New Approaches for Ecological and Social Sustainability in a Post-Pandemic World
Abstract
:1. Introduction
2. Global Changes Since 1950
3. Proposed Solutions to an Urgent Global Problem: Climate Change
4. New Proposals for a Sustainable Future
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CC | climate change |
CCC | catastrophic climate change |
CO2 | carbon dioxide |
CO2-eq | carbon dioxide equivalent |
EF | ecological footprint |
EJ | exajoule (1018 joule) |
EROEI | energy return on energy invested |
FF | fossil fuels |
GHG | greenhouse gas |
GJ | gigajoule (109 joule) |
Gt | gigatonne (109 tonne) |
IPCC | Intergovernmental Panel on Climate Change |
OECD | Organization for Economic Cooperation and Development |
NETs | negative emission technologies |
p-k | passenger-km |
ppm | parts per million |
PPP | Purchase Parity Prices |
RE | renewable energy |
SDGs | Sustainable Development Goals |
SRM | solar radiation management |
TWh | terawatt-hour (1012 watt-hr) |
UBI | universal basic income |
WHO | World Health Organization |
References
- World Health Organization [WHO]. COVID-19 Emergency Committee Highlights Need for Response Efforts over Long Term. 2020. Available online: https://www.who.int/news-room/detail/01-08-2020-covid-19-emergency-committee-highlights-need-for-response-efforts-over-long-term (accessed on 10 August 2020).
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Lade, S.J.; Steffen, W.; de Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Katherine Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2020, 3, 119–128. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C: Summary for Policymakers; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, 1263. [Google Scholar] [CrossRef] [Green Version]
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate tipping points—too risky to bet against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World scientists’ warning of a climate emergency. BioScience 2019, 70, 1–5. [Google Scholar] [CrossRef]
- Global Monitoring Laboratory. Trends in Atmospheric Carbon Dioxide. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 23 August 2020).
- United Nations (UN). The Sustainable Development Goals Report. 2020. Available online: https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020.pdf (accessed on 23 August 2020).
- Vaughan, A. Covid-19 could have disastrous impacts on HIV, TB and malaria. New Sci. 2020, 247, 8. [Google Scholar] [CrossRef]
- Hickel, J. The contradiction of the sustainable development goals: Growth versus ecology on a finite planet. Sustain. Dev. 2019, 27, 1–12. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, J.A.; Watson, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable energy development threatens many globally important biodiversity areas. Glob. Chang. Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef]
- Naidoo, R.; Fisher, B. Sustainable Development Goals: Pandemic reset. Nature 2020, 583, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Arrea, I.B. Roads to riches or ruin? Science 2017, 358, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Anon. Time to revise the Sustainable Development Goals. Nature 2020, 583, 331–332. [Google Scholar] [CrossRef]
- Beddoe, R.; Costanza, R.; Farley, J.; Garza, E.; Kent, J.; Kubiszewski, I.; Martinez, L.; McCowen, T.; Murphy, K.; Myers, N.; et al. Overcoming systemic roadblocks to sustainability: The evolutionary redesign of worldviews, institutions, and technologies. Proc. Natl. Acad. Sci. USA 2009, 106, 2483–2489. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Giampietro, M.; Goldfinger, S.; Lazarus, E.; Lin, D.; Saltelli, A.; Wackernagel, M.; Müller, F. Questioning the Ecological Footprint. Ecol. Indic. 2016, 69, 224–232. [Google Scholar] [CrossRef]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.Z.; Huang, S.; et al. Ecological Footprint accounting for countries: Updates and results of the national footprint accounts, 2012–2018. Resource 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Bank Open Data. 2020. Available online: https://data.worldbank.org/ (accessed on 12 August 2020).
- BP. BP Statistical Review of World Energy 2020; BP: London, UK, 2020. [Google Scholar]
- Alvaredo, F.; Chancel, L.; Piketty, T.; Saez, E.; Zucman, G. The Elephant Curve of Global Inequality and Growth. AEA Pap. Proc. 2018, 108, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Auerback, M. Why COVID-19 is the great unequalizer: The pandemic’s impact is being experienced disproportionately by minorities and the poor. Real-World Econ. Rev. 2020, 92, 252. [Google Scholar]
- Eisenstein, M. The needs of the many. Nature 2017, 551, S142–S144. [Google Scholar] [CrossRef] [Green Version]
- Schiermeier, Q. Telltale warming likely to hit poorer countries first. Nature 2018, 556, 415–416. [Google Scholar] [CrossRef] [Green Version]
- Perez, T.M.; Stroud, J.T. Thermal trouble in the tropics. Science 2016, 351, 1392–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, T. The impact of climate change on agricultural crops. In Plant Genomics and Climate Change; Edwards, D., Batley, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Vaughan, A. Some places are already too hot for humans to live. New Sci. 2020, 247, 19. [Google Scholar] [CrossRef]
- United Nations (UN). World Population Prospects 2019. 2019. Available online: https://population.un.org/wpp/ (accessed on 20 August 2020).
