The Influence of Greenery and Landscape Design on Solar Radiation and UHI Mitigation: A Case Study of a Boulevard in a Hot Climate
Abstract
:1. Introduction
1.1. Urban Heat Island and the Atmospheric Layers
1.2. Types of Urban Heat Island UHI
1.3. Vegetation and the Impact of the Urban Heat Island UHI on the Microclimate
1.4. Solar Radiation and Greenery Impact
1.5. The Study Contribution
2. Methodology
2.1. Microclimate Simulation Software: ENVI-met 4.4.5
2.2. The Case Study Area
2.3. The Case Study Area Weather Characteristics
2.4. The ENVI-met Software Validation
2.5. Model Description and Parametric Design Scenarios
2.6. Outcome Parameters and Data Analysis
3. Results and Discussion
3.1. The impact of Greenery on UHI and Microclimate Parameters at the Pedestrian Level
3.2. Canopy Layer and the Most Affected Microclimate Parameters
3.3. Boundary Layer and the Effect of Different Greenery Scenarios
3.4. Urban Greenery and Cooling Effect in the UAE and Gulf Region Climate Conditions
3.5. The Impact of the Developed Scenarios on Cooling Parameters
3.6. The Optimized Proposal for the Case Study Boulevard
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Brazel, A.; Selover, N.; Vose, R.; Heisler, G. The tale of two climates-Baltimore and Phoenix urban LTER sites. Clim. Res. 2000, 15, 123–135. [Google Scholar]
- Stone, B.; Vargo, J.; Habeeb, D. Managing climate change in cities: Will climate action plans work? Landsc. Urban Plan. 2012, 107, 263–271. [Google Scholar]
- Ksiksi, T.S.; Al-Blooshi, L.S. Climate change in the UAE: Modeling air temperature using ARIMA and STI across four bio-climatic zones. F1000Research 2019, 8, 973. [Google Scholar]
- Oke, T.R. The distinction between canopy and boundary-layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar]
- Santamouris, M.; Haddad, S.; Saliari, M.; Vasilakopoulou, K.; Synnefa, A.; Paolini, R.; Ulpiani, G.; Garshasbi, S.; Fiorito, F. On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy Build. 2018, 166, 154–164. [Google Scholar]
- Zhao, F.; Martinez-Moyano, I.J.; Augenbroe, G. Agent-Based Modeling of Commercial Building Stocks for Policy Support. In Proceedings of the 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 14–16 November 2011; pp. 2385–2392. [Google Scholar]
- Park, C. A Dictionary of Environment and Conservation, 1st ed.; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Hesslerová, P.; Pokorný, J.; Huryna, H.; Seják, J.; Jirka, V. The impacts of greenery on urban climate and the options for use of thermal data in urban areas. Prog. Plan. 2021, in press. 100545. [Google Scholar]
- Ichinose, T.; Matsumoto, F.; Kataoka, K. Counteracting Urban Heat Islands in Japan. In Urban Energy Transition: From Fossil Fuels to Renewable Power; Droege, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 365–380. [Google Scholar]
- Shareef, S.; Abu-Hijleh, B. The effect of building height diversity on outdoor microclimate conditions in hot climate. A case study of Dubai-UAE. Urban Clim. 2020, 32, 100611. [Google Scholar]
- Rizwan, A.M.; Dennis, L.Y.; Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar]
- Che-Ani, A.I.; Shahmohamadi, P.; Sairi, A.; Mohd-Nor, M.F.I.; Zain, M.F.M.; Surat, M. Mitigating the urban heat island effect: Some points without altering existing city planning. Eur. J. Sci. Res. 2009, 35, 204–216. [Google Scholar]
- Danielson, E.W.; Levin, J.; Abrams, E. Meteorology; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Szokolay, S.V. Introduction to Architectural Science: The Basis of Sustainable Design, 2nd ed.; Elsevier/Architectural Press: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge University Press: Oxford, UK, 1994. [Google Scholar]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. (1967) 1973, 7, 769–779. [Google Scholar]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Morakinyo, T.E.; Lau, K.; Ren, C.; Ng, E. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Build. Environ. 2018, 137, 157–170. [Google Scholar]
- Pichierri, M.; Bonafoni, S.; Biondi, R. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan. Remote Sens. Environ. 2012, 127, 130–138. [Google Scholar]
- Saitoh, T.S.; Shimada, T.; Hoshi, H. Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 1996, 30, 3431–3442. [Google Scholar]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.; Nan, H.; Zhou, L.; Myneni, R. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar]
- Lindberg, F.; Grimmond, C.S.B. Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst. 2011, 14, 617–634. [Google Scholar]
- United States Environmental Protection Agency. U.S. EPA. 2021. Available online: https://www.epa.gov/sites/production/files/201705/documents/reducing_urban_heat_islands_ch_5.pdf (accessed on 7 March 2021).
