The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area
Abstract
:1. Introduction
2. Literature Review
2.1. Environment and Economy
2.2. Societal Effects of the COVID-19 Lockdown
2.2.1. Impact of COVID-19 Lockdown on the Environment
2.2.2. Impact of COVID-19 Lockdown on Mobility
2.2.3. Impact of COVID-19 Lockdown on the Economy
3. Reference Scenario
4. Results
4.1. NO Pollution
4.2. Economic and Mobility Impacts
5. Discussion and Conclusions
- The pandemic-related lockdown forced people to stay at home and economic activities to stop.
- NO emissions, mainly related to transport, consequently decreased.
- Freely available TROPOMI satellite measurements, ground-based measurements, and model estimates were used.
- A correlation between NO emission levels, the mobility habits (e.g., movements) of people, and economic activities was observed
- Policymakers could take inspiration from this extreme and unavoidable scenario for developing sustainable mobility policies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ARPA | Environmental Protection Regional Agency |
| ATM | Milan Transport Company (Azienda Trasporti Milanesi) |
| BSC | Barcelona Supercomputing Center |
| CAMS | Copernicus Atmosphere Monitoring Service |
| CNA | National Confederation of Artesanship |
| DLR | German Aerospace Center |
| ESA | European Space Agency |
| EU | European Union |
| FDI | Foreign Direct Investment |
| FUR | Functional Urban Region |
| GDP | Gross Domestic Product |
| GLM | General Linear Model |
| GPS | Global Positioning System |
| ICT | Information Communication Technology |
| ICU | Intensive Care Unit |
| I–O | Input–Output |
| ISL | Italian Spring Lockdown |
| LAU | Local Administrative Unit |
| LPT | Local Public Transport |
| MDCEV | Multiple Discrete Choice Extreme Value |
| MNE | Multinational Enterprise |
| NUTS | Nomenclature of Territorial Units for Statistics |
| SUMP | Sustainable Urban Mobility Plan |
| TROPOMI | TROPOspheric Monitoring Instrument |
| WHO | World Health Organization |
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard Overview. 2021. Available online: https://covid19.who.int/?gclid=Cj0KCQiAnKeCBhDPARIsAFDTLTJFDA61RwxLM818L3iP0nplp3OgGNfUXNeyvM3ZryY5_s_s0KeCkbMaApuxEALw_wcB (accessed on 26 July 2021).
- Rahman, M.A.; Zaman, N.; Asyhari, A.T.; Al-Turjman, F.; Bhuiyan, M.Z.A.; Zolkipli, M.F. Data-driven dynamic clustering framework for mitigating the adverse economic impact of Covid-19 lockdown practices. Sustain. Cities Soc. 2020, 62, 102372. [Google Scholar] [CrossRef]
- Chaudhrya, R.; Dranitsarisb, G.; Mubashirc, T.; Bartoszkoa, J.; Riazi, S. A country level analysis measuring the impact of government actions, country preparedness and socioeconomic factors on COVID-19 mortality and related health outcomes. EClinicalMedicine 2020, 25, 100464. [Google Scholar] [CrossRef] [PubMed]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Alwan, N.A.; Burgess, R.A.; Ashworth, S.; Beale, R.; Bhadelia, N.; Bogaert, D.; Dowd, J.; Eckerle, I.; Goldman, L.R.; Greenhalgh, T.; et al. Scientific consensus on the COVID-19 pandemic: We need to act now. Lancet 2020, 396, e71–e72. [Google Scholar] [CrossRef]
- Vismara, F. Reflections on COVID-19—Views from Italy. Restructuring GlobalView. 17 September 2020. Available online: https://www.restructuring-globalview.com/2020/09/reflections-on-covid-19-views-from-italy/ (accessed on 27 July 2021).
- Colvile, R.N.; Hutchinson, E.J.; Mindell, J.S.; Warren, R.F. The transport sector as a source of air pollution. Atmos. Environ. 2001, 35, 1537–1565. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Shindell, D. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Butland, B.K.; Anderson, H.R.; Maynard, R.L. Long-term concentrations of nitrogen dioxide and mortality: A meta-analysis of cohort studies. Epidemiology 2018, 29, 460–472. [Google Scholar] [CrossRef]
- Eurostat. EEA Air Pollutants by Source Sector. 2021. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_emis&lang=en (accessed on 27 July 2021).
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmos. Chem. Phys. 2003, 3, 2225–2232. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Coronavirus Disease (COVID-19) Outbreak. 2020. Available online: who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 27 July 2021).
