The Necessity of a Global Binding Framework for Sustainable Management of Chemicals and Materials—Interactions with Climate and Biodiversity
Abstract
:1. Introduction
2. Chemicals and Materials Affect the Stability of the Earth System
3. Production and Use of Substances Interact with Climate Change
3.1. Expenditure of Energy for Production and Use of Substances
3.2. Energy-Intensive Production Processes
3.3. Replacing Primary Raw Materials
3.4. Production of Chemicals
3.5. Transport of Substances and Products
4. Climate Change Impacts Fate and Effects of Substances
4.1. Larger Amounts of Toxic Air Pollutants
4.2. Semi-Volatile Substances
4.3. Enhanced Degradation Rates
4.4. Increased Toxicity and Ecotoxicity
4.5. Heavy Rainfall and Floods Mobilize Pollutants
5. Extraction, Production and Use of Substances Endanger Biodiversity
5.1. Raw Materials Extraction and Processing
5.2. Toxic Emissions (Air, Water, Waste)
5.3. Plastic Threatens the Biosphere
5.4. Pesticides and Fertilizers
5.5. Endocrine Disruptors and Infochemicals
5.6. Cultivation of Renewable Raw Materials
5.7. Invasive Species and Global Trade
5.8. Reduced Chemical Diversity
6. Elements of a Sustainable Chemicals and Materials Management
- Chemical products which do not have hazardous characteristics that burden the environment and health;
- Chemical production carried out in such a way that it does not involve any danger for human beings or the environment and efficient in regard to energy and resources;
- Regeneration and recycling which are taken into account from the very beginning;
- Material flows managed in such a way that they do not exceed planetary boundaries and satisfy ecological criteria.
6.1. Sustainable Chemicals
6.2. Sustainable Production of Chemicals
6.3. Sustainable Materials Flow Management
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crutzen, P.J. The Geology of Mankind. Nature 2002, 415, 23. Available online: https://www.nature.com/articles/415023a.pdf (accessed on 29 March 2022). [CrossRef] [PubMed]
- Wang, Z.; Altenburger, R.; Backhaus, T.; Covaci, A.; Diamond, M.L.; Grimalt, J.O.; Lohmann, R.; Schäffer, A.; Scheringer, M.; Selin, H.; et al. We need a global science-policy body on chemicals and waste: Major gaps in current efforts limit policy responses. Science 2021, 371, 774–776. [Google Scholar] [CrossRef] [PubMed]
- Scheringer, M. Environmental chemistry and ecotoxicology: In greater demand than ever. Environ. Sci. Eur. 2017, 29, 3. Available online: https://enveurope.springeropen.com/track/pdf/10.1186/s12302-016-0101-x.pdf (accessed on 10 January 2022). [CrossRef] [PubMed] [Green Version]
- UNEA 5.2. Resolution for a Science-Policy Panel to Contribute Further to the Sound Management of Chemicals and Waste and to Prevent Pollution, 2 March 2022. Available online: https://www.unep.org/news-and-stories/press-release/un-environment-assembly-concludes-14-resolutions-curb-pollution (accessed on 2 April 2022).
- Wang, Z.; Summerson, I.; Lai, A.J.; Boucher, J.M.; Scheringer, M. Strengthening the Science-Policy Interface in International Chemicals Governance: A Mapping and Gap Analysis. International Panel on Chemical Pollution. 2019. Available online: https://www.ipcp.ch/wp-content/uploads/2019/02/IPCP-Sci-Pol-Report2019.pdf (accessed on 10 January 2022).
- OSPAR Convention 1992. Convention for the Protection of the Marine Environment of the North-East Atlantic. Available online: https://www.ospar.org/convention (accessed on 21 January 2022).
- UNCTAD, Agenda 21. 1992. Available online: https://sustainabledevelopment.un.org/content/documents/Agenda21.pdf (accessed on 21 January 2022).
- UNO. Sustainable Development Goals. 2015. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 21 January 2022).
- EIA—Environmental Investigation Agency, Convention on Plastic Pollution—Toward a New Global Agreement to Address Plastic Pollution. 2020. Available online: https://eia-international.org/wp-content/uploads/EIA-report-Convention-on-Plastic-Pollution-single-pages-for-print.pdf (accessed on 28 January 2022).
- SAICM 2020, Strategic Approach to International Chemicals Management. Available online: http://www.saicm.org/ (accessed on 21 January 2022).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S., 3rd; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.-J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. Available online: https://pubmed.ncbi.nlm.nih.gov/19779433/ (accessed on 10 January 2022). [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 6223. Available online: https://www.science.org/doi/10.1126/science.1259855 (accessed on 10 January 2022). [CrossRef] [PubMed] [Green Version]
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef]
- Stockholm Resilience Center. Safe Planetary Boundary for Pollutants, Including Plastics, Exceeded, Say Researchers. 2022. Available online: https://www.stockholmresilience.org/research/research-news/2022-01-18-safe-planetary-boundary-for-pollutants-including-plastics-exceeded-say-researchers.html (accessed on 23 January 2022).
- UNEP, Global Chemicals Outlook, GCO II Synthesis Report. 2019. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/27651/GCOII_synth.pdf?sequence=1&isAllowed=y (accessed on 15 December 2021).
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The Trajectory of the Anthropocene: The great acceleration. Anthr. Rev. 2015, 2, 81–98. Available online: https://www.bpb.de/system/files/dokument_pdf/Steffen2015ThetrajectoryoftheAnthropoceneTheGreatAcceleration.pdf (accessed on 10 January 2022). [CrossRef]
- Cousins, I.T.; Ng, C.A.; Wang, Z.; Scheringer, M. Why is high persistence alone a major cause of concern? Environ. Sci. Processes Impacts 2019, 21, 781. Available online: https://pubs.rsc.org/en/content/articlepdf/2019/em/c8em00515j (accessed on 10 January 2022). [CrossRef] [Green Version]
- Klöpffer, W. Persistenz und Abbaubarkeit. Umweltwiss. Schadst.-Forsch. 1989, 1, 43. [Google Scholar] [CrossRef] [Green Version]
- Umweltbundesamt, Protecting the Sources of Our Drinking Water: The Criteria for Identifying Persistent, Mobile and Toxic (PMT) Substances and Very Persistent and Very Mobile (vPvM) Substances under EU Regulation REACH (EC) No 1907/2006, UBA-Texte 127/2019. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-11-29_texte_127-2019_protecting-sources-drinking-water-pmt.pdf (accessed on 10 January 2022).
- BUND: Fluorochemicals—Persistent, Dangerous, Avoidable, Background Paper. 2021. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/chemie/Background_Fluorochemicals_Web_EN.pdf (accessed on 28 January 2022).
