Effects of Restoration and Conservation of Riparian Vegetation on Sediment Retention in the Catchment Area of Corumbá IV Hydroelectric Power Plant, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Recovery Scenarios in Riparian APPs
2.3. Benefits of Conservation of Riparian APPs
2.4. Modeling Sediment Retention Service
- uslei is the potential soil loss (t/ha/year) at pixel i;
- R is the rainfall erosivity (MJ.mm/ha.hr);
- K is the soil erodibility factor (t.ha.hr/MJ.ha.mm);
- LS is the topographic factor, which is a function of the slope of pixel i;
- C and P (dimensionless) represent the land use and land cover factors, as well as any management factors applied.
- SDRmax represents the theoretical maximum value of the sediment delivery ratio (SDR), which is the maximum proportion of fine sediments that can reach the drainage network. In the absence of detailed soil information, a default value of 0.8 is commonly used [44];
- IC0 and kb are calibration parameters of the model used in the equation to calculate the sediment delivery ratio (SDR). IC0 is the initial value of the hydrological connectivity index (IC), and kb is an adjustment factor in the equation. These parameters are calibrated according to the specific characteristics of the studied landscape.
2.5. Estimating the Benefits of Sediment Retention by APPs
- BR is the benefit of restoring the APPs;
- BC is the benefit of conserving the APPs with native vegetation in the baseline;
- Y is the estimated annual sediment export (t/year) for the sub-basin (j) in the following scenarios: restoration of APPs and maintenance of conserved APPs as baseline (c); restoration of APPs plus the conserved APPs in the baseline converted to altered vegetation (a); and the baseline (b).
3. Results and Discussion
3.1. Land Use in Sub-Basins and in APPs
3.2. Benefits of APPs Recovery and Conservation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Goods and Services (CICES): Consultation on Version 4, August–December 2012. EEA Framework Contract No EEA/IEA/09/003. Contract. Available online: https://cices.eu/content/uploads/sites/8/2012/07/CICES-V43_Revised-Final_Report_29012013.pdf (accessed on 1 June 2017).
- Fisher, B.; Turner, K.R. Ecosystem services: Classification for valuation. Biol. Conserv. 2008, 141, 1167–1169. [Google Scholar] [CrossRef]
- Wischmeier, W.; Smith, D.D.; Wischmer, W.H.; Smith, D.D. 1978 Predicting rainfall erosion losses: A guide to conservation planning. In Agriculture Handbook; US Department of Agriculture: Washington, DC, USA, 1978; Volume 537, pp. 1–69. [Google Scholar] [CrossRef]
- Walling, D.E. 1999 Linking land use, erosion and sediment yields in river basins. Hydrobiologia 1999, 410, 223–240. [Google Scholar] [CrossRef]
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L. Water quality functions of riparian forest buffers in Chesapeake bay watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar] [CrossRef]
- UNESCO. Forest Management and the Impact on Water Resources: A Review of 13 Countries; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2017. [Google Scholar]
- Restrepo, J.D.; Kettner, A.J.; Syvitski, J.P.M. Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene 2015, 10, 13–28. [Google Scholar] [CrossRef]
- Maeda, E.E.; Formaggio, A.R.; Shimabukuro, Y.E. Impacts of land use and land cover changes on sediment yield in a Brazilian amazon drainage basin. GISci. Remote Sens. 2008, 45, 443–453. [Google Scholar] [CrossRef]
- Ditt, E.H.; Mourato, S.; Ghazoul, J.; Knight, J. Forest Conversion and Provision of Ecosystem Services in the Brazilian Atlantic Forest. Land Degrad. Dev. 2010, 21, 591–603. [Google Scholar] [CrossRef]
- Chang, C.L.; Hsu, T.H.; Wang, Y.J.; Lin, J.Y.; Yu, S.L. Planning for implementation of riparian buffers in the Feitsui reservoir watershed. Water Resour. Manag. 2010, 24, 2339–2352. [Google Scholar] [CrossRef]
- Carvalho, N.O.; Filizola Júnior, N.P.; Santos, P.M.C.; Lima, J.E.F.W. Guia de Avaliação de Assoreamento de Reservatórios: 2000. Available online: https://www.gov.br/ana/pt-br/assuntos/monitoramento-e-eventos-criticos/monitoramento-hidrologico/orientacoes-manuais/entidades/guia-avaliacao-assoreamento-reservatorios-aneel-2000.pdf (accessed on 1 June 2017).