- Wanphen, S.; Nagano, K. Experimental study of the performance of porous materials to moderate the roof surface temperature by its evaporative cooling effect. Build. Environ. 2009, 44, 338–351. [Google Scholar]
- Hirano, Y.; Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 2012, 37, 371–383. [Google Scholar]
- Yue, W.; Liu, X.; Zhou, Y.; Liu, Y. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Sci. Total Environ. 2019, 671, 1036–1046. [Google Scholar]
- Tan, P.; Ismail, M. Building shade affects light environment and urban greenery in high-density residential estates in Singapore. Urban For. Urban Green. 2014, 13, 771–784. [Google Scholar]
- Shareef, S. The impact of urban morphology and building’s height diversity on energy consumption at urban scale. The case study of Dubai. Build. Environ. 2021, 194, 107675. [Google Scholar]
- Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar]
- Ghazalli, A.J.; Brack, C.; Bai, X.; Said, I. Alterations in use of space, air quality, temperature and humidity by the presence of vertical greenery system in a building corridor. Urban For. Urban Green. 2018, 32, 177–184. [Google Scholar]
- Richards, D.R.; Fung, T.K.; Belcher, R.N.; Edwards, P. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Green. 2020, 50, 126651. [Google Scholar]
- Speak, A.; Montagnani, L.; Wellstein, C.; Zerbe, S. The influence of tree traits on urban ground surface shade cooling. Landsc. Urban Plan. 2020, 197, 103748. [Google Scholar]
- Huang, Z.; Tan, C.L.; Lu, Y.; Wong, N.H. Holistic analysis and prediction of life cycle cost for vertical greenery systems in Singapore. Build. Environ. 2021, 196, 107735. [Google Scholar]
- Tsai, W.-L.; Davis, A.; Jackson, L.E. Associations between types of greenery along neighborhood roads and weight status in different climates. Urban For. Urban Green. 2019, 41, 104–117. [Google Scholar]
- Pan, L.; Wei, S.; Lai, P.Y.; Chu, L. Effect of plant traits and substrate moisture on the thermal performance of different plant species in vertical greenery systems. Build. Environ. 2020, 175, 106815. [Google Scholar]
- Wei, S.; Yin, T.; Dissegna, M.A.; Whittle, A.J.; Ow, G.L.F.; Yusof, M.L.M.; Lauret, N.; Gastellu-Etchegorry, J.-P. An assessment study of three indirect methods for estimating leaf area density and leaf area index of individual trees. Agric. For. Meteorol. 2020, 292–293, 108101. [Google Scholar]
- Kenney, W.A. Leaf Area Density as an urban forestry planning and management tool. For. Chron. 2000, 76, 235–239. [Google Scholar]
- Hashad, K.; Gu, J.; Yang, B.; Rong, M.; Chen, E.; Ma, X.; Zhang, K.M. Designing roadside green infrastructure to mitigate traffic-related air pollution using machine learning. Sci. Total Environ. 2021, 773, 144760. [Google Scholar]
- Soma, M.; Pimont, F.; Allard, D.; Fournier, R.; Dupuy, J.-L. Mitigating occlusion effects in Leaf Area Density estimates from Terrestrial LiDAR through a specific kriging method. Remote Sens. Environ. 2020, 245, 111836. [Google Scholar]
- Ouyang, W.; Morakinyo, T.E.; Ren, C.; Ng, E.Y.Y. The cooling efficiency of variable greenery coverage ratios in different urban densities: A study in a subtropical climate. Build. Environ. 2020, 174, 106772. [Google Scholar]
- Berardi, U.; Jandaghian, Z.; Graham, J. Effects of greenery enhancements for the resilience to heat waves: A comparison of analysis performed through mesoscale (WRF) and microscale (Envi-met) modeling. Sci. Total Environ. 2020, 747, 141300. [Google Scholar] [PubMed]
- Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Ballester-Muñoz, F. Air quality modelling in Catalonia from a combination of solar radiation, surface reflectance and elevation. Sci. Total Environ. 2018, 624, 189–200. [Google Scholar]