- European Commission, Chemicals Strategy for Sustainability—Towards a Toxic-Free Environment, COM (2020) 667 Final. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:f815479a-0f01-11eb-bc07-01aa75ed71a1.0003.02/DOC_1&format=PDF (accessed on 10 January 2022).
- Ritchie, H. Sector by Sector: Where Do Global Greenhouse Gas Emissions Come from? Our World in Data. 2020. Available online: https://ourworldindata.org/ghg-emissions-by-sector (accessed on 29 January 2022).
- OECD-ITF. 2021: ITF Transport Outlook 2021. Available online: https://www.oecd-ilibrary.org/sites/16826a30-en/index.html?itemId=/content/publication/16826a30-en (accessed on 29 January 2022).
- VDI, Richtlinie 4600, Kumulierter Energieaufwand (KEA), Beuth-Verlag Berlin. 2012. Available online: https://www.vdi.de/richtlinien/details/vdi-4600-kumulierter-energieaufwand-kea-begriffe-berechnungsmethoden (accessed on 10 January 2022).
- Umweltbundesamt, Final Energy Productivity. 2021. Available online: https://www.umweltbundesamt.de/en/image/final-energy-productivity (accessed on 29 January 2022).
- IEA International Energy Agency, Global Energy Outlook 2018. Available online: https://webstore.iea.org/download/summary/190?fileName=German-WEO-2018-ES.pdf (accessed on 10 January 2022).
- Deutscher Bundestag—Wissenschaftliche Dienste, Energieverbrauch bei der Herstellung von Mineralischem Stickstoffdünger. 2018. Available online: https://www.bundestag.de/resource/blob/567976/bb4895f14291074b0a342d4c714b47f8/wd-8-088-18-pdf-data.pdf (accessed on 10 January 2022).
- Deutsche Wirtschaftsnachrichten, Zement Erzeugt Mehr CO2 Als Alle Lkw der Welt Zusammen. 2019. Available online: https://deutsche-wirtschafts-nachrichten.de/2019/08/18/zement-erzeugt-mehr-co2-lkw/ (accessed on 21 January 2022).
- Samad, S.; Shah, A. Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review. Int. J. Sustain. Built Environ. 2017, 6, 663–674. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Srivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Javadabadi, M.T.; De Lima Kristiansen, D.; Redie, M.B.; Baghban, M.H. Sustainable Concrete—A Review. Int. J. Struct. Civ. Eng. Res. 2019, 8, 126–131. [Google Scholar] [CrossRef]
- BDEW, Wasserstoff Statt Kohle—Wie Wird Stahl Grün? 2020. Available online: https://www.bdew.de/verband/magazin-2050/wasserstoff-statt-kohle-der-stahl-der-zukunft-ist-klimafreundlich/ (accessed on 21 January 2022).
- Arens, M.; Vogl, V. Can we find a market for green steel? Steel Times Int. 2019, 43, 59–61. Available online: https://www.researchgate.net/profile/Marlene_Arens/publication/340778462_Can_we_find_a_market_for_green_steel/links/5e9d686b299bf13079aa4bc1/Can-we-find-a-market-for-green-steel.pdf?origin=publication_detail (accessed on 22 January 2022).
- European Commission. A New Circular Economy Action Plan—For a Cleaner and More Competitive Europe, COM (2020) 98 Final. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF (accessed on 22 January 2022).
- Umweltbundesamt, Indikatoren/Kennzahlen für den Rohstoffverbrauch im Rahmen der Nachhaltigkeitsdiskussion, Texte 01/2012. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4237.pdf (accessed on 22 January 2022).
- Bunge, R. Recycling Ist Gut, Mehr Recycling Ist Besser—Oder Nicht? Proceedings zur Berliner Rohstoff- und Recyclingkonferenz 2016, pp. 79–91. Available online: www.vivis.de/wp-content/uploads/RuR9/2016_RuR_79-92_Bunge.pdf (accessed on 22 January 2022).
- VDI, Richtlinie 4800, Teil 2, Ressourceneffizienz—Bewertung des Rohstoffaufwands (KRA), Beuth-Verlag Berlin. 2018. Available online: https://www.vdi.de/richtlinien/details/vdi-4800-blatt-2-ressourceneffizienz-bewertung-des-rohstoffaufwands (accessed on 10 January 2022).
- Friege, H.; Kummer, B.; Steinhäuser, K.G.; Wuttke, J.; ZeschmarLahl, B. How should we deal with the interfaces between chemicals, product and waste legislation? Environ. Sci. Eur. 2019, 31, 51. [Google Scholar] [CrossRef] [Green Version]
- von Gleich, A. Outlines of a sustainable metals industry. In Sustainable Metals Management. Securing Our Future—Steps towards a Closed Loop Economy; von Gleich, A., Ayres, R.U., Gößling-Reisemann, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 3–39. [Google Scholar]
- DERA—Deutsche Rohstoffagentur, Rohstoffe für Zukunftstechnologien. DERA Rohstoffinformationen 28. 2016. Available online: https://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/Studie_Zukunftstechnologien-2016.pdf?__blob=publicationFile&v=5 (accessed on 21 January 2022).
- Mettke, A.; Schmidt, S.; Jacob, S. Dokumentation zum Einsatz von Ressourcenschonendem Beton; Brandenburgische Technische Universität Cottbus & Senatsverwaltung für Stadtentwicklung und Umwelt: Berlin, Germany, 2015. [Google Scholar]
- Tsydenova, N.; Becker, T.; Walther, G. Optimised design of concrete recycling networks: The case of North Rhine-Westphalia. Waste Manag. 2021, 135, 309–317. [Google Scholar] [CrossRef]
- Ramsheva, Y.K.; Moalem, R.M.; Milios, L. Realizing a Circular Concrete Industry in Denmark through an Integrated Product, Service and System Perspective. Sustainability 2020, 12, 9423. [Google Scholar] [CrossRef]
- Paranhos, R.S.; Cazacliu, B.G.; Hoffman Sampaio, C.; Petter, C.O.; Neto, R.O.; Huchet, F. A sorting method to value recycled concrete. J. Clean. Prod. 2016, 112, 2249–2258. [Google Scholar] [CrossRef] [Green Version]
- BUND, Heinrich Böll Stiftung, Plastikatlas—Daten und Fakten über eine Welt voller Kunststoff. 2019. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/chemie/chemie_plastikatlas_2019.pdf (accessed on 10 January 2022).
- European Commission, A European Strategy for Plastics in a Circular Economy, COM (2018)28 Final. 2018. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:2df5d1d2-fac7-11e7-b8f5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 10 January 2022).
- Deutsche Bundesstiftung Umwelt, DBU Aktuell Nr. 7. 2019. Available online: https://www.dbu.de/708artikel38397_2486.html (accessed on 21 January 2022).