- IRTCES. 2011 Sediment Issues & Sediment Management in Large River Basins Interim Case Study Synthesis Report. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000212891 (accessed on 5 June 2017).
- Gücker, B.; Boëchat, I.G.; Giani, A. Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshw. Biol. 2009, 54, 2069–2085. [Google Scholar] [CrossRef]
- Cogo, N.P.; Levien, R.; Schwarz, R. Perdas de solo e água por erosão hídrica influenciadas por métodos de preparo, classes de declive e níveis de fertilidade do solo. Rev. Bras. Ciênc. Solo 2003, 27, 743–753. [Google Scholar] [CrossRef]
- Jamshidi, R.; Dragovich, D.; Webb, A.A. Distributed empirical algorithms to estimate catchment scale sediment connectivity and yield in a subtropical region. Hydrol. Process 2014, 28, 2671–2684. [Google Scholar] [CrossRef]
- Mekonnen, M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J. Soil conservation through sediment trapping: A review. Land Degrad. Dev. 2014, 556, 544–556. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Wendland, E. Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surf. Process Landf. 2015, 40, 1524–1532. [Google Scholar] [CrossRef]
- Dechen, S.C.F.; Telles, T.S.; Guimarães, M.D.F.; Maria, I.C.D. Losses and costs associated with water erosion according to soil cover rate. Bragantia 2015, 74, 224–233. [Google Scholar] [CrossRef]
- Campagnoli, F. The Brazilian lands: Rates of potential production of sediments. Rev. Bras. Geomorfol. 2006, 7, 03–08. [Google Scholar]
- Lei, N. 12.651, de 25 de maio de 2012. Diário Of. Da União 1981, 2–166. Available online: www.planalto.gov.br (accessed on 26 September 2020).
- Brancalion, P.H.S.; Garcia, L.C.; Loyola, R.; Rodrigues, R.R.; Pillar, V.D.; Lewinsohn, T.M. A critical analysis of the Native Vegetation Protection Law of Brazil (2012): Updates and ongoing initiatives. Nat. Conserv. 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Soares-filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s Forest Code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef]
- Soares-Filho, B.S. Impacto da revisão do Código Florestal: Como Viabilizar o Grande Desafio Adiante? Desenvolv. Sustentável Subsecr. Available online: https://site-antigo.socioambiental.org/sites/blog.socioambiental.org/files/nsa/arquivos/artigo-codigo-florestal_britaldo_soares_sae_2013pdf.pdf (accessed on 23 September 2017).
- Lowrance, R.; Sharpe, J.K.; Sheridan, J.M. Long-term sediment deposition in the riparian zone of a coastal plain watershed. J. Soil Water Conserv. 1986, 41, 266–271. [Google Scholar]
- Santos, D.S.; dos Sparovek, G. Retenção de sedimentos removidos de área de lavoura pela mata ciliar, em Goiatuba (GO. Rev. Bras. Ciênc. Solo 2011, 35, 1811–1818. [Google Scholar] [CrossRef]
- Yuan, Y.; Bingner, R.L.; Locke, M.A. A review of effectiveness of vegetative buffers on sediment trapping in agricultural areas. Ecohydrology 2009, 2, 321–336. [Google Scholar] [CrossRef]
- Tomer, M.D.; Sadler, E.J.; Lizotte, R.E.; Bryant, R.B.; Potter, T.L.; Moore, M.T.; Veith, T.L.; Baffaut, C.; Locke, M.A.; Walbridge, M.R. A decade of conservation effects assessment research by the USDA Agricultural Research Service: Progress overview and future outlook. J. Soil Water Conserv. 2014, 69, 365–373. [Google Scholar] [CrossRef]
- Souza ALT de Fonseca, D.G.; Libório, R.A.; Tanaka, M.O. Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. For. Ecol. Manag. 2013, 298, 12–18. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Ministério de Minas e Energia. 2019 Statistical Yearbook of Electricity, 2018 Baseline Year. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-160/topico-168/Anu%C3%A1rio_2019_WEB_alterado.pdf (accessed on 20 January 2021).