- Horowitz, J. Italy Locks Down Much of the Country’s North Over the Coronavirus. The New York Times. 11 March 2020. Available online: nytimes.com/2020/03/07/world/europe/coro-navirus-italy.html (accessed on 27 July 2021).
- Kim, S. How South Korea Lost Control of Its Coronavirus Outbreak. The New Yorker. 4 March 2020. Available online: newyorker.com/news/news-desk/how-south-korea-lost-control-of-its-coronavirusoutbreak (accessed on 27 July 2021).
- Leggett, T. Coronavirus: Global Growth ‘Could Halve’ if Outbreak Intensifies. BBC. 2 March 2020. Available online: bbc.com/news/business-51700935 (accessed on 27 July 2021).
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Victor, P.A. Pollution: Economy and Environment; Routledge: London, UK, 1972. [Google Scholar]
- Gradus, R.; Smulders, S. The trade-off between environmental care and long-term growth pollution in three prototype growth models. J. Econ. 1993, 58, 25–51. [Google Scholar] [CrossRef] [Green Version]
- Smulders, S.; Gradus, R. Pollution abatement and long-term growth. Eur. J. Politics Econ. 1996, 12, 505–532. [Google Scholar] [CrossRef] [Green Version]
- Moser, E.; Seidl, A.; Feichtinger, G. History-dependence in production-pollution-trade-off models: A multi-stage approach. Ann. Oper. Res. 2014, 222, 457–481. [Google Scholar] [CrossRef]
- Mildenberger, M.; Leiserowitz, A. Public opinion on climate change: Is there an economy–environment tradeoff? Environ. Politics 2017, 26, 801–824. [Google Scholar] [CrossRef]
- Renstrom, T.I.; Spataro, L.; Marsiliani, L. Can subsidies rather than pollution taxes break the trade-off between economic output and environmental protection? Energy Econ. 2021, 95, 105084. [Google Scholar] [CrossRef]
- Chakraborty, I.; Maity, P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci. Total Environ. 2020, 728, 138882. [Google Scholar] [CrossRef] [PubMed]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.; Suarez-Varela, M.M.M. The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abba, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miinoa, M. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S. Nonlinear impact of COVID-19 on pollutions—Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. Sustain. Cities Soc. 2021, 65, 102629. [Google Scholar] [CrossRef]
- Duncan, B.N.; Lamsal, L.N.; Thompson, A.M.; Yoshida, Y.; Lu, Z.; Streets, D.; Hurwitz, M.; Pickering, K.E. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014). J. Geophys. Res. 2016, 121, 976–996. [Google Scholar] [CrossRef] [Green Version]
- De Foy, B.; Lu, Z.; Streets, D. Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the twelfth Five-Year Plan. Nat. Sci. Rep. 2016, 6, 35912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der A, R.J.; Mijling, B.; Ding, J.; Koukouli, M.; Liu, F.; Li, Q.; Mao, H.; Theys, N. Cleaning up the air: Effectiveness of air quality policy for SO2 and NOx emissions in China. Atmos. Chem. Phys. 2017, 17, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, P.; Boersma, K.F. Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. Nat. Sci. Rep. 2012, 2, 265. [Google Scholar] [CrossRef]
- Mijling, B.; Boersma, R.J.v.A.K.F.; Roozendael, M.V.; Smedt, I.D.; Kelder, H.M. Reductions of NO2 detected from space during the 2008 Beijing Olympic Games. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J.J.; Zhang, R. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmos. Chem. Phys. 2013, 13, 8303–8314. [Google Scholar] [CrossRef] [Green Version]
- Hao, N.; Valks, P.; Loyola, D.; Cheng, Y.F.; Zimmer, W. Space-based measurements of air quality during the World Expo 2010 in Shanghai. Environ. Res. Lett. 2011, 6, 044004. [Google Scholar] [CrossRef] [Green Version]
- Peskoe-Yang, L. Yes, COVID-19 Shutdowns Improved Air Quality Worldwide. Inst. News IEEE 2020, 44, 12–13. [Google Scholar]
- Wang, T.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 1–8. [Google Scholar] [CrossRef]
- Beria, P.; Lunkar, V. Presence and mobility of the population during the first wave of Covid-19 outbreak and lockdown in Italy. Sustain. Cities Soc. 2021, 65, 102616. [Google Scholar] [CrossRef]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echaniz, E.; Gonzalez, F.; Ladisa, C.; Lezama-Romanelli, R.; Lopez-Parra, A.; Mazzei, V.; et al. Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Orro, A.; Novales, M.; Monteagudo, A.; Perez-Lopez, J.B.; Bugarin, M.R. Impact on city bus transit services of the COVID-19 lockdown and return to the new Normal: The case of La Coruna (Spain). Sustainability 2020, 12, 7206. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total. Environ. 2020, 741, 140353. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.; LaRock, T.; McCabe, S.; Torres, L.; Privitera, F.; Lake, B.; Kraemer, M.U.G.; Brownstein, J.S.; Lazer, D.; Eliassi-Rad, T.; et al. Assessing Changes in Commuting and Individual Mobility in Major Metropolitan Areas in the United States during the COVID-19 Outbreak. 2020. Available online: https://www.networkscienceinstitute.org/publications/assessing-changes-in-commuting-and-individual-mobility-in-major-metropolitan-areas-in-the-united-states-during-the-covid-19-outbreak (accessed on 27 July 2021).