- EREMA, FDA Confirmed: PCR-HDPE Produced with EREMA Technology is Suitable for Food Packaging Made with up to 100 Percent Post Consumer Recyclate, Press Release 20 September 2019. Available online: https://cdn2.hubspot.net/hubfs/3421927/PCOs/2019_09_PR_EREMA_PCR-HDPE_suitable_for_food_packaging_final_EN.pdf (accessed on 10 January 2022).
- Franz, R.; Welle, F. Recycling of Post-Consumer Packaging Materials into New Food Packaging Applications—Critical Review of the European Approach and Future Perspectives. Sustainability 2022, 14, 824. Available online: https://www.mdpi.com/2071-1050/14/2/824 (accessed on 27 February 2022). [CrossRef]
- FHG IVV, Recycling von Multilayer-Verpackungen. Available online: https://www.ivv.fraunhofer.de/de/recycling-umwelt/multilayerrecycling.html (accessed on 21 January 2022).
- Umweltbundesamt, Chemical Recycling, Background Paper December 2020. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/hgp_chemischesrecycling_englisch_bf.pdf (accessed on 27 January 2022).
- Meys, R.; Kätelhön, A.; Bachmann, M.; Winter, B.; Zibunas, C.; Suh, S. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 2021, 374, 71–76. [Google Scholar] [CrossRef]
- FHG Umsicht Diskussionspapier “Chemisches Kunststoffrecycling”. Available online: https://www.umsicht.fraunhofer.de/de/presse-medien/pressemitteilungen/2020/diskussionspapier-chemisches-kunststoffrecycling.html (accessed on 21 January 2022).
- Kümmerer, K.; Clark, J.H.; Zuin, V.G. Rethinking chemistry for a circular economy. Science 2020, 367, 369–370. [Google Scholar] [CrossRef]
- IEA—International Energy Agency. The Future of Petrochemicals—Towards More Sustainable Plastics and Fertilizers. 2018. Available online: https://iea.blob.core.windows.net/assets/bee4ef3a-8876-4566-98cf-7a130c013805/The_Future_of_Petrochemicals.pdf (accessed on 21 January 2022).
- Weidlich, T.; Kamenická, B. Utilization of CO2-Available Organocatalysts for Reactions with Industrially Important Epoxides. Catalysts 2022, 12, 298. Available online: https://mdpi-res.com/d_attachment/catalysts/catalysts-12-00298/article_deploy/catalysts-12-00298-v2.pdf?version=1646652499 (accessed on 2 April 2022). [CrossRef]
- Behr, A.; Neuberg, S. Katalytische Kohlendioxid-Chemie, Aktuelle Wochenschau, Hrsg. GDCh. 2008. Available online: https://archiv.aktuelle-wochenschau.de/2008/woche20/woche20.html (accessed on 15 December 2021).
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- DECHEMA. Mikroalgen-Biotechnologie—Gegenwärtiger Stand, Herausforderungen, Ziele. 2016. Available online: https://dechema.de/dechema_media/Downloads/Positionspapiere/PP_Algenbio_2016_ezl.pdf (accessed on 21 January 2022).
- Pleissner, D.; Smetana, S. Conversion of organic waste to food and feed. Curr. Opin. Green Sustain. Chem. 2020, 26, 100394. Available online: https://www.sciencedirect.com/science/article/abs/pii/S2452223620300912?via%3Dihub (accessed on 21 January 2022). [CrossRef]
- Kamm, B.; Kamm, M.; Schmidt, M.; Hirth, T.; Schulze, M. Lignocellulose-based Chemical Products and Product Family Trees. In Biorefineries—Industrial Processes and Products. Status quo and Future Directions; Kamm, B., Gruber, P.R., Kamm, M., Eds.; Wiley-VCH: Weinheim, Germany, 2006; pp. 67–84. ISBN 3-527-31027-4. [Google Scholar]
- Wong, S.S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 2020, 15, 5510–5560. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; Kuhlmann, W. Bioökonomie im Lichte der Planetaren Grenzen und des Schutzes der Biologischen Vielfalt—Eine Studie für den BUND und das Denkhaus Bremen; Denkhaus Bremen: Bremen, Germany, 2020. [Google Scholar]
- NRW.ENERGY4 Climate, Best Practice Rheticus. 2020. Available online: https://www.energy4climate.nrw/themen/best-practice/rheticus (accessed on 21 January 2022).
- Springer Professional, PtL-Anlage am KIT Produziert Kraftstoffe aus Luft und Strom. 2021. Available online: https://www.springerprofessional.de/betriebsstoffe/erneuerbare-energien/ptl-anlage-am-kit-produziert-kraftstoffe-aus-luft-und-strom/17081894 (accessed on 21 January 2022).
- DECHEMA, Roadmap Chemie 2050—Auf dem Weg zu Einer Treibhausgasneutralen Chemischen Industrie in Deutschland. 2019. Available online: https://dechema.de/dechema_media/Downloads/Positionspapiere/2019_Studie_Roadmap_Chemie_2050-p-20005590.PDF (accessed on 21 January 2022).
- IEA, International Energy Agency, Direct Air Capture—Tracking Report November 2021. Available online: https://www.iea.org/reports/direct-air-capture (accessed on 21 January 2022).
- Viebahn, P.; Scholz, A.; Zelt, O. Entwicklungsstand und Forschungsbedarf von Direct Air Capture—Ergebnis einer multidimensionalen Analyse. Energ. Tagesfr. 2019, 69, 30–33. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/7438/file/7438_Viebahn.pdf (accessed on 21 January 2022).
- UNCTAD, Review of Maritime Transport 2019. Available online: https://unctad.org/system/files/official-document/rmt2019_en.pdf (accessed on 21 January 2022).
- Jäschke, K.; Petzoldt, T.; Wagner, A.; Berendonk, T.U.; Sachse, R.; Hegewald, T.; Paul, L. Wie zeigt sich der Klimawandel in den deutschen Talsperren? Wasserwirtschaft 2013, 5, 32–35. Available online: https://www.springerprofessional.de/wie-zeigt-sich-der-klimawandel-in-den-deutschen-talsperren/3417338 (accessed on 21 January 2022). [CrossRef]
- Khare, P.; Machesky, J.; Soto, R.; He, M.; Presto, A.A.; Gentner, D.R. Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors. Sci. Adv. 2020, 6, eabb9785. Available online: http://advances.sciencemag.org/content/6/36/eabb9785 (accessed on 21 January 2011). [CrossRef]
- Graedel, T.E.; Crutzen, P.J. Chemie der Atmosphäre: Bedeutung für Klima und Umwelt; Spektrum Akademischer Verlag: Heidelberg, Germany, 1994; ISBN 3-86025-204-6. [Google Scholar]
- University of Cambridge, Deutscher Städtetag, Klimawandel: Was er für Städte bedeutet, Scnat-Netzwerk 2014. Available online: https://www.klimafakten.de/sites/default/files/images/reports/printversion/klimawandelundstaedte.pdf (accessed on 21 January 2022).