- Lapola, D.M.; Martinelli, L.A.; Peres, C.A.; Ometto, J.P.; Ferreira, M.E.; Nobre, C.A.; Aguiar, A.P.D.; Bustamante, M.M.; Cardoso, M.F.; Costa, M.H.; et al. Pervasive transition of the Brazilian land-use system. Nat. Clim. Chang. 2014, 4, 27–35. [Google Scholar] [CrossRef]
- Guidotti, V.; de Barros Ferraz, S.F.; Pinto, L.F.G.; Sparovek, G.; Taniwaki, R.H.; Garcia, L.G.; Brancalion, P.H.S. Changes in Brazil’s Forest Code can erode the potential of riparian buffers to supply watershed services. Land Use Policy 2020, 94, 104511. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. 2016 InVEST 3.3.1 User’s Guide. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 2 May 2017).
- Agência Nacional de Águas. 2013 Plano de Recursos Hídricos e do Enquadramento dos Corpos Hídricos Superficiais da Bacia Hidrográfica do rio Paranaíba. Available online: https://cbhparanaiba.org.br/ (accessed on 2 May 2017).
- Corumbá Concessões, S.A. 2011 Plano Ambiental de Conservação e Uso do Entorno do Reservatório da UHE Corumbá IV. Available online: http://www.corumbaconcessoes.com.br/wp-content/uploads/2012/11/NORMAS_PACUERA.pdf0 (accessed on 23 September 2015).
- Fachinelli, N.P.; Pereira, A.O. Impacts of Sugarcane Ethanol Production in the Paranaiba Basin Water Resources. Biomass Bioenergy 2015, 83, 8–16. [Google Scholar] [CrossRef]
- SICAM/SEMARH/SEAGRO. In Press. Macro ZAEE. Zoneamento Agroecológico e Econômico do Estado de Goiás. Mapa das Macrozonas Ecológico e Econômicas do Estado Goiás. Available online: https://www.imb.go.gov.br/index.php?option=com_content&view=article&id=2036:macro-zaee---zoneamento-agroecologico-e-economico&catid=238&Itemid=377 (accessed on 17 July 2016).
- Agência Nacional de Águas. 2015 Base Hidrográfica Ottocodificada Da Bacia Do Rio Paranaíba. Available online: http://metadados.ana.gov.br (accessed on 23 November 2015).
- Valeriano, M.M.; Rossetti, D.F.; Albuquerque, P.C. TOPODATA: Desenvolvimento da Primeira Versão do Banco de Dados Geomorfométricos Locais em Cobertura Nacional. bibdigital.sid.inpe.br 2009; pp. 5499–5506. Available online: http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.14.21.06/doc/5499-5506.pdf (accessed on 23 November 2015).
- Valeriano, M.M. 2005 Modelo Digital de Variáveis Morfométricas com Dados SRTM Para o Território Nacional: O projeto TOPODATA. 2005; pp. 3595–3602. ISBN 85-17-00018-8. Available online: http://marte.sid.inpe.br/col/ltid.inpe.br/sbsr/2004/10.29.11.41/doc/3595.pdf (accessed on 22 June 2016).