- United Nations (UN). World Urbanization Prospects: The 2018 Revision. Available online: https://population.un.org/wup/Publications/ (accessed on 18 August 2020).
- Airbus. Global Market Forecast 2019–2038. 2019. Available online: https://www.airbus.com/aircraft/market/global-market-forecast.html (accessed on 15 August 2020).
- Wikipedia. Literacy. 2020. Available online: https://en.wikipedia.org/wiki/Literacy (accessed on 23 August 2020).
- Moriarty, P.; Honnery, D. Prospects for hydrogen as a transport fuel. Int. J. Hydrogen Energy 2019, 44, 16029–16037. [Google Scholar] [CrossRef]
- Organization of the Petroleum Exporting Countries (OPEC). 2019 OPEC World Oil Outlook. 2019. Available online: http://www.opec.org (accessed on 17 July 2020).
- International Energy Agency (IEA). Key World Energy Statistics 2019; IEA/OECD: Paris, France, 2019. [Google Scholar]
- Statista. Cement Production Globally and in the U.S. from 2010 to 2019. 2020. Available online: https://www.statista.com/statistics/219343/cement-production-worldwide/ (accessed on 27 July 2020).
- Roser, M.; Ortiz-Ospina, E.; Ritchie, H. Life Expectancy. 2019 Revision. Available online: https://ourworldindata.org/life-expectancy (accessed on 29 July 2020).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [Green Version]
- Veldman, J.W.; Aleman, J.C.; Alvarado, S.T.; Anderson, T.M.; Archibald, S.; Bond, W.J.; Boutton, T.W.; Buchmann, N.; Buisson, E.; Canadell, J.G.; et al. Comment on “The global tree restoration potential”. Science 2019, 366, eaay7976. [Google Scholar] [CrossRef] [Green Version]
- Abreu, R.C.R.; Hoffmann, W.A.; Vasconcelos, H.L.; Pilon, N.A.; Rossatto, D.R.; Durigan, G. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 2017, 3, e1701284. [Google Scholar] [CrossRef] [Green Version]
- Popkin, G. The forest question. Nature 2019, 565, 280–282. [Google Scholar] [CrossRef] [Green Version]
- Holl, K.D.; Brancalion, P.H.S. Tree planting is not a simple solution. Science 2020, 368, 580–581. [Google Scholar] [CrossRef]
- Boysen, L.R.; Lucht, W.; Gerten, D.; Heck, V.; Lenton, T.M.; Schellnhuber, H.J. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 2017, 5, 463–474. [Google Scholar] [CrossRef]
- Crusius, J. “Natural” climate solutions could speed up mitigation, with risks. Additional options are needed. Earth’s Future 2020, 8, e2019EF001310. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, 1327. [Google Scholar] [CrossRef] [PubMed]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.C.; Viola, E. Catastrophic climate change and forest tipping points: Blind spots in international politics and policy. Glob. Policy 2018, 9, 513–524. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Roadmaps to transition countries to 100% clean, renewable energy for all purposes to curtail global warming, air pollution, and energy risk. Earth’s Future 2017, 5, 948–952. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Thomas Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. It’ll be harder than we thought to get the carbon out. IEEE Spectr. 2018, 55, 72–75. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Can renewable energy power the future? Energy Pol. 2016, 93, 3–7. [Google Scholar] [CrossRef]
- de Castro, C.; Capellán-Pérez, I. Standard, point of use, and extended energy return on energy invested (EROI) from comprehensive material requirements of present global wind, solar, and hydro power technologies. Energies 2020, 13, 3036. [Google Scholar] [CrossRef]
- Trainer, T. Can Europe run on renewable energy? A negative case. Energy Pol. 2013, 63, 845–850. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Ecosystem maintenance energy and the need for a green EROI. Energy Pol. 2019, 131, 229–234. [Google Scholar] [CrossRef]
- Hadian, S.; Madani, K. A system of systems approach to energy sustainability assessment: Are all renewables really green? Ecol. Indic. 2015, 52, 194–206. [Google Scholar] [CrossRef]
- Van den Bergh, J.; Folke, C.; Polasky, S.; Scheffer, M.; Steffen, W. What if solar energy becomes really cheap? A thought experiment on environmental problem shifting. Curr. Opin. Environ. Sustain. 2015, 14, 170–179. [Google Scholar] [CrossRef]