- Bastin, J.F.; Clark, E.; Elliott, T.; Hart, S.; van den Hoogen, J.; Hordijk, I.; Ma, H.; Majumder, S.; Manoli, G.; Maschler, J.; et al. Understanding climate change from a global analysis of city analogues. PLoS ONE 2019, 14, e0217592. [Google Scholar] [CrossRef] [Green Version]
- Leahy, S. Australische Sommer in Berlin: Klimaprognose für das Jahr 2050, National Geographic. 2019. Available online: https://www.nationalgeographic.de/umwelt201907australische-sommer-berlin-klimaprognose-fuer-das-jahr-2050 (accessed on 21 January 2011).
- Münzel, T.; Gori, T.; Al-Kindi, S.; Deanfield, J.; Lelieveld, J.; Daiber, A.; Rajagopalan, S. Effects of gaseous and solid constituents of air polution on endothelial function. Eur. Heart J. 2018, 39, 3543–3550. Available online: https://academic.oup.com/eurheartj/article/39/38/3543/5074161 (accessed on 15 January 2022). [CrossRef] [Green Version]
- DESTATIS, Sterbefallzahlen im August 2020: 6 % über dem Durchschnitt der Vorjahre, Pressemitteilung Nr. 399 vom 9. October 2020. Available online: https://www.destatis.de/DE/Presse/Pressemitteilungen/2020/10/PD20_399_12621.html (accessed on 21 January 2022).
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef]
- Weber, R.; Hollert, H.; Kamphues, J.; Ballschmiter, K.; Blepp, M.; Herold, C. Analyse und Trendabschätzung der Belastung der Umwelt und von Lebensmitteln mit ausgewählten POPs und Erweiterung des Datenbestandes der POP-Dioxin-Datenbank des Bundes und der Länder mit dem Ziel pfadbezogener Ursachenaufklärung. Umweltbundesamt, 2015, Dokumentationen 114/2015. Available online: https://www.umweltbundesamt.de/publikationen/analyse-trendabschaetzung-der-belastung-der-umwelt (accessed on 10 January 2022).
- Wania, F.; Mackay, D. Tracking the Distribution of Persistent Organic Pollutants. Environ. Sci. Technol. 1996, 30, 390A–396A. Available online: https://sites.duke.edu/malaria/files/2012/07/Wania_MacKay19961.pdf (accessed on 21 January 2022). [CrossRef] [PubMed]
- Desforges, J.-P.; Hall, A.; McConnell, B.; Asvid, A.R.; Barber, J.L.; Brownlow, A.; de Guise, S.; Eulaers, I.; Jepson, P.D.; Letcher, R.L.; et al. Predicting global killer whale population collapse from PCB pollution. Science 2018, 361, 1373–1376. Available online: https://www.researchgate.net/publication/327966154_Predicting_global_killer_whale_population_collapse_from_PCB_pollution (accessed on 21 January 2022). [CrossRef] [PubMed] [Green Version]
- Bayerisches Landesamt für Umwelt; Umweltbundesamt Österreich, Pure Alps 2016–2020—Abschlussbericht. 2021. Available online: https://www.lfu.bayern.de/analytik_stoffe/projekte_alpenschutz/purealps/publikationen/index.htm (accessed on 22 January 2022).
- Steinlin, C.; Bogdal, C.; Lüthi, M.P.; Pavlova, P.A.; Schwikowski, M.; Zennegg, M.; Schmid, P.; Scheringer, M.; Hungerbühler, K. A Temperate Alpine Glacier as a Reservoir of Polychlorinated Biphenyls: Model Results of Incorporation, Transport, and Release. Environ. Sci. Technol. 2016, 50, 5572–5579. Available online: https://pubs.acs.org/doi/10.1021/acs.est.5b05886 (accessed on 21 January 2022). [CrossRef] [PubMed]
- Bayerisches Landesamt für Umwelt. Zusammenfassung: Erfassung von Persistenten Organischen Schadstoffen im Bayerischen Alpenraum. 2014. Available online: https://www.lfu.bayern.de/luft/schadstoffe_luft/projekte/doc/zusammenfassung_popalp.pdf (accessed on 21 January 2022).
- Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg, Durchführung einer Bioindikation auf Pflanzenschutzmittelrückstände mittels Luftgüte-Rindenmonitoring, Passivsammlern und Vegetationsproben. Fachbeiträge des LUGV Heft Nr. 147. 2015. Available online: https://lfu.brandenburg.de/ (accessed on 21 January 2022).
- Linhart, C.; Panzacchi, P.; Belpoggi, F.; Clausing, P.; Zaller, J.G.; Hertoge, K. Year-round pesticide contamination of public sites near intensively managed agricultural areas in South Tyrol. Environ. Sci. Eur. 2021, 33, 1. [Google Scholar] [CrossRef]
- Kruse-Plaß, M.; Hofmann, F.; Wosniok, W.; Schlechtriemen, U.; Kohlschütter, N. Pesticides and pesticide-related products in ambient air in Germany. Environ. Sci. Eur. 2021, 33, 114–134. [Google Scholar] [CrossRef]
- Lamon, R.; von Waldow, H.; MacLeod, M.; Scheringer, M.; Marcomini, A.; Hungerbühler, K. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario. Environ. Sci. Technol. 2009, 43, 5818–5824. [Google Scholar] [CrossRef]
- Besson, M.; Feeney, W.E.; Moniz, I.; François, L.; Brooker, R.M.; Holzer, G.; Metian, M.; Roux, N.; Laudet, V.; Lecchini, D. Anthropogenic stressors impact fish sensory development and survival via thyroid disruption. Nat. Commun. 2020, 11, 3614. [Google Scholar] [CrossRef]
- Segner, H.; Schmitt-Jansen, M.; Sabater, S. Assessing the impact of multiple stressors on aquatic biota: The receptor’s side matters. Environ. Sci. Technol. 2014, 48, 7690–7696. Available online: https://pubs.acs.org/doi/pdf/10.1021/es405082t (accessed on 21 January 2022). [CrossRef]
- Liu, Y.; Richardson, E.S.; Derocher, A.E.; Lunn, N.J.; Lehmler, H.-J.; Li, X.; Zhang, Y.; Yue Cui, J.; Cheng, L.; Martin, J.W. Hundreds of Unrecognized Halogenated Contaminants Discovered in Polar Bear Serum. Angew. Chem. 2018, 57, 16401–16406. [Google Scholar] [CrossRef]
- Schellnhuber, H.-J. Selbstverbrennung; C. Bertelsmann: München, Germany, 2015; ISBN 978-3-570-10262-2. [Google Scholar]
- Tagesspiegel, Krankenhaus-Abwässer Fließen Ungefiltert in die Berliner Kanalisation, 2 April 2020. Available online: https://www.tagesspiegel.de/berlin/regeln-lockerer-als-bei-industrie-krankenhaus-abwaesser-fliessen-ungefiltert-in-berliner-kanalisation/25701858.html (accessed on 21 January 2022).