- Shareef, S.; Altan, H. Sustainability at an Urban Level: A Case Study of a Neighborhood in Dubai, UAE. Sustainability 2021, 13, 4355. [Google Scholar]
- Geiger, R.; Aron, R.; Todhunter, P.; Geiger, R. The Climate Near the Ground; Rowman and Littlefield Publishers: Lanham, MD, USA, 2003. [Google Scholar]
- Taleghani, M.; Sailor, D.; Ban-Weiss, G.A. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ. Res. Lett. 2016, 11, 024003. [Google Scholar]
- Fortuniak, K. Numerical estimation of the effective albedo of an urban canyon. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2007, 91, 245–258. [Google Scholar]
- Christen, A.; Vogt, R. Energy and radiation balance of a central European city. Int. J. Climatol. 2004, 24, 1395–1421. [Google Scholar]
- Pawlak, W.; Fortuniak, K.; Podstawczynska, A. The influence of urban canyon parameters on downward total solar radiation values–measurements and modelling. DWD Ann. Meteorol. 2005, 41, 200–203. [Google Scholar]
- Marciotto, E.R.; Oliveira, A.; Hanna, S.R. Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build. Environ. 2010, 45, 2497–2505. [Google Scholar]
- Lobaccaro, G.; Acero, J.A. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim. 2015, 14, 251–267. [Google Scholar]
- ENVI_MET. ENVI_MET—Decoding Urban Nature. 2020. Available online: http://www.envi-met.com/ (accessed on 1 March 2021).
- Simon, H.; Lindén, J.; Hoffmann, D.; Braun, P.; Bruse, M.; Esper, J. Modeling transpiration and leaf temperature of urban trees—A case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 2018, 174, 33–40. [Google Scholar]
- Mushtaha, E.; Shareef, S.; Alsyouf, I.; Mori, T.; Kayed, A.; Abdelrahim, M.; Albannay, S. A study of the impact of major Urban Heat Island factors in a hot climate courtyard: The case of the University of Sharjah, UAE. Sustain. Cities Soc. 2021, 69, 102844. [Google Scholar]
- Bruse, M. The Influences of Local Environmental Design on Microclimate. Ph.D. Thesis, University of Bochum, Bochum, Germany, 1999. (In German). [Google Scholar]
- Bruse, M.; Fleer, H. Simulating surface—plant—air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar]
- Dubai International Airport Weather Station Data—Dubai. Available online: https://www.avmet.ae/omdbfc.aspx (accessed on 1 March 2021).
- Rahman, M.M.; Rasul, M.G.; Khan, M.M.K. Energy Conservation Measures in a Nine Situational Building by Dynamic Simulation Using Design Builder. In Proceedings of the Third International Conference on Energy and Cambridge Environment, Cambridge, UK, 23–25 February 2008. [Google Scholar]
Reference | City | Summary of Study | Temp. Reduction °C |
---|---|---|---|
Mushtaha et al. (2021) Wong and Yu (2005) | Sharjah, UAE Singapore | Vertical greenery (LAI = 1) Green areas reduce the average of air temperature compared with urban areas with no green pavement | 0.5 1.3 |
Wang, Berardi, and Akbari (2015) | Toronto, Canada | Increasing 10% of urban vegetation coverage | 0.5 |
Berardi (2016) | Toronto, Canada | Extensive green roof (LAI = 1) Extensive green roof (LAI = 2) | 0.7 1.1 |
Ghaffarianhoseini et al. (2015) | Kuala Lumpur, Malaysia | 100% courtyard covered with grass Courtyard canopy tree increased by 25–75% | negligible 3.0 |
Berardi, Jandaghian, and Graham (2020) | Toronto, Canada | Appling moderate and intensive greenery within canopy layer | 0.5–1.4 |
Santamouris et al. (2018) | Sydney, Australia | Increasing ground greenery by 55% 100% green roof | 1.4 0.5 |
Lobaccaro and Acero (2015) | Bilbao, Spain | Adding grass 50 cm to canyon Adding tree 5 m to the street canyon Green roof | negligible 0.6 negligible |
