Haircutting Robots: From Theory to Practice
Abstract
1. Introduction
2. Prior Work
2.1. Computer Graphics
2.2. Robotics
3. Market Size
4. Technical Requirements
4.1. Teleoperated Haircutting
4.2. Automated Haircutting
5. Safety Certification of Haircutting Robots
6. Human Intervention and Supervised Autonomy
7. Empowering Haircutting Robots with the Latest Technology
7.1. Direct Drive Technology
7.2. Large Language Models (LLMs) and Artificial Intelligence (AI)
7.3. Virtual Reality (VR) Technology
7.4. Haptic Feedback Technology
7.5. Big Data Collection
8. Business Model
9. Conclusions
Funding
Conflicts of Interest
References
- Li, S. Haircutting Robots; Springer Nature: Berlin/Heidelberg, Germany, 2025. [Google Scholar]
- Khan, A.T.; Li, S. Robotic Haircutting Systems: A Survey of Methods, Challenges, and Hair Modeling Insights. IEEE J. Sel. Areas Sens. 2025. [Google Scholar]
- Selle, A.; Lentine, M.; Fedkiw, R. A mass spring model for hair simulation. In ACM SIGGRAPH 2008 Papers; Association for Computing Machinery: New York, NY, USA, 2008; pp. 1–11. [Google Scholar] [CrossRef]
- Sklyarova, V.; Chelishev, J.; Dogaru, A.; Medvedev, I.; Lempitsky, V.; Zakharov, E. Neural haircut: Prior-guided strand-based hair reconstruction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 19762–19773. [Google Scholar]
- Chai, M.; Shao, T.; Wu, H.; Weng, Y.; Zhou, K. Autohair: Fully automatic hair modeling from a single image. ACM Trans. Graph. 2016, 35. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, L.; Xing, J.; Chen, W.; Kung, H.-W.; Tong, X.; Li, H. Hairnet: Single-view hair reconstruction using convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 235–251. [Google Scholar] [CrossRef]
- Hu, L.; Ma, C.; Luo, L.; Li, H. Single-view hair modeling using a hairstyle database. ACM Trans. Graph. (ToG) 2015, 34, 1–9. [Google Scholar] [CrossRef]
- Shen, Y.; Saito, S.; Wang, Z.; Maury, O.; Wu, C.; Hodgins, J.; Zheng, Y.; Nam, G. Ct2hair: High-fidelity 3d hair modeling using computed tomography. ACM Trans. Graph. (TOG) 2023, 42, 1–13. [Google Scholar] [CrossRef]
- Kmoch, P.; Bonanni, U.; Magnenat-Thalmann, N. Hair simulation model for real-time environments. In Proceedings of the 2009 Computer Graphics International Conference, Victoria, BC, Canada, 26–29 May 2009; pp. 5–12. [Google Scholar]
- Ward, K.; Bertails, F.; Kim, T.Y.; Marschner, S.R.; Cani, M.P.; Lin, M.C. A survey on hair modeling: Styling, simulation, and rendering. IEEE Trans. Vis. Comput. Graph. 2007, 13, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, L.; Rosin, P.L.; Lai, Y.-K.; Wang, Y. HairManip: High quality hair manipulation via hair element disentangling. Pattern Recognit. 2024, 147, 110132. [Google Scholar] [CrossRef]
- Chai, M.; Wang, L.; Weng, Y.; Yu, Y.; Guo, B.; Zhou, K. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. (TOG) 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Chai, M.; Wang, L.; Weng, Y.; Jin, X.; Zhou, K. Dynamic hair manipulation in images and videos. ACM Trans. Graph. (TOG) 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Gronier, J. Hair-Cutting Machine. U.S. Patent 3,241,562, 22 March 1966. [Google Scholar]
- Bilyea, A.J.N.; French, S.H.; Abdullah, H.A. Modeling contact forces during human-robot interactions for performing activities of daily living. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2023, 237, 829–840. [Google Scholar] [CrossRef]
- Hughes, J.; Plumb-Reyes, T.; Charles, N.; Mahadevan, L.; Rus, D. Detangling hair using feedback-driven robotic brushing. In Proceedings of the IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021; pp. 487–494. [Google Scholar]
- Yoo, U.; Dennler, N.; Xing, E.; Matarić, M.; Nikolaidis, S.; Ichnowski, J.; Oh, J. Soft and compliant contact-rich hair manipulation and care. In Proceedings of the 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Melbourne, Australia, 4–6 March 2025; pp. 610–619. [Google Scholar]
- Yoo, U.; Dennler, N.; Mataric, M.; Nikolaidis, S.; Oh, J.; Ichnowski, J. Moe-hair: Toward soft and compliant contact-rich hair manipulation and care. In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, Boulder CO, USA, 11–15 March 2024; pp. 1163–1167. [Google Scholar]
- Kim, S.; Kanazawa, N.; Hasegawa, S.; Kawaharazuka, K.; Okada, K. Front Hair Styling Robot System Using Path Planning for Root-Centric Strand Adjustment. In Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Munich, Germany, 21–24 January 2025; pp. 544–549. [Google Scholar]
- Dennler, N.; Shin, E.; Mataric, M.; Nikolaidis, S. In Proceedings of Design and evaluation of a hair combing system using a general-purpose robotic arm. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 3739–3746. [Google Scholar]
- Ando, T.; Takeda, M.; Maruyama, T.; Susuki, Y.; Hirose, T.; Fujioka, S.; Mizuno, O.; Yamada, K.; Ohno, Y.; Yukio, H. Biosignal-based relaxation evaluation of head-care robot. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6732–6735. [Google Scholar]
- Aladabbah, M. Automatic Hair Cutter Robot. WO 2023/080812 A1, 11 May 2023. [Google Scholar]
- Wighton, S. I Made A Hair Cutting Machine. Available online: https://www.youtube.com/watch?v=7zBrbdU_y0s&t=578s (accessed on 10 September 2025).