- Umweltbundesamt 2022, Beta-HCH in Brassen aus der Mulde. Available online: https://www.umweltprobenbank.de/de/documents/selected_results/13072 (accessed on 30 January 2022).
- IPBES, The Global Assessment Report on Biodiversity and Ecosystem Services. 2019. Available online: https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf (accessed on 22 January 2022).
- WWF, Living Planet Report. 2020. Available online: https://f.hubspotusercontent20.net/hubfs/4783129/LPR/PDFs/ENGLISH-FULL.pdf (accessed on 22 January 2022).
- Blanck, H. A Critical Review of Procedures and Approaches Used for Assessing Pollution-Induced Community Tolerance (PICT) in Biotic Communities. Hum. Ecol. Risk Assess.—Int. J. 2002, 8, 1003–1034. Available online: https://www.tandfonline.com/doi/abs/10.1080/1080-700291905792 (accessed on 25 January 2022). [CrossRef]
- Elmqvist, T.; Folke, T.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change and resilience. Front. Ecol. Environ. 2003, 1, 488–494. Available online: https://www.researchgate.net/profile/Garry-Peterson/publication/235737454_Response_Diversity_Ecosystem_Change_and_Resilience/links/0046352d40953c40e1000000/Response-Diversity-Ecosystem-Change-and-Resilience.pdf?origin=publication_detail (accessed on 25 January 2022). [CrossRef]
- CBD—Convention on Biological Diversity, Global Biodiversity Outlook 5. 2020. Available online: https://www.cbd.int/gbo5 (accessed on 28 January 2022).
- Universität Regensburg—Institut für Biodiversität—Netzwerk e.V. Aichi Biodiversitätsziele. Available online: https://biodiv.de/biodiversitaet-infos/konvention-ueber-die-biologische-vielfalt/aichi-biodiversitaets-ziele-2020.html (accessed on 21 January 2022).
- Leopoldina, Der Stumme Frühling—Zur Notwendigkeit Eines Umweltverträglichen Pflanzenschutzes, Diskussion Nr. 16. Nationale Akademie der Wissenschaften, Halle (Saale). 2018. Available online: https://www.leopoldina.org/uploads/tx_leopublication/2018_Diskussionspapier_Pflanzenschutzmittel.pdf (accessed on 21 January 2022).
- International Resource Panel, Global Material Flows and Resource Productivity—Assessment Report for the UNEP International Resource Panel, 2016, ISBN 978-92-807-3554-3. Available online: https://www.resourcepanel.org/sites/default/files/documents/document/media/global_material_flows_full_report_english.pdf (accessed on 22 January 2022).
- UNEP, International Resource Panel, Assessing Global Resource Use: A Systems Approach to Resource Efficiency and Pollution Reduction. A Report of the International Resource Panel. United Nations Environment Programme. Nairobi, Kenya. 2017. Available online: https://www.resourcepanel.org/reports/assessing-global-resource-use (accessed on 22 January 2022).
- de Wit, M.; Hoogzaad, J.; Ramkumar, S.; Friedl, H.; Douma, A. The Circularity Gap Report—An analysis of the Circular State of the Global Economy. 2018. Available online: https://pacecircular.org/sites/default/files/2020-01/Circularity%20Gap%20Report%202018_0.pdf (accessed on 15 January 2022).
- DESTATIS, Umweltökonomische Gesamtrechnungen—Gesamtrohstoffproduktivität und ihre Komponenten. 2020. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/rohstoffe-materialfluesse-wasser/Tabellen/gesamtrohstoff-produktivitaet.html (accessed on 21 January 2022).
- Umweltbundesamt, Strukturelle und Produktionstechnische Determinanten der Ressourceneffizienz: Untersuchung von Pfadabhängigkeiten, Strukturellen Effekten und Technischen Potenzialen auf die Zukünftige Entwicklung der Rohstoffproduktivität (DeteRess), Texte 29/2018. 2018. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-04-11_texte_29-2018_deteress.pdf (accessed on 21 January 2022).
- Knolle, F.; Knolle, F. Vogel- und Säugetierverluste durch Umweltbelastungen im Gebiet des Harzes, Vogelk. Ber. Nieders. 1983, 15, H. 2. Available online: https://www.karstwanderweg.de/publika/vo_be_ni/15/47-49/index.htm (accessed on 21 January 2022).
- Reuss, C.; Schröder, J.V. Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden; Reprint der Originalausgabe von 1883; Georg Olms Verlag: Hildesheim, Germany, 1986. [Google Scholar]
- DGUV, Auftreten von Dioxinen (PCDD / PCDF) bei der Metallerzeugung und Metallbearbeitung, DGUV Information 209-028. 1990. Available online: https://shop.wolterskluwer.de/wirtschaft/41838000-dguv-information-209-028-auftreten-von-dioxinen-pcdd/pcdf-bei-der-metallerzeugung-und-metallbe.html (accessed on 21 January 2022).
- Umweltbundesamt, Dioxine und dioxinähnliche PCB in Umwelt und Nahrungsketten, Hintergrund Januar 2014. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/hgp_dioxine_entwurf_25.04.2014_grau-ocker.pdf (accessed on 21 January 2022).
- ClientEarth, Emissionsgrenzwerte für Kohlekraftwerke: Gesundheitliche Folgen der Vorgeschlagenen Grenzwerte in Deutschland. 2020. Available online: https://www.clientearth.de/media/qumi5fl4/2020-05-12-emissionsgrenzwerte-fur-kohlekraftwerke-gesundheitliche-folgen-der-vorgeschlagenen-grenzwerte-in-deutschland-ext-delogo.pdf (accessed on 21 January 2022).
- BUND, Pharmaceuticals in the Environment, Position Paper 70. 2020. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/bund/position/position_arzneimittel_englisch.pdf (accessed on 21 January 2022).
- European Union, Directive (EU) 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0039&from=EN (accessed on 21 January 2022).
- European Union, Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0851&from=DE (accessed on 21 January 2022).
- Baird, J.; Curry, R.; Cruz, P. An overview of waste crime, its characteristics, and the vulnerability of the EU waste sector. Waste Manag. Res. 2014, 32, 97–105. [Google Scholar] [CrossRef] [PubMed]
- NABU, Recycling im Zeitalter der Digitalisierung—Spezifische Recyclingziele für Metalle und Kunststoffe aus Elektrokleingeräten im ElektroG: Regulatorische Ansätze, Berlin. 2019. Available online: https://www.nabu.de/imperia/md/content/nabude/konsumressourcenmuell/190702_recycling_im_zeitalter_der_digitalisierung_endbericht.pdf (accessed on 22 January 2022).