Ma et al. (2018) | Sydney, Australia | 100% 50 cm green roof | 0.75–1.5 |
Ng et al. (2012) | Hong Kong, China | Increase tree canopy coverage by 8% and 56% Increasing grass on streets 8% and 56% | 1.8 0.9 |
Taleghani et al. (2016) | Los Angeles, USA | Green roofs Adding trees to front and backyard | 0.2 0.15 |
Wang, Berardi, and Akbari (2016) | Toronto, Canada | Increasing tree coverage by 10% with in canopy layer Increasing roads, roofs and vegetation | 0.8 0.75 |
Sun et al. (2016) | Beijing, China | 100% coverage of vegetation over roofs | 2.5 |
Site Measurements | Points | 1 | 2 | 3 |
---|---|---|---|---|
Measure 1 | Time | 14:00 | 14:15 | 14:30 |
Temp. | 38.6 | 38.5 | 38.1 | |
Measure 2 | Time | 15:00 | 15:15 | 15:30 |
Temp. | 38.8 | 38.6 | 38.3 | |
Average Temp. | 38.70 | 38.55 | 38.15 | |
ENVI-met results | 38.4 | 38 | 38 | |
Variation from Ave.Temp. | Variation | −0.30 | −0.55 | −0.20 |
% Variance | −0.02 | −0.03 | −0.01 |
Greenery-Type ENVI-met Description | LAD | Implementation Area | The UAE-Type Specifications | Greenery-Type Photos | |
---|---|---|---|---|---|
Existing Base | Tree 4 m | Medium | Pedestrian | Delonix regia or Royal Poinciana | |
1 | Green Grass 50 cm | High | Pedestrian Median Strip | Dense grass 50 cm | |
2 | Tree 10 m | High | Pedestrian Median Strip | Sidr tree 10 m very dense, leafless base | |
3 | Tree 12 m | High | Pedestrian Median Strip | Ghaf tree 12 m dense, distinct layer | |
4 | Façade Greenery Ficus | High | Façade | Ficus tree | |
5 | Green Roof Grass 50 cm | Medium | Roof | High dense grass | |
6 | Green Roof Ruellia | High | Roof | Ruellia | |
7 | Water | N/A | Median Strip | Water fountain | |
8 | Cylindrical Tree 15 m | High | Pedestrian | Cylindrical, large trunk, dense, 15 m Royal Poinciana/Delonix regia | |
9 | Palm 15 m | Medium | Pedestrian | Palm tree, large trunk, dense, large 15 m | |
10 | Palm Large 5 m | Medium | Pedestrian | Palm tree, large trunk, small 5 m |
Location | |
Weather file | Dubai Airport Station |
Climate Zone | Hot Climate |
GRID | |
Grid dimensions | 500 × 500 |
Each cell size | dY = 5, dX = 5, dZ = 2 |
Results collection at z | 1.4 m from ground |
Road/Building Fabric | |
Road albedo | 0.25 (reflects 25% of incoming radiation) |
Wall albedo | 0.3 (reflects 30% of incoming radiation) |
Roof albedo | 0.3 (reflects 30% of incoming radiation) |
Initial Meteorological Condition | |
Simulation Day | 21 June 2021 |
Start Time | 05:00:00 |
Duration | 24 h |
Save Model State each | 30 min |
Resolution | 1:5 |
Wind Speed at 10 m | 3 m/s |
Wind direction | N-W 315° |
Roughness Length z0 | 0.01 |
RH | 65% |
Cloud | Clear |
Solar Factor | |
Shortwave factor a | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shareef, S. The Influence of Greenery and Landscape Design on Solar Radiation and UHI Mitigation: A Case Study of a Boulevard in a Hot Climate. World 2022, 3, 175-205. https://doi.org/10.3390/world3020010
Shareef S. The Influence of Greenery and Landscape Design on Solar Radiation and UHI Mitigation: A Case Study of a Boulevard in a Hot Climate. World. 2022; 3(2):175-205. https://doi.org/10.3390/world3020010
Chicago/Turabian StyleShareef, Sundus. 2022. "The Influence of Greenery and Landscape Design on Solar Radiation and UHI Mitigation: A Case Study of a Boulevard in a Hot Climate" World 3, no. 2: 175-205. https://doi.org/10.3390/world3020010
APA StyleShareef, S. (2022). The Influence of Greenery and Landscape Design on Solar Radiation and UHI Mitigation: A Case Study of a Boulevard in a Hot Climate. World, 3(2), 175-205. https://doi.org/10.3390/world3020010