- Wighton, S. Sometimes You Have to Test Robots on Yourself. Available online: https://www.youtube.com/watch?v=WQ8Xgp8ALFo&t=583s (accessed on 10 September 2025).
- Buzz, R. Available online: https://www.youtube.com/watch?v=jY_gpi_gsRI (accessed on 10 September 2025).
- This Robot Will Cut Your Hair in the Future. Available online: https://www.youtube.com/watch?v=-cgU1RgjWXw (accessed on 10 September 2025).
- Robot Barber Shaves Human Head for Charity. Available online: https://www.nbcnews.com/tech/tech-news/robot-barber-shaves-human-head-charity-flna510080 (accessed on 10 September 2025).
- Touching Myself with A Robot. Available online: https://www.youtube.com/watch?v=RXhBjsDLKDM (accessed on 10 September 2025).
- The Shaving Helmet. Available online: https://www.youtube.com/watch?v=5bgRszdUdhQ (accessed on 10 September 2025).
- A Barber Uses A Drone to Give a Haircut. Available online: https://www.youtube.com/shorts/9RHroJPhlKw (accessed on 10 September 2025).
- How Much Do People Spend On Haircuts? Available online: https://medium.com/data-science/analyzing-who-spends-more-on-haircuts-men-or-women-a90003e98312 (accessed on 10 September 2025).
- Global Beauty and Personal Care Products Market Size & Outlook. Available online: https://www.grandviewresearch.com/horizon/outlook/beauty-and-personal-care-products-market-size/global?utm_source=chatgpt.com (accessed on 10 September 2025).
- Monge, P.R.; Contractor, N.S. Theories of Communication Networks; Oxford University Press: Oxfordshire, UK, 2003. [Google Scholar]
- Anderson, R.J.; Spong, M.W. Bilateral control of teleoperators with time delay. In Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics., Beijing, China, 8–12 August 1988; Volume 1, pp. 131–138. [Google Scholar]
- Niemeyer, G.; Slotine, J.E. Stable adaptive teleoperation. IEEE J. Ocean. Eng. 2002, 16, 152–162. [Google Scholar] [CrossRef]
- Lee, D.; Huang, K. Passive position feedback over packet-switching communication network with varying-delay and packet-loss. In Proceedings of the 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator System, Delhi, Indian, 13–14 March 2008; pp. 335–342. [Google Scholar]
- Lee, D.; Spong, M.W. Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 2006, 22, 269–281. [Google Scholar] [CrossRef]
- Niemeyer, G.; Slotine, J.J.E. Telemanipulation with time delays. Int. J. Robot. Res. 2004, 23, 873–890. [Google Scholar] [CrossRef]
- Nuño, E.; Basañez, L.; Ortega, R. Passivity-based control for bilateral teleoperation: A tutorial. Automatica 2011, 47, 485–495. [Google Scholar] [CrossRef]
- Furukawa, T.; Shimemura, E. Predictive control for systems with time delay. Int. J. Control. 1983, 37, 399–412. [Google Scholar] [CrossRef]
- Deng, Y.; Léchappé, V.; Moulay, E.; Chen, Z.; Liang, B.; Plestan, F.; Han, Q.-L. Predictor-based control of time-delay systems: A survey. Int. J. Syst. Sci. 2022, 53, 2496–2534. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z. Time-delay prediction–based Smith predictive control for space teleoperation. J. Guid. Control. Dyn. 2021, 44, 872–879. [Google Scholar] [CrossRef]
- Cao, L.; Pan, Y.; Liang, H.; Huang, T. Observer-based dynamic event-triggered control for multiagent systems with time-varying delay. IEEE Trans. Cybern. 2022, 53, 3376–3387. [Google Scholar] [CrossRef]
- Bi, Z.; Wang, X. Computer Aided Design and Manufacturing; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Lasemi, A.; Xue, D.; Gu, P. Recent development in CNC machining of freeform surfaces: A state-of-the-art review. Comput.-Aided Des. 2010, 42, 641–654. [Google Scholar] [CrossRef]
- Makhanov, S.S. Vector fields for five-axis machining. A survey. Int. J. Adv. Manuf. Technol. 2022, 122, 533–575. [Google Scholar] [CrossRef]
- Du, C.; Li, H.; Thum, C.; Lewis, F.; Wang, Y. Simple disturbance observer for disturbance compensation. IET Control. Theory Appl. 2010, 4, 1748–1755. [Google Scholar] [CrossRef]