- Bhaduri, E.; Manoj, B.S.; Wadud, Z.; Goswami, A.K.; Choudhury, C.F. Modelling the effects of COVID-19 on travel mode choice behaviour in India. Transp. Res. Interdiscip. 2020, 8, 100273. [Google Scholar]
- Hu, S.; Chen, P. Who left riding transit? Examining socioeconomic disparities in the impact of COVID-19 on ridership. Transp. Res. Part D Transp. Environ.. 2021, 90, 102654. [Google Scholar] [CrossRef]
- Tan, L.; Ma, C. Choice behavior of commuters’ rail transit mode during the COVID-19 pandemic based on logistic model. J. Traffic Transp. Eng. 2020, 8, 186–195, in print. [Google Scholar] [CrossRef]
- Borkowski, P.; Jazdzewska-Gutta, M.; Szmelter-Jarosz, A. Lockdowned: Everyday mobility changes in response to COVID-19. J. Transp. Geogr. 2021, 90, 102906. [Google Scholar] [CrossRef]
- Wielechowski, M.; Czech, K.; Grzeda, L. Decline in Mobility: Public Transport in Poland in the time of the COVID-19 Pandemic. Economies 2020, 8, 78. [Google Scholar] [CrossRef]
- Fountas, G.; Sun, Y.Y.; Akizu-Gardoki, O.; Pomponi, F. How do people move around? National data on transport modal shares for 131 countries. World 2020, 1, 34–43. [Google Scholar] [CrossRef]
- De Haas, M.; Faber, R.; Hamersma, M. How COVID-19 and the Dutch ‘intelligent lockdown’ change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2020, 6, 100150. [Google Scholar] [CrossRef]
- Engle, S.; Stromme, J.; Zhou, A. Staying at Home: Mobility Effects of COVID-19. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3565703 (accessed on 27 July 2021).
- Pullano, G.; Valdano, E.; Scarpa, N.; Rubrichi, S.; Colizza, V. Population Mobility Reductions during COVID-19 Epidemic in France under Lockdown. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.29.20097097v1.full.pdf (accessed on 27 July 2021).
- Mishra, M.K. The World after COVID-19 and Its Impact on Global Economy; ZBW—Leibniz Information Centre for Economics: Kiel, Germany, 2020. [Google Scholar]
- Lenzen, M.; Li, M.; Malik, A.; Pomponi, F.; Sun, Y.Y.; Wiedmann, T.; Faturay, F.; Fry, J.; Gallego, B.; Geschke, A.; et al. Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS ONE 2020, 15, e0235654. [Google Scholar] [CrossRef]
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.L.; Valensise, C.M.; Scala, A.; Quattrociocchi, W.; et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef]
- Spelta, A.; Flori, A.; Pierri, F.; Bonaccorsi, G.; Pammolli, F. After the lockdown: Simulating mobility, public health and economic recovery scenarios. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Eurostat. Population & Demographics 2021. Available online: https://ec.europa.eu/eurostat/web/population-demography/demography-population-stock-balance/database (accessed on 27 July 2021).
- Holden, E. Achieving Sustainable Mobility, 1st ed.; Taylor & Francis: Aldershot, UK, 2007. [Google Scholar]
- Maltese, I.; Mariotti, I.; Oppio, A. An ex-post assessment of sustainable mobility: The case of European neighbourhoods. In Territorio; Franco Angeli: Milano, Italy, 2011; pp. 51–58. [Google Scholar]
- Eurostat. Luxembourg—Most Cars per Inhabitant in the EU. 2020. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20200611-2?inheritRedirect=true&redirect=%2Feurosta%2Fnews%2Fwhats-new (accessed on 27 July 2021).