- Koelmans, A.A.; Besseling, E.; Foekema, E.; Kooi, M.; Mintenig, S.; Ossendorp, B.C.; Redondo-Hasselerharm, P.E.; Verschoor, A.; van Wezel, A.P.; Scheffer, M. Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief. Environ. Sci. Technol. 2017, 51, 11513–11519. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677762/pdf/es7b02219.pdf (accessed on 25 January 2022). [CrossRef] [PubMed]
- Villarubia-Gómez, P.; Cornell, S.E.; Fabres, J. Marine plastic pollution as a planetary boundary threat—The drifting piece in the sustainability puzzle. Mar. Policy 2018, 96, 213–220. Available online: https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/770/original/Marine_plastic_pollution_as_a_planetary_boundary_threat.pdf?1627557391 (accessed on 25 January 2022). [CrossRef]
- Umweltbundesamt, Kunststoffe in der Umwelt—Ein Problem für Unsere Böden Oder Nur Falscher Alarm? Fachtagung der Kommission Bodenschutz beim UBA (KBU) zum Weltbodentag 2020 Zusammenfassung der Wichtigsten Ergebnisse und Botschaften. 2021. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/2875/dokumente/ergebnispapier_-_kunststoffe_in_der_umwelt_final_02.docx.pdf (accessed on 22 January 2022).
- UNEP Draft decision BC-14: Amendments to Annexes II, VIII and IX to the Basel Convention, UNEP.CHW.14/CRP.40. 2019. Available online: http://wiki.ban.org/images/0/0b/UNEP-CHW.14-CRP.40.English.pdf (accessed on 24 January 2022).
- Held, M. (Ed.) Leitbilder der Chemiepolitik; Campus Verlag: Frankfurt, Germany, 1991; pp. 55–64. ISBN 3-593-34450-5. [Google Scholar]
- Leopoldina, Stellungnahme: Biodiversität und Management von Agrarlandschaften—Umfassendes Handeln ist Jetzt Wichtig. Nationale Akademie der Wissenschaften, Halle (Saale). 2020. Available online: https://www.leopoldina.org/uploads/tx_leopublication/2020_Akademien_Stellungnahme_Biodiversita%CC%88t.pdf (accessed on 22 January 2022).
- BÖLW, Kommentar zum Pestizidabsatzbericht—Bauern Unterstützen, Natur Schonen: Pflanzenschutzwende Einleiten. 2020. Available online: https://www.oekolandbau.nrw.de/service/archiv/2020/2020-quartal-3/boelw-kommentar-zu-pestizidabsatzbericht/ (accessed on 22 January 2022).
- Klinger, R.; Borwieck, C.; Caroline Douhaire, C. Rechtsgutachten zur Einführung von Anwendungsvorbehalten zum Schutz der Biodiversität im Rahmen von Zulassungen nach dem Pflanzenschutzgesetz, UFOPLAN Forschungskennzahl 3716 67 432 0, Geulen & Klinger Rechtsanwälte; Berlin. 2017. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3716_67_432_rechtsgutachten%20einfuehrung%20anwendungsvorbehalten_bf.pdf (accessed on 22 January 2022).
- Schütte, G.; Eckerstorfer, M.; Rastelli, V.; Reichenbecher, W.; Restrepo-Vassalli, S.; Ruohonen-Lehto, M.; Wuest Saucy, A.-G.; Mertens, M. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ. Sci. Eur. 2017, 29, 5. Available online: https://enveurope.springeropen.com/track/pdf/10.1186/s12302-016-0100-y.pdf (accessed on 25 January 2022). [CrossRef] [Green Version]
- INI2021—8th Global Nitrogen Conference: Berlin Declaration. 2021. Available online: https://ini2021.com/berlin-declaration/ (accessed on 28 January 2022).
- Meyer, S.; Wesche, K.; Krause, B.; Brütting, C.; Hensen, I.; Leuschner, C. Diversitätsverluste und floristischer Wandel im Ackerland seit 1950. Nat. Landsch. 2014, 89, 392–398. [Google Scholar]
- Gilhaus, K.; Boch, S.; Fischer, M.; Hoelzel, M. Grassland management in Germany: Effects on plant diversity and vegetation composition. Tuexenia 2017, 37, 379–397. Available online: https://www.researchgate.net/profile/Steffen_Boch/publication/320034546_Grassland_management_in_Germany_Effects_on_plant_diversity_and_vegetation_composition/links/59c9fccfaca272bb050746f3/Grassland-management-in-Germany-Effects-on-plant-diversity-and-vegetation-composition.pdf?origin=publication_detail (accessed on 15 January 2022).
- Lemoine, N.; Bauer, H.-G.; Peintinger, M.; Böhning-Gaese, K. Effects of climate and land-use change on species abundance in a Central European bird community. Conserv. Biol. 2007, 21, 495–503. Available online: https://pubmed.ncbi.nlm.nih.gov/17391199/ (accessed on 22 January 2022). [CrossRef]
- Kommission Bodenschutz beim Umweltbundesamt (KBU), Boden und Biodiversität –Forderungen an die Politik, Position Juli 2020. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2020_07_20_kbu_boden_und_biodiversitaet_bf.pdf (accessed on 21 January 2022).
- Mesnage, R.; Teixeira, M.; Mandrioli, D.; Falcioni, L.; Ducarmon, R.Q.; Zwittink, R.D.; Amiel, C.; Panoff, J.-M.; Belpoggi, F.; Antoniou, M.N. Shotgun metagenomics and metabolomics reveal glyphosate alters the gut microbiome of Sprague-Dawley rats by inhibiting the shikimate pathway. BioRxiv 2019, 1–33. Available online: https://www.biorxiv.org/content/10.1101/870105v1.full.pdf (accessed on 22 January 2022).
- Mesnage, R.; Teixeira, M.; Mandrioli, D.; Falcioni, L.; Ducarmon, R.Q.; Zwittink, R.D.; Amiel, C.; Panoff, J.-M.; Belpoggi, F.; Antoniou, M.N. Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats. Environ. Health Perspect. 2021, 129, 017005. Available online: https://ehp.niehs.nih.gov/doi/pdf/10.1289/EHP6990 (accessed on 22 January 2022). [CrossRef]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187125/pdf/pnas.201803880.pdf (accessed on 22 January 2022). [CrossRef] [PubMed] [Green Version]
- Syromiatnikov, M.Y.; Isuwa, M.M.; Savinkova, O.V.; Derevshchikova, M.I.; Popov, V.N. The Effect of Pesticides on the Microbiome of Animals. Agriculture 2020, 10, 79. Available online: https://www.mdpi.com/2077-0472/10/3/79 (accessed on 22 January 2022). [CrossRef] [Green Version]
- Meena, R.S.; Datta, R.; Kumar, S.; Vijayakumar, V. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. Available online: https://www.researchgate.net/profile/Shamina-Pathan/publication/338765833_Impact_of_Agrochemicals_on_Soil_Microbiota_and_Management_A_Review/links/5e29a09c299bf1521677717c/Impact-of-Agrochemicals-on-Soil-Microbiota-and-Management-A-Review.pdf?origin=publication_detail (accessed on 22 January 2022). [CrossRef] [Green Version]
- WHO—World Health Organization, State of the Science of Endocrine Disrupting Chemicals—Summary for Decision-Makers. 2012. Available online: https://apps.who.int/iris/bitstream/handle/10665/78102/WHO_HSE_PHE_IHE_2013.1_eng.pdf (accessed on 21 January 2022).
