 31, R853–R856. [Google Scholar] [CrossRef]
- Katyal, S.; He, S.; He, B.; Engel, S.A. Frequency of alpha oscillation predicts individual differences in perceptual stability during binocular rivalry. Hum. Brain Mapp. 2019, 40, 2422–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela, F.J. Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biol. Res. 1995, 28, 81–95. [Google Scholar]
- Rodriguez, E.; George, N.; Lachaux, J.P.; Martinerie, J.; Renault, B.; Varela, F.J. Perception’s shadow: Long-distance synchronization of human brain activity. Nature 1999, 397, 430–433. [Google Scholar] [CrossRef]
- Varela, F.; Lachaux, J.P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001, 2, 229–239. [Google Scholar] [CrossRef]
- Gray, C.M.; König, P.; Engel, A.K.; Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989, 338, 334–337. [Google Scholar] [CrossRef]
- Engel, A.K.; Fries, P.; König, P.; Brecht, M.; Singer, W. Temporal binding, binocular rivalry, and consciousness. Conscious. Cogn. 1999, 8, 128–151. [Google Scholar] [CrossRef] [Green Version]
- Seth, A.K.; Barrett, A.B.; Barnett, L. Causal density and integrated information as measures of conscious level. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3748–3767. [Google Scholar] [CrossRef] [Green Version]
- Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated information theory: From consciousness to its physical substrate. Nat. Rev. Neurosci. 2016, 17, 450–461. [Google Scholar] [CrossRef]
- King, J.R.; Sitt, J.D.; Faugeras, F.; Rohaut, B.; El Karoui, I.; Cohen, L.; Naccache, L.; Dehaene, S. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr. Biol. 2013, 23, 1914–1919. [Google Scholar] [CrossRef] [Green Version]
- Sitt, J.D.; King, J.R.; El Karoui, I.; Rohaut, B.; Faugeras, F.; Gramfort, A.; Cohen, L.; Sigman, M.; Dehaene, S.; Naccache, L. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 2014, 137, 2258–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casali, A.G.; Gosseries, O.; Rosanova, M.; Boly, M.; Sarasso, S.; Casali, K.R.; Casarotto, S.; Bruno, M.A.; Laureys, S.; Tononi, G.; et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 2013, 5, 198ra105. [Google Scholar] [CrossRef] [PubMed]
- Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F.; Pennartz, C.M. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 2011, 55, 1548–1565. [Google Scholar] [CrossRef]
- Hipp, J.F.; Engel, A.K.; Siegel, M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 2011, 69, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Devia, C.; Concha-Miranda, M.; Rodríguez, E. Bi-Stable Perception: Self-Coordinating Brain Regions to Make-Up the Mind. Front. Neurosci. 2022, 15, 805690. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.; Varela, F.J. Radical embodiment: Neural dynamics and consciousness. Trends Cogn. Sci. 2001, 5, 418–425. [Google Scholar] [CrossRef]
- Lanfranco, R.C.; Canales-Johnson, A.; Lucero, B.; Vargas, E.; Noreika, V. Towards a view from within: The contribution of Francisco Varela to the study of consciousness. Adapt. Behav. 2021. [Google Scholar] [CrossRef]
- Northoff, G.; Lamme, V. Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci. Biobehav. Rev. 2020, 118, 568–587. [Google Scholar] [CrossRef] [PubMed]
- Melloni, L.; Mudrik, L.; Pitts, M.; Koch, C. Making the hard problem of consciousness easier. Science 2021, 372, 911–912. [Google Scholar] [CrossRef]
- Seth, A.K.; Bayne, T. Theories of consciousness. Nat. Rev. Neurosci. 2022, 23, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, D. Consciousness and Mind; Clarendon Press: Oxford, UK, 2005. [Google Scholar]
- Brown, R.; Lau, H.; LeDoux, J.E. Understanding the higher-order approach to consciousness. Trends Cogn. Sci. 2019, 23, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Changeux, J.P. Experimental and theoretical approaches to conscious processing. Neuron 2011, 70, 200–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oizumi, M.; Albantakis, L.; Tononi, G. From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLoS Comput. Biol. 2014, 10, e1003588. [Google Scholar] [CrossRef] [Green Version]