- Maltese, I.; Gatta, V.; Marcucci, E. Active Travel in Sustainable Urban Mobility Plans. An Italian overview. Res. Transp. Bus. Manag. 2021, 100621. [Google Scholar] [CrossRef]
- SCRAT Euromobility. Osservatorio 50 Città Italiane. 2019. Available online: https://www.xn--osservatorio50citt-wrb.it/searchIndicator_NEW/index.php?ind=58&year=2019 (accessed on 27 July 2021).
- Laker, L. Milan Announces Ambitious Scheme to Reduce Car Use after Lockdown. The Guardian. 21 April 2020. Available online: https://www.theguardian.com/world/2020/apr/21/milan-seeks-to-prevent-post-crisis-return-of-traffic-pollution (accessed on 27 July 2021).
- Bertuccio, L.; Piras, V. Osservatorio Mobilità Sostenibile in Italia. 2019. Available online: https://www.euromobility.org/wp-content/uploads/2019/11/50-città2019.pdf (accessed on 27 July 2021).
- Chianese, E.; Camastra, F.; Ciaramella, A.; Landi, T.C.; Staiano, A.; Riccio, A. Spatio-temporal learning in predicting ambient particulate matter concentration by multi-layer perceptron. Ecol. Inform. 2019, 49, 54–61. [Google Scholar] [CrossRef]
- Chianese, E.; Galletti, A.; Giunta, G.; Landi, T.C.; Marcellino, L.; Montella, R.; Riccio, A. Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations. Ecol. Model. 2018, 385, 173–181. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Duncan, B.N.; Yoshida, Y.; Krotkov, N.A.; Pickering, K.E.; Streets, D.G.; Lu, Z.U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmos. Environ. 2015, 110, 130–143. [Google Scholar] [CrossRef]
- European Space Agency. Coronavirus Lockdown Leading to Drop in Pollution across Europe. 2020. Available online: www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/ (accessed on 27 July 2021).
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Muller, J.-F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der, A.R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef] [PubMed]
- Bassani, C.; Vichi, F.; Esposito, G.; Montagnoli, M.; Giusto, M.; Ianniello, A. Nitrogen dioxide reductions from satellite and surface observations during COVID-19 mitigation in Rome (Italy). Environ. Sci. Pollut. Res. 2021, 28, 22981–23004. [Google Scholar] [CrossRef] [PubMed]
- Van Geffen, J.; Eskes, H.J.; Boersma, K.F.; Maasakkers, J.D.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products; Technical Report S5P-KNMI-L2-0005-RP; Royal Netherlands Meteorological Institute: De Bilt, The Netherlands, 2021; Volume 2.2.0. [Google Scholar]
- Van Geffen, J.; Boersma, K.F.; Eskes, H.J.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P/TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.L.; Anenberg, S.C.; Griffin, D.; McLinden, C.A.; Lu, Z.; Streets, D.G. Disentangling the Impact of the COVID-19 Lockdowns on Urban NO2 From Natural Variability. Geophys. Res. Lett. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Lin, H.; Feng, X.; Fu, T.-M.; Wang, Y. NOx Emission Reduction and Recovery during COVID-19 in East China. Remote Sens. 2020, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Cersosimo, A.; Serio, C.; Masiello, G. TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations. Remote Sens. 2020, 12, 2212. [Google Scholar] [CrossRef]
- European Space Agency. Air Pollution in a Post-COVID-19 World. 2020. Available online: www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Air_pollution_in_a_post-COVID-19_world (accessed on 27 July 2021).
- Zhang, R.; Wang, Y.; Smeltzer, C.; Qu, H.; Koshak, W.; Folkert Boersma, K. Comparing OMI-based and EPA AQS in situ NO2 trends: Towards understanding surface NOx emission changes. Atmos. Meas. Tech. 2018, 11, 3955–3967. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.Q.; Lamsal, L.; Pan, L.; Ding, C.; Kim, H.; Lee, P.; Chai, T.; Pickering, K.E.; Stajner, I. Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. Atmos. Environ. 2015, 107, 70–84. [Google Scholar] [CrossRef]
- Marongiu, A. Stima Preliminare delle Emissoni in Lombardia Durante L’emergenza COVID-19; Technical Report; Agenzia Regionale per la Protezione dell’Ambiente della Lombardia: Milano, Italy, 2020; Available online: https://www.arpalombardia.it/sites/DocumentCenter/Documents/ARIA/report-stima-emissiva-COVID19-lombardia.pdf (accessed on 27 July 2021).