- Matthiesen, P.; Ankley, G.T.; Biever, R.C.; Bjerregaard, P.; Borgert, C.; Brugger, K.; Blankinship, A.; Chambers, J.; Coady, K.K.; Constantine, L.; et al. Recommended Approaches to the Scientific Evaluation of Ecotoxicological Hazards and Risks of Endocrine-Active Substances. Integr. Environ. Assess. Manag. 2016, 13, 267–279. Available online: https://setac.onlinelibrary.wiley.com/doi/full/10.1002/ieam.1885 (accessed on 21 January 2022). [CrossRef] [PubMed] [Green Version]
- Brönmark, C.; Hansson, L.A. Chemical communication in aquatic systems: An introduction. Oikos 2000, 88, 103–109. Available online: https://www.researchgate.net/profile/Christer_Broenmark/publication/227996023_Chemical_communication_in_aquatic_systems_An_introduction/links/5bab34a645851574f7e6524d/Chemical-communication-in-aquatic-systems-An-introduction.pdf?origin=publication_detail (accessed on 21 January 2022). [CrossRef]
- Gundlach, M.; Di Paolo, C.; Chen, Q.; Majewski, K.; Haigis, A.-C.; Werner, I.; Hollert, H. Clozapine modulation of zebrafish swimming behavior and gene expression as a case study to investigate effects of atypical drugs on aquatic organisms. Sci. Total Environ. 2021, 815, 152621. Available online: https://pubmed.ncbi.nlm.nih.gov/34968598/ (accessed on 21 January 2022). [CrossRef]
- Nendza, M.; Klaschka, U.; Berghahn, R. Suitable test substances for proof of concept regarding infochemical effects in surface waters. Environ. Sci. Eur. 2013, 25, 21. Available online: http://www.enveurope.com/content/25/1/21 (accessed on 21 January 2022). [CrossRef] [Green Version]
- Berghahn, R.; Mohr, S.; Hübner, V.; Schmiedliche, R.; Schmiedling, I.; Svetich-Will, E.; Schmidt, R. Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms. Aquat. Toxicol. 2012, 122–123, 56–66. Available online: https://pubmed.ncbi.nlm.nih.gov/22721787/ (accessed on 21 January 2022). [CrossRef]
- Pfaller, J.B.; Goforth, K.; Gil, M.A.; Lohmann, K.; Savoca, M.S. Odors from marine plastic debris elicit foraging behavior in sea turtles. Curr. Biol. 2020, 30, R213–R214. Available online: https://pubmed.ncbi.nlm.nih.gov/32155421/ (accessed on 21 January 2022). [CrossRef]
- Trotter, B.; Ramsperger, A.F.R.M.; Raab, P.; Haberstroh, J.; Laforsch, C. Plastic waste interferes with chemical communication in aquatic ecosystems. Sci. Rep. 2019, 9, 5889. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458178/pdf/41598_2019_Article_41677.pdf (accessed on 21 January 2022). [CrossRef]
- Klaschka, U. Chemical communication by infochemicals. Environ. Sci. Pollut. Res. 2009, 16, 367. Available online: https://link.springer.com/article/10.1007/s11356-009-0171-z (accessed on 21 January 2022). [CrossRef] [PubMed] [Green Version]
- Klaschka, U. A new challenge: Development of test systems for the infochemical effect. Environ. Sci. Pollut. Res. 2009, 16, 370–388. Available online: https://rd.springer.com/article/10.1007/s11356-008-0093-1 (accessed on 21 January 2022). [CrossRef] [PubMed]
- Gross, E.M. Aquatic chemical ecology meets ecotoxicology. Aquat. Ecol. 2022. [Google Scholar] [CrossRef]
- Priefer, C.; Jörissen, J.; Frör, O. Pathways to Shape the Bioeconomy. Resources 2017, 6, 10. Available online: https://www.researchgate.net/profile/Carmen-Priefer/publication/313881726_Pathways_to_Shape_the_Bioeconomy/links/59ea38320f7e9bfdeb6cc2b1/Pathways-to-Shape-the-Bioeconomy.pdf (accessed on 21 January 2022). [CrossRef] [Green Version]
- Settele, J. Die Triple-Krise—Artensterben, Klimawandel, Pandemien; Edel Books: Hamburg, Germany, 2020; ISBN 978-3-8419-0653-3. [Google Scholar]
- LfL—Bayerische Landesanstalt für Landwirtschaft, Der Asiatische Laubholzbockkäfer (ALB) in Bayern. Available online: https://www.lfl.bayern.de/alb (accessed on 21 January 2022).
- IMO—International Maritime Organization, Ballast Water Management Convention and Guidelines. Available online: https://www.imo.org/en/OurWork/Environment/Pages/BWMConventionandGuidelines.aspx (accessed on 21 January 2022).
- Convention on Biological Diversity, Uses of Genetic Resources. 2010. Available online: https://www.cbd.int/abs/infokit/factsheet-uses-en.pdf (accessed on 21 January 2022).
- Clark, J.H. Green chemistry: Today (and tomorrow). Green Chem. 2006, 8, 17–21. [Google Scholar] [CrossRef]
- Blum, C.; Bunke, D.; Hungsberg, M.; Roelofs, E.; Joas, A.; Joas, R.; Blepp, M.; Stolzenberg, H.C. The concept of sustainable chemistry: Key drivers for the transition towards sustainable development. Sustain. Chem. Pharm. 2017, 5, 94–104. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998; p. 30. [Google Scholar]
- ISC3, Key characteristics of sustainable Chemistry—Towards a Common Understanding of Sustainable Chemistry, Bonn (Germany). 2020. Available online: https://www.isc3.org/fileadmin/user_upload/Documentations_Report_PDFs/ISC3_Sustainable_Chemistry_key_characteristics_20210113.pdf (accessed on 23 January 2022).
- Kümmerer, K. Benign by Design, Leuphana-Universität Lüneburg. 2015. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/dokumente/session-6_2-kummerer.pdf (accessed on 23 January 2022).