- Lamme, V.A.; Roelfsema, P.R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 2000, 23, 571–579. [Google Scholar] [CrossRef]
- Del Pin, S.H.; Skóra, Z.; Sandberg, K.; Overgaard, M.; Wierzchoń, M. Comparing theories of consciousness: Why it matters and how to do it. Neurosci. Conscious. 2021, 2021, niab019. [Google Scholar] [CrossRef] [PubMed]
- Sattin, D.; Magnani, F.G.; Bartesaghi, L.; Caputo, M.; Fittipaldo, A.V.; Cacciatore, M.; Picozzi, M.; Leonardi, M. Theoretical models of consciousness: A scoping review. Brain Sci. 2021, 11, 535. [Google Scholar] [CrossRef]
- Yaron, I.; Melloni, L.; Pitts, M.; Mudrik, L. The Consciousness Theories Studies (ConTraSt) database: Analyzing and comparing empirical studies of consciousness theories. bioRxiv 2021. [Google Scholar] [CrossRef]
- Doerig, A.; Schurger, A.; Hess, K.; Herzog, M.H. The unfolding argument: Why IIT and other causal structure theories cannot explain consciousness. Conscious. Cogn. 2019, 72, 49–59. [Google Scholar] [CrossRef]
- Doerig, A.; Schurger, A.; Herzog, M.H. Hard criteria for empirical theories of consciousness. Cogn. Neurosci. 2021, 12, 41–62. [Google Scholar] [CrossRef]
- Irvine, E. Explaining what? Topoi 2017, 36, 95–106. [Google Scholar]
- Hohwy, J.; Seth, A. Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philos. Mind Sci. 2020, 1, 3. [Google Scholar] [CrossRef]
- Friston, K. Does predictive coding have a future? Nat. Neurosci. 2018, 21, 1019–1021. [Google Scholar]
- Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Hohwy, J. The Predictive Mind; OUP: Oxford, UK, 2013. [Google Scholar]
- Millidge, B.; Seth, A.; Buckley, C.L. Predictive coding: A theoretical and experimental review. arXiv 2021, arXiv:2107.12979. [Google Scholar]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar]
- Hohwy, J.; Roepstorff, A.; Friston, K. Predictive coding explains binocular rivalry: An epistemological review. Cognition 2008, 108, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Badcock, P.; Friston, K.J. Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry Clin. Neurosci. 2021, 75, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Whyte, C.J. Integrating the global neuronal workspace into the framework of predictive processing: Towards a working hypothesis. Conscious. Cogn. 2019, 73, 102763. [Google Scholar] [CrossRef]
- Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 815–836. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; He, B. EEG source localization. Handb. Clin. Neurol. 2019, 160, 85–101. [Google Scholar]
- Lei, L.; Liu, K.; Yang, Y.; Doubliez, A.; Hu, X.; Xu, Y.; Zhou, Y. Spatio-temporal analysis of EEG features during consciousness recovery in patients with disorders of consciousness. Clin. Neurophysiol. 2022, 133, 135–144. [Google Scholar] [CrossRef]
- Levine, J. Materialism and qualia: The explanatory gap. Pac. Philos. Q. 1983, 64, 354–361. [Google Scholar] [CrossRef]
- Seth, A.K.; Hohwy, J. Predictive processing as an empirical theory for consciousness science. Cogn. Neurosci. 2021, 12, 89–90. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saracini, C. Perceptual Awareness and Its Relationship with Consciousness: Hints from Perceptual Multistability. NeuroSci 2022, 3, 546-557. https://doi.org/10.3390/neurosci3040039
Saracini C. Perceptual Awareness and Its Relationship with Consciousness: Hints from Perceptual Multistability. NeuroSci. 2022; 3(4):546-557. https://doi.org/10.3390/neurosci3040039
Chicago/Turabian StyleSaracini, Chiara. 2022. "Perceptual Awareness and Its Relationship with Consciousness: Hints from Perceptual Multistability" NeuroSci 3, no. 4: 546-557. https://doi.org/10.3390/neurosci3040039
APA StyleSaracini, C. (2022). Perceptual Awareness and Its Relationship with Consciousness: Hints from Perceptual Multistability. NeuroSci, 3(4), 546-557. https://doi.org/10.3390/neurosci3040039