- Atmosphere Monitoring Service. Air Quality Information Confirms Reduced Activity Levels Due to Lockdown in Italy. 2020. Available online: atmosphere.copernicus.eu/air-quality-information-confirms-reduced-activity-levels-due-lockdown-italy (accessed on 27 July 2021).
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A Covid19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 1–10. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Monitoring Service. European Air Quality Information in Support of the COVID-19 Crisis. 2020. Available online: https://atmosphere.copernicus.eu/european-air-quality-information-support-covid-19-crisis (accessed on 27 July 2021).
- Monaci, S. Milano Dopo il Covid: Commercio e Servizi Vanno Peggio della Media Italiana. Il Sole 24 ore. 7 July 2020. Available online: https://www.ilsole24ore.com/art/milano-il-covid-commercio-e-servizi-vanno-peggio-media-italiana-ADqHZnc (accessed on 27 July 2021).
- Assolombarda. Dati e Analisi della Città che Cambia. Available online: https://www.assolombarda.it/centro-studi/your-next-milano-2021 (accessed on 27 July 2021).
- Tirachini, A.; Cats, O. COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. J. Public Transp. 2020, 22, 1–21. [Google Scholar] [CrossRef]
- TomTom. The Effect of the COVID-19 Lockdown on Mobility in Italy. 2020. Available online: https://www.tomtom.com/covid-19/country/italy/ (accessed on 27 July 2021).
- Moovit. L’impatto del Coronavirus (Covid-19) Sull’utilizzo del Trasporto Pubblico. 2020. Available online: https://moovitapp.com/insights/it/Analisi_Moovit_sull_indice_per_la_mobilitá_pubblica-223 (accessed on 27 July 2021).
- Sung, J.; Monschauer, Y. Changes in Transport Behaviour during the COVID-19 Crisis. 2020. Available online: https://www.iea.org/articles/changes-in-transport-behaviour-during-the-covid-19-crisis (accessed on 27 July 2021).
- Boscacci, F.; Maltese, I.; Mariotti, I. Smartness and Italian cities. A cluster analysis. TeMA J. Land Use Mobil. Environ. 2014, 141–162. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Magazzino, C.; Mele, M.; Sarkodie, S.A. The nexus between COVID-19 deaths, air pollution and economic growth in New York state: Evidence from Deep Machine Learning. J. Environ. 2021, 286, 112241. [Google Scholar]
- Magazzino, C.; Mele, M.; Schneider, N. The relationship between air pollution and COVID-19-related deaths: An application to three French cities. Appl. Energy 2020, 279, 115835. [Google Scholar] [CrossRef] [PubMed]
- Mele, M.; Magazzino, C.; Schneider, N.; Strezov, V. NO2 levels as a contributing factor to COVID-19 deaths: The first empirical estimate of threshold values. Environ. Res. 2021, 194, 110663. [Google Scholar] [CrossRef] [PubMed]
- Perry, T.S. The post-pandemic tech workplace. IEEE Spectr. 2020, 9, 19. [Google Scholar]











| City | NO Column (mol/m) March 2019 | NO Column (mol/m) 14–25 March 2020 | Reduction |
|---|---|---|---|
| Milan | 160 | 110 | 31% |
| Turin | 150 | 90 | 40% |
| Rome | 130 | 70 | 46% |
| Naples | 120 | 85 | 29% |
| Florence | 80 | 30 | 63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliaccio, M.; Buono, A.; Maltese, I.; Migliaccio, M. The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area. World 2021, 2, 391-414. https://doi.org/10.3390/world2030025
Migliaccio M, Buono A, Maltese I, Migliaccio M. The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area. World. 2021; 2(3):391-414. https://doi.org/10.3390/world2030025
Chicago/Turabian StyleMigliaccio, Maurizio, Andrea Buono, Ila Maltese, and Margherita Migliaccio. 2021. "The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area" World 2, no. 3: 391-414. https://doi.org/10.3390/world2030025
APA StyleMigliaccio, M., Buono, A., Maltese, I., & Migliaccio, M. (2021). The 2020 Italian Spring Lockdown: A Multidisciplinary Analysis over the Milan Urban Area. World, 2(3), 391-414. https://doi.org/10.3390/world2030025