- Vogl, A.L.; Dennedy-Frank, P.J.; Wolny, S.; Johnson, J.A.; Hamel, P.; Narain, U.; Vaidya, A. Managing forest ecosystem services for hydropower production. Environ. Sci. Policy 2016, 61, 221–229. [Google Scholar] [CrossRef]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, USDA: Washington, DC, USA, 1997. [Google Scholar]
- Vigiak, O.; Borselli, L.; Newham, L.T.H.; McInnes, J.; Roberts, A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 2012, 138, 74–88. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Galdino, S. Distribuição espacial da erosividade da chuva no Estado de Goiás e no Distrito Federal. Bol. Pesqui. Desenvolv. 2015, 19, 1806–3322. [Google Scholar]
- Bertoni, J.; Lombardi Neto, F. Conservação Do Solo, 10th ed.; Ícone Editora: São Paulo, Brazil, 2017. [Google Scholar]
- da Silva, V.C. Estimativa da erosão atual da bacia do Rio Paracatu (MG/GO/DF). Pesqui. Agropecuária Trop. 2004, 34, 147–159. [Google Scholar]
- Farinasso, M.; Carvalho Júnior, O.A.D.; Guimarãe, R.F.; Gomes, R.A.T.; Ramos, V.M. Avaliação Qualitativa do Potencial de Erosão Laminar em Grandes Áreas por Meio da EUPS Equação Universal de Perdas de Solos Utilizando Novas Metodologias em SIG para os Cálculos dos seus Fatores na Região do Alto Parnaíba PI-MA. Rev. Bras. Geomorfogia 2006, 7, 73–85. [Google Scholar] [CrossRef]
- Dedecek, R.A.; Resk, D.V.S.; Freitas, J. Perdas de solo, água e nutrientes por erosão em Latossolo Vermelho-Escuro dos Cerrados em diferentes cultivos sob chuva natural. Rev. Bras. Ciênc. Solo 1986, 10, 265–272. [Google Scholar]
- Gurgel, R.S.; de Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F.; Câmara, J.F.A.; Sobrinho, D.A.; de Souza Martins, É.; dos Santos Braga, A.R. Identificação das áreas vulneráveis à erosão a partir do emprego da EUPS–equação universal de perdas de solos no município de Riachão das Neves–BA. Geogr. Ensino Pesqui. 2011, 15, 93–112. [Google Scholar] [CrossRef]
- Chaves, H.M.L.; Piau, L.P. Efeito da variabilidade da precipitação pluvial e do uso e manejo do solo sobre o escoamento superficial e o aporte de sedimento de uma bacia hidrográfica do Distrito Federal. Rev. Bras. Ciênc. Solo 2008, 32, 333–343. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética (EPE). 2006 AvaliaÇÃo Ambiental Integrada (aai) dos Aproveitamentos HidroelÉtricos da Bacia HidrogrÁfica do rio ParanaÍba-CaracterizaÇÃo da Bacia. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/avaliacao-ambiental-integrada-aai (accessed on 26 January 2016).
- Chaplin-Kramer, R.; Hamel, P.; Sharp, R.; Kowal, V.; Wolny, S.; Sim, S.; Mueller, C. Landscape configuration is the primary driver of impacts on water quality associated with agricultural expansion. Environ. Res. Lett. 2016, 11, 074012. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef]
- Biggs, T.W.; Santiago, T.M.O.; Sills, E.; Caviglia-Harris, J. The Brazilian Forest Code and riparian preservation areas: Spatiotemporal analysis and implications for hydrological ecosystem services. Reg. Environ. Chang. 2019, 19, 2381–2394. [Google Scholar] [CrossRef]
- Merten, G.H.; Minella, J.P.G. The expansion of Brazilian agriculture: Soil erosion scenarios. Int. Soil Water Conserv. Res. 2013, 1, 37–48. [Google Scholar] [CrossRef]
- Falkenmark, M. Freshwater as shared between society and ecosystems: From divided approaches to integrated challenges. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 2037–2049. [Google Scholar] [CrossRef]
- Karabulut, A.; Egoh, B.N.; Lanzanova, D.; Grizzetti, B.; Bidoglio, G.; Pagliero, L.; Bouraoui, F.; Aloe, A.; Reynaud, A.; Maes, J.; et al. Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin. Ecosyst. Serv. 2016, 17, 278–292. [Google Scholar] [CrossRef]