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Moreau, V.; Dos Reis, C.P.; Vuille, F. Enough metals? Resource constraints to supply a fully renewable energy system. Resources 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Capellán-Pérez, I.; de Castro, C.; González, L.J.M. Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- King, L.C.; van den Bergh, J.C.J.M. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 2018, 3, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Honnery, D.; Moriarty, P. Energy availability problems with rapid deployment of wind-hydrogen systems. Int. J. Hydrog. Energy 2011, 36, 3283–3289. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Tim Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef]
- Lehmann, J.; Possinger, A. Atmospheric CO2 removed by rock weathering. Nature 2020, 583, 204–205. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, S.M. Ethics and geoengineering: An overview. In Global Changes: Ethics, Politics and Environment in the Contemporary Technological World; Valera, L., Castilla, J.C., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 69–78. [Google Scholar]
- Voosen, P. Earth’s climate destiny finally seen more clearly. Science 2020, 369, 354–355. [Google Scholar] [PubMed]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S.; Floyd, J.; Lenzen, M.; Moriarty, P.; Palmer, G.; Chandra-Shekeran, S.; Foran, B.; Keyßer, L. Energy descent as a post-carbon transition scenario: How ‘knowledge humility’ reshapes energy futures for post-normal times. Futures 2020, 122, 1025652. [Google Scholar]
- Moriarty, P.; Honnery, D. Energy efficiency or conservation for mitigating climate change? Energies 2019, 12, 3543. [Google Scholar] [CrossRef] [Green Version]
- Heun, M.K.; Brockway, P.E. Meeting 2030 primary energy and economic growth goals: Mission impossible? Appl. Energy 2019, 251, 112697. [Google Scholar] [CrossRef]
- Bergman, M.M. The World after COVID. World 2020, 1, 45–48. [Google Scholar] [CrossRef]
- Ćirković, M.M. Space colonization remains the only long-term option for humanity: A reply to Torres. Futures 2019, 105, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Gowdy, J. Our hunter-gatherer future: Climate change, agriculture and uncivilization. Futures 2020, 115, 102488. [Google Scholar] [CrossRef]
- Coady, D.; Parry, I.; Sears, S.; Shang, B. How large are global energy subsidies? World Dev. 2017, 91, 11–27. [Google Scholar] [CrossRef]
- Carattini, S.; Kallbekken, S.; Orlov, A. How to win public support for a global carbon tax. Nature 2019, 565, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Van Parijs, P.; Vanderborght, Y. Basic Income in a Globalized Economy. Does the European Social Model Have a Future? Reynolds, B., Healy, S., Eds.; Social Justice Ireland: Dublin, Ireland, 2012. [Google Scholar]
- Moriarty, P. Reducing levels of urban passenger travel. Int. J. Sustain. Transp. 2016, 10, 712–719. [Google Scholar] [CrossRef]
- Le Quéré, C. The climate fight after coronavirus. New Sci. 2020, 247, 36–39. [Google Scholar]
- Price, M. Scientists discover upsides of virtual meetings. Nature 2020, 368, 457–458. [Google Scholar]
- Moriarty, P.; Honnery, D. Low mobility: The future for transport. Futures 2008, 40, 865–872. [Google Scholar] [CrossRef]
- Klinsky, S.; Roberts, T.; Huq, S.; Okereke, C.; Newell, P.; Dauvergne, P.; O’Brien, K.; Schroeder, H.; Tschakert, P.; Clapp, J.; et al. Why equity is fundamental in climate change policy research. Glob. Environ. Chang. 2017, 44, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Arnold, C. Pandemic speeds largest test yet of universal basic income. Nature 2020, 583, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.J.; Thaler, T.; Hoffmann, M.; Hughes, S.; Oels, A.; Chu, E.; Mert, A.; Huitema, D.; Burch, S.; Jordan, A. Political feasibility of 1.5 °C societal transformations: The role of social justice. Curr. Opin. Environ. Sustain. 2018, 31, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, 243. [Google Scholar] [CrossRef] [Green Version]
- Schiermeier, Q. Eat less meat: UN climate change panel tackles diets. Nature 2019, 572, 291–292. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, A. Fifth of Brazilian beef exports to EU linked to illegal deforestation. 2020. Available online: https://www.newscientist.com/article/2249083-fifth-of-brazilian-beef-exports-to-eu-linked-to-illegal-deforestation/ (accessed on 17 July 2020).
- Dobson, A.P.; Pimm, S.L.; Hannah, L.; Kaufman, L.; Ahumada, J.A.; Ando, A.W.; Bernstein, A.; Busch, J.; Daszak, P.; Engelmann, J.; et al. Ecology and economics for pandemic prevention. Science 2020, 369, 379–381. [Google Scholar] [PubMed]
- Sterbenz, C. 12 Famous Quotes That Always Get Misattributed. Business Insider 2013. Available online: https://www.businessinsider.com.au/misattributed-quotes-2013-10 (accessed on 24 July 2020).