- Scheringer, M. Persistence and Spatial Range of Environmental Chemicals: New Ethical and Scientific Concepts for Risk Assessment; Wiley-VCH Verlag: Weinheim, Germany, 2002; ISBN 9783527305278. [Google Scholar]
- Umweltbundesamt, Guide on Sustainable Chemicals—A Decision Tool for Substance Manufacturers, Formulators and End Users of Chemicals. 2016. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/161221_uba_fb_chemikalien_engl_bf.pdf (accessed on 23 January 2022).
- UNEP, Green and Sustainable Chemistry: Framework Manual. 2021. Available online: https://wedocs.unep.org/handle/20.500.11822/34338;jsessionid=30E899AA4048FA5A50E79F1CD3F18399 (accessed on 6 January 2022).
- Anastas, P.T.; Zimmerman, J.B. The United Nations sustainability goals: How can sustainable chemistry contribute? Curr. Opin. Green Sustain. Chem. 2018, 13, 150–153. Available online: https://webhost.bridgew.edu/ebrush/CHEM%20489%20PDF/Journal%20Club/For%20JC-3%20UNSDGs/2018%20UNSDGs%20How%20can%20green%20chemistry%20contribute.pdf (accessed on 23 January 2022). [CrossRef]
- Kümmerer, K. Sustainable Chemistry: A Future Guiding Principle. Angew. Chem. Int. Ed. 2017, 56, 16420–16421. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201709949 (accessed on 23 January 2022). [CrossRef]
- UNIDO, Chemical Leasing. Available online: https://www.unido.org/our-focus/safeguarding-environment/resource-efficient-and-low-carbon-industrial-production/chemical-leasing (accessed on 21 January 2022).
- Friege, H. Sustainable Chemistry—A Concept with Important Links to Waste Management. Sustain. Chem. Pharm. 2017, 6, 57–60. Available online: https://www.sciencedirect.com/science/article/abs/pii/S2352554117300360 (accessed on 23 January 2022). [CrossRef]
- Schneidewind, U. Die Große Transformation—Eine Einführung in die Kunst des Gesellschaftlichen Wandels; S. Fischer Verlag: Frankfurt, Germany, 2018. [Google Scholar]
- Umweltbundesamt, Sustainable Chemistry—Positions and Criteria of the Federal Environment Agency, Background Paper 2009. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3798.pdf (accessed on 23 January 2022).
- Deutscher Bundestag—Wissenschaftliche Dienste, Der Rebound-Effekt: Störendes Phänomen bei der Steigerung der Energieeffizienz. 2014. Available online: https://www.bundestag.de/resource/blob/282726/85e2970ac3cda746a05541a0269eda69/der-rebound-effekt--stoerendes-phaenomen-bei-der-steigerung-der-energieeffizienz-data.pdf (accessed on 21 January 2022).
- Lovins, A.B.; Braungart, M.; Stahel, W.R. A New Dynamic: Effective Business in a Circular Economy; Ellen MacArthur Foundation Publishing: Isle of Wight, UK, 2014; ISBN 0-9927784-1-7. [Google Scholar]
- Weber-Blaschke, G. Stoffstrommanagement als Instrument nachhaltiger Bewirtschaftung natürlicher und technischer Systeme. Ein kritischer Vergleich ausgewählter Beispiele; Schriftenreihe “Nachwachsende Rohstoffe in Forschung und Praxis” des Wissenschaftszentrums Straubing, 2009, Bd. 1, Verlag Attenkofer, Straubing, 330 S. (Habilitationsschrift 2005, Technische Universität München).
- BUND, Perspektive 2030—Suffizienz in der Praxis, Impulspapier, Berlin. 2017. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/ressourcen_und_technik/suffizienz_perspektive_2030_impulspapier.pdf (accessed on 21 January 2022).
- Sachs, W. Die vier E’s: Merkposten für einen maß-vollen Wirtschaftsstil. Politische Okol. 1993, 11, 69–72. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/66/file/66_Sachs.pdf (accessed on 21 January 2022).
- Gößling-Reisemann, S.; von Gleich, A. Ressourcen, Kreislaufwirtschaft und Entropie am Beispiel der Metalle. In Müllhandbuch; Hösel, G., Bilitewski, B., Schenkel, W., Schnurer, H., Eds.; Erich Schmidt Verlag: Berlin, Germany, 2009; pp. 1–27. [Google Scholar]
- Bringezu, S.; Kümmerer, K. Nachhaltiges Ressourcen- und Stoffstrommanagement—Zwischen Gigatonnen und Mikrogramm GAIA 2012, 21, 69–72. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/4227/file/4227_Bringezu.pdf (accessed on 21 January 2022).
- Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review, London, HM Treasury. 2021. Available online: https://www.gov.uk/government/publications/final-report-the-economics-of-biodiversity-the-dasgupta-review (accessed on 21 January 2022).
- OECD, Biodiversity, Natural Capital and the Economy: A Policy Guide for Finance, Economic and Environment Ministers, OECD Environment Policy Paper No. 26. 2021. Available online: https://www.oecd-ilibrary.org/docserver/1a1ae114-en.pdf?expires=1642882704&id=id&accname=guest&checksum=855FE11EEBB718CB50B895DB957AEE0A (accessed on 21 January 2022).
- Friege, H. Zum zukünftigen Umgang mit Stoffströmen. Chem. Technol. 1993, 45, 133–138. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinhäuser, K.G.; Von Gleich, A.; Große Ophoff, M.; Körner, W. The Necessity of a Global Binding Framework for Sustainable Management of Chemicals and Materials—Interactions with Climate and Biodiversity. Sustain. Chem. 2022, 3, 205-237. https://doi.org/10.3390/suschem3020014
Steinhäuser KG, Von Gleich A, Große Ophoff M, Körner W. The Necessity of a Global Binding Framework for Sustainable Management of Chemicals and Materials—Interactions with Climate and Biodiversity. Sustainable Chemistry. 2022; 3(2):205-237. https://doi.org/10.3390/suschem3020014
Chicago/Turabian StyleSteinhäuser, Klaus Günter, Arnim Von Gleich, Markus Große Ophoff, and Wolfgang Körner. 2022. "The Necessity of a Global Binding Framework for Sustainable Management of Chemicals and Materials—Interactions with Climate and Biodiversity" Sustainable Chemistry 3, no. 2: 205-237. https://doi.org/10.3390/suschem3020014
APA StyleSteinhäuser, K. G., Von Gleich, A., Große Ophoff, M., & Körner, W. (2022). The Necessity of a Global Binding Framework for Sustainable Management of Chemicals and Materials—Interactions with Climate and Biodiversity. Sustainable Chemistry, 3(2), 205-237. https://doi.org/10.3390/suschem3020014