- Chen, W.-H.; Yang, J.; Guo, L.; Li, S. Disturbance-observer-based control and related methods—An overview. IEEE Trans. Ind. Electron. 2015, 63, 1083–1095. [Google Scholar] [CrossRef]
- Murphy-Chutorian, E.; Trivedi, M.M. Head pose estimation in computer vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 607–626. [Google Scholar] [CrossRef]
- Chun, S.; Chang, J.Y. 6DoF Head Pose Estimation through Explicit Bidirectional Interaction with Face Geometry. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024; Springer Nature: Cham, Switzerland; pp. 146–163. [Google Scholar]
- Asperti, A.; Filippini, D. Deep learning for head pose estimation: A survey. SN Comput. Sci. 2023, 4, 349. [Google Scholar] [CrossRef]
- Felsheim, R.C.; Brendel, A.; Naylor, P.A.; Kellermann, W. Head orientation estimation from multiple microphone arrays. In Proceedings of the 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–22 January 2021; pp. 491–495. [Google Scholar]
- Meyer, G.P.; Gupta, S.; Frosio, I.; Reddy, D.; Kautz, J. Robust model-based 3d head pose estimation. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 3649–3657. [Google Scholar]
- Hashemian, H.M. State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 2010, 60, 226–236. [Google Scholar] [CrossRef]
- Khan, A.H.; Li, S.; Luo, X. Obstacle avoidance and tracking control of redundant robotic manipulator: An RNN-based metaheuristic approach. IEEE Trans. Ind. Inform. 2019, 16, 4670–4680. [Google Scholar] [CrossRef]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, X.; Wu, H.; Li, X.; Li, S. Motion planning of manipulators for simultaneous obstacle avoidance and target tracking: An RNN approach with guaranteed performance. IEEE Trans. Ind. Electron. 2021, 69, 3887–3897. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Li, S.; Su, Z.; Zhou, X. Simultaneous obstacle avoidance and target tracking of multiple wheeled mobile robots with certified safety. IEEE Trans. Cybern. 2021, 52, 11859–11873. [Google Scholar] [CrossRef]
- Khan, A.H.; Li, S. Discrete-Time Impedance Control for Dynamic Response Regulation of Parallel Soft Robots. Biomimetics 2024, 9, 323. [Google Scholar] [CrossRef]
- Khan, A.H.; Shao, Z.; Li, S.; Wang, Q.; Guan, N. Which is the best PID variant for pneumatic soft robots an experimental study. IEEE/CAA J. Autom. Sin. 2020, 7, 451. [Google Scholar] [CrossRef]
- Ten, C.W.; Manimaran, G.; Liu, C.C. Cybersecurity for critical infrastructures: Attack and defense modeling. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 853–865. [Google Scholar] [CrossRef]
- Dass, S.; Pertsch, K.; Zhang, H.; Lee, Y.; Lim, J.; Nikolaidis, S. Pato: Policy assisted teleoperation for scalable robot data collection. arXiv 2022, arXiv:2212.04708. [Google Scholar]
- Liu, H.; Nasiriany, S.; Zhang, L.; Bao, Z.; Zhu, Y. Robot learning on the job: Human-in-the-loop autonomy and learning during deployment. Int. J. Robot. Res. 2024, 5, 83–96. [Google Scholar]
- Huang, J.; Aronson, R.M.; Short, E.S. Modeling variation in human feedback with user inputs: An exploratory methodology. In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, Boulder, CO, USA, 11–15 March 2024; pp. 303–312. [Google Scholar]
- Hernández-Guzmán, V.M.; Orrante-Sakanassi, J. PID control of robot manipulators actuated by BLDC motors. Int. J. Control. 2021, 94, 267–276. [Google Scholar] [CrossRef]
- Haque, M.A.; Li, S. Exploring ChatGPT and its impact on society. AI Ethics 2025, 5, 791–803. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Xiao, Y.; Codevilla, F.; Gurram, A.; Urfalioglu, O.; López, A.M. Multimodal end-to-end autonomous driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 537–547. [Google Scholar] [CrossRef]