- Mercure, J.F.; Paim, M.A.; Bocquillon, P.; Lindner, S.; Salas, P.; Martinelli, P.; Berchin, I.I.; de Andrade Guerra, J.B.S.O.; Derani, C.; de Albuquerque Junior, C.L.; et al. System complexity and policy integration challenges: The Brazilian Energy-Water-Food Nexus. Renew. Sustain. Energy Rev. 2019, 105, 230–243. [Google Scholar] [CrossRef]
Order | Width (m) |
---|---|
1 | 240 |
2 | 180 |
3 | 90 |
4 | 60 |
5 | 60 |
6 | 30 |
7 | 30 |
8 | 30 |
9 | 30 |
≥10 | 30 |
Data | Base Year | Scale/Spatial Resolution | Goal | Source |
---|---|---|---|---|
Land use and land cover map | 2011 | 1:250,000 | To obtain land use and land cover classes | [38] |
Soil Map | 2005 | 1:500,000 | To associate soil classes with Erodibility (K) data | [38] |
Drainage Network | 2014 | 1:50,000 | To generate APP buffer from land use map To delineate the sub-basins area | [39] |
Digital Elevation Model | 2000 | 30 m | To delineate the HPP drainage area To calculate the topographic factor (calculated by the model) | [40,41] |
Point of interest location | 2011 | - | To obtain the HPP Corumbá IV catchment outlet position | [35] |
Erosivity Map | 1980 to 2010 | - | To obtain the R factor | [46] |
Land Use Class | Factor C | Factor P * | Source |
---|---|---|---|
Urban | 0.1 | 1 | [4] |
Agriculture (annual basis) | 0.25 | 0.5 | [4,47] |
Cerrado Biome | 0.042 | 1 | [48,49] |
Water | 0 | 0 | By definition |
Atlantic Forest | 0.005 | 1 | [4] |
Pasture | 0.03 | 1 | [50] |
Reforestation | 0.05 | 1 | [4] |
Recovered/vegetated APP | 0.005 | 1 | [4] |
Altered APP (absence of vegetation or unnatural vegetation) | 0.01 | 1 | [4,51] |
Class | k Factor (t·ha·hr/MJ·ha·mm) | Source |
---|---|---|
Water | 0 | By definition |
Haplic Cambisol | 0.028 | [52] |
Dystrophic Red Latosol | 0.012 | [52] |
Dystrophic Red Yellow Latosol | 0.032 | [48] |
Red Argisol | 0.04 | [48] |
Litholic Neosols | 0.04 | [48] |
Ottobacia Code | Basin | Agriculture | Pasture | Cerrado | Other * | Total | APP Deficit ** | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | Thousand Ha | Thousand Ha | % | ||||||||||
Basin | APP | Basin | APP | Basin | APP | Basin | APP | Basin | APP | APP | |||
869696 | Alagado | 7 | 3 | 38 | 36 | 39 | 56 | 15 | 5 | 64 | 6 | 2 | 39% |
869698 | Corumbá | 13 | 6 | 61 | 61 | 24 | 34 | 2 | 0 | 225 | 27 | 18 | 66% |
869697 | Antas | 33 | 27 | 39 | 36 | 18 | 32 | 10 | 6 | 109 | 10 | 6 | 62% |
869695 | Pirapitinga-Sarandi | 14 | 7 | 34 | 44 | 34 | 48 | 18 | 0 | 17 | 2 | 1 | 52% |
869699 | Cervo | 19 | 9 | 36 | 47 | 26 | 45 | 19 | 0 | 16 | 2 | 1 | 55% |
869694 | Descoberto | 12 | 10 | 30 | 30 | 31 | 45 | 28 | 15 | 128 | 13 | 5 | 40% |
869696 | Areias | 4 | 1 | 61 | 49 | 32 | 50 | 3 | 0 | 141 | 14 | 7 | 50% |
Corumbá IV HPP Basin | 14 | 8 | 49 | 47 | 27 | 41 | 10 | 4 | 701 | 74 | 41 | 55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fachinelli, N.P.; Pereira, A.O., Jr. Effects of Restoration and Conservation of Riparian Vegetation on Sediment Retention in the Catchment Area of Corumbá IV Hydroelectric Power Plant, Brazil. World 2023, 4, 637-652. https://doi.org/10.3390/world4040040
Fachinelli NP, Pereira AO Jr. Effects of Restoration and Conservation of Riparian Vegetation on Sediment Retention in the Catchment Area of Corumbá IV Hydroelectric Power Plant, Brazil. World. 2023; 4(4):637-652. https://doi.org/10.3390/world4040040
Chicago/Turabian StyleFachinelli, Natália Pezzi, and Amaro Olímpio Pereira, Jr. 2023. "Effects of Restoration and Conservation of Riparian Vegetation on Sediment Retention in the Catchment Area of Corumbá IV Hydroelectric Power Plant, Brazil" World 4, no. 4: 637-652. https://doi.org/10.3390/world4040040