- Moriarty, P.; Honnery, D. Reconnecting technological development with human welfare. Futures 2014, 55, 32–40. [Google Scholar] [CrossRef]
- Comerford, D. Coronavirus Should Give Us Hope That We Are Able to Tackle the Climate Crisis. The Conversation, 2020. Available online: https://storre.stir.ac.uk/retrieve/5a2145bc-922c-479f-af5e-d27134cc7e68/Comerford-Conversation-2020.pdf (accessed on 18 June 2020).
- Kunreuther, H.; Slovic, P. Learning from the COVID-19 Pandemic to Address Climate Change. Available online: https://riskcenter.wharton.upenn.edu/wp-content/uploads/2020/06/Learning-from-the-COVID-19-Pandemic-to-Address-Climate-Change_wp.pdf (accessed on 29 July 2020).
- Maslin, M. Climate change: Yes, we can. New Sci. 2020, 247, 46–49. [Google Scholar] [CrossRef]
- Lawton, G. This is our chance to start bending the climate curve. New Sci. 2020, 246, 30–33. [Google Scholar] [CrossRef]
- Cohen, M.J. Does the COVID-19 outbreak mark the onset of a sustainable consumption transition? Sustain. Sci. Pract. Pol. 2020, 16, 1–3. [Google Scholar] [CrossRef]
- Hickel, J.; Kallis, G. Is green growth possible? New Pol. Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Cox, S. The Green New Deal and beyond: Ending the climate emergency while we still can. San Francisco. In City Lights Books; City Lights Books: Francisco, CA, USA, 2020. [Google Scholar]
- Parrique, T.; Barth, J.; Briens, F.; Kerschner, C.; Kraus-Polk, A.; Kuokkanen, A.; Spangenberg, J.H. De-coupling Debunked. European Environmental Bureau. 2019. Available online: eeb.org/decoupling-debunked (accessed on 20 June 2020).
- Nieto, J.; Carpintero, O.; Miguel, L.J.; de Blas, I. Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Pol. 2020, 37, 111090. [Google Scholar] [CrossRef] [Green Version]
- Kubiszewski, I.; Costanza, R.; Franco, C.; Lawn, P.; Talberth, J.; Jackson, T.; Aylmer, C. Beyond GDP: Measuring and achieving global genuine progress. Ecol. Econ. 2013, 93, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, P.; Honnery, D. The Earth we are creating. AIMS Energy 2014, 2, 158–171. [Google Scholar] [CrossRef] [Green Version]
Parameter | 1950 | 2018 | Growth | Growth/Cap. |
---|---|---|---|---|
Population (billion) | 2.53 | 7.63 | 3.02 | - |
Primary energy (EJ) | 89 | 625 | 7.0 | 2.33 |
Oil use (EJ) | 20 | 195.2 | 9.76 | 3.24 |
Electricity use (EJ) | 3.1 | 95.8 | 30.9 | 10.2 |
Atmospheric CO2 level (ppm) | 310 | 407 | 1.31 | - |
Energy/industry CO2 (ton/cap.) | 2.2 | 4.44 | 2.02 | - |
Vehicular surface travel (trillion p-k) | 3.3 1 | 39.5 1 | 11.9 1 | 3.96 1 |
Passenger cars (million) | 51.3 | 1133 | 22.1 | 7.32 |
Air travel (trillion p-k) | 0.03 | 8.7 | 290 | 96.1 |
Cement production (million ton) | 136 | 4050 | 29.8 | 9.87 |
GDP (2017 USD trillion, PPP) | 10.2 | 125.9 | 12.3 | - |
GDP/capita (2017 USD, PPP) | 4030 | 16,500 | 4.09 | - |
Urbanization (%) | 30 | 55 | 1.83 | - |
Life expectancy (years) | 45.7 | 72.4 | 1.58 | - |
Adult literacy (%) | 55.7 | 86.3 | 1.55 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriarty, P.; Honnery, D. New Approaches for Ecological and Social Sustainability in a Post-Pandemic World. World 2020, 1, 191-204. https://doi.org/10.3390/world1030014
Moriarty P, Honnery D. New Approaches for Ecological and Social Sustainability in a Post-Pandemic World. World. 2020; 1(3):191-204. https://doi.org/10.3390/world1030014
Chicago/Turabian StyleMoriarty, Patrick, and Damon Honnery. 2020. "New Approaches for Ecological and Social Sustainability in a Post-Pandemic World" World 1, no. 3: 191-204. https://doi.org/10.3390/world1030014
APA StyleMoriarty, P., & Honnery, D. (2020). New Approaches for Ecological and Social Sustainability in a Post-Pandemic World. World, 1(3), 191-204. https://doi.org/10.3390/world1030014