- Kim, M.J.; Pertsch, K.; Karamcheti, S.; Xiao, T.; Balakrishna, A.; Nair, S.; Rafailov, R.; Foster, E.; Lam, G.; Sanketi, P.; et al. Openvla: An open-source vision-language-action model. arXiv 2024, arXiv:2406.09246. [Google Scholar]
- Anthes, C.; Garcia-Hernandez, R.J.; Wiedemann, M.; Kranzlmuller, D. State of the art of virtual reality technology. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–19. [Google Scholar]
- Stone, R.J. Haptic feedback: A brief history from telepresence to virtual reality. In International Workshop on Haptic Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–16. [Google Scholar]
References | Tasks | Application to Haircutting Robots | Code Availability |
---|---|---|---|
[3] | Hair simulation | Hair preview | No |
[4] | Hair 3D reconstruction | 2D image to hair 3D model | https://github.com/hoseok-tong/NeuralHaircutTHS (accessed on 10 September 2025) |
[5] | Hair segmentation | Hair preview and recommendation | No |
[6] | Hair 3D reconstruction from images | 2D image to hair 3D model | https://github.com/papagina/HairNet_DataSetGeneration (accessed on 10 September 2025) |
[7] | Hair 3D reconstruction from images | 2D image to hair 3D model | No |
[8] | CT-based hair 3D reconstruction | CT based hair 3D model | https://github.com/facebookresearch/CT2Hair (accessed on 10 September 2025) |
[9] | Hair dynamic simulation | Hair preview | No |
[11] | Image-based hair style and color editing | Hair preview and recommendation | https://github.com/Zlin0530/HairManip (accessed on 10 September 2025) |
[12] | Strand-based 3D hair model and hair style and color editing | Hair preview and recommendation | No |
[13] | Video-based dynamic image manipulation and editing | Hair preview and recommendation | No |
References | No. in Figure 1 | Publication Format | Type | Targeted Area | Description |
---|---|---|---|---|---|
[14] | a | Patent | System development | Product | Mechanical and circuit design |
[16] | f | Paper | Programming | Research | Coding on commercial robots with force feedback |
[17] | e | Paper | Programming | Research | Coding on commercial robots with force feedback |
[18] | d | Paper | System development | Research | Coding on self-developed soft gripper with commercial robots |
[19] | c | Paper | Programming | Research | Coding on commercial robots for front hair styling |
[20] | g | Paper | Programming | Research | Coding on commercial robots for vision-based hair combing |
[21] | n | Paper | Research | Product | A commercial product by Panasonic Ltd. for shampooing and scalp massaging |
[22] | b | Patent | System development | Product | A commercial product by StudioRed Ltd., Palo Alto, CA, USA for MyBarberRobot |
[23] | l | Video | System development | DIY | A vision-based DIY system for automated haircutting |
[24] | m | Video | System development | DIY | A vision-based DIY system for automated haircutting |
[25] | j | Video | Programming | DIY | iPhone scanning-based automated haircutting using a commercial robot |
[26] | k | Video | Programming | DIY | Automated haircutting using a collaborative robot |
[27] | h | Video | Programming | DIY | Teleoperated haircutting |
[28] | i | Video | Programming | DIY | Teleoperated haircutting |
[29] | o | Video | Future | DIY | Imaginary haircutting helmet |
[30] | p | Video | Future | DIY | Conceptual design with drones for haircutting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S. Haircutting Robots: From Theory to Practice. Automation 2025, 6, 47. https://doi.org/10.3390/automation6030047
Li S. Haircutting Robots: From Theory to Practice. Automation. 2025; 6(3):47. https://doi.org/10.3390/automation6030047
Chicago/Turabian StyleLi, Shuai. 2025. "Haircutting Robots: From Theory to Practice" Automation 6, no. 3: 47. https://doi.org/10.3390/automation6030047
APA StyleLi, S. (2025). Haircutting Robots: From Theory to Practice. Automation, 6(3), 47. https://doi.org/10.3390/automation6030047