Roles of Two F-Box Proteins: FBXL14 in the Periosteum and FBXW2 at Elastic Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Sample Preparation
2.2. Fluorescent Immunostaining
3. Results
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viñas-Castells, R.; Beltran, M.; Valls, G.; Gómez, I.; García, J.M.; Montserrat-Sentís, B.; Baulida, J.; Bonilla, F.; de Herreros, A.G.; Díaz, V.M. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J. Biol. Chem. 2010, 285, 3794–3805. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Du, Y.; Hua, Y.; Wu, Z.; Yan, Y.; Li, Y. Essential role of Fbxl14 ubiquitin ligase in regulation of vertebrate axis formation through modulating Mkp3 level. Cell Res. 2012, 22, 936–940. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, C.; Wu, H.; Ma, Y.; Luo, X.; Gong, X.; Jiang, F.; Gui, Y.; Zhang, H.; Lu, F. The E3 ubiquitin ligase SCF(FBXL14) complex stimulates neuronal differentiation by targeting the Notch signaling factor HES1 for proteolysis. J. Biol. Chem. 2017, 292, 20100–20112. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Zhou, W.; Wu, Q.; Huang, Z.; Shi, Y.; Yang, K.; Chen, C.; Xie, Q.; Mack, S.C.; Wang, X.; et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J. Exp. Med. 2017, 214, 245–267. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.H.; Kang, J.H.; Suh, Y.; Zhao, Y.; Yi, J.M.; Bae, I.H.; Lee, H.J.; Park, D.W.; Kim, M.J.; Lee, S.J. Loss of FBXL14 promotes mesenchymal shift and radioresistance of non-small cell lung cancer by TWIST1 stabilization. Signal Transduct. Target Ther. 2021, 6, 272. [Google Scholar] [CrossRef]
- Cui, Y.H.; Kim, H.; Lee, M.; Yi, J.M.; Kim, R.K.; Uddin, N.; Yoo, K.C.; Kang, J.H.; Choi, M.Y.; Cha, H.J.; et al. FBXL14 abolishes breast cancer progression by targeting CDCP1 for proteasomal degradation. Oncogene 2018, 37, 5794–5809. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, W.; Liao, F.; Zhu, P.; Guo, L.; Zhao, Z.; Liu, Y.; Huang, X.; Zhou, N. Identification of the key exosomal lncRNAs/mRNAs in the serum during distraction osteogenesis. J. Orthop. Surg. Res. 2022, 17, 291. [Google Scholar] [CrossRef]
- Tekcham, D.S.; Chen, D.; Liu, Y.; Ling, T.; Zhang, Y.; Chen, H.; Wang, W.; Otkur, W.; Qi, H.; Xia, T.; et al. F-box proteins and cancer: An update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics 2020, 10, 4150–4167. [Google Scholar] [CrossRef]
- Mason, B.; Laman, H. The FBXL family of F-box proteins: Variations on a theme. Open Biol. 2020, 10, 200319. [Google Scholar] [CrossRef]
- Akiyama, M.; Nonomura, H.; Kamil, S.H.; Ignotz, R.A. Periosteal cell pellet culture system: A new technique for bone engineering. Cell Transplant. 2006, 15, 521–532. [Google Scholar] [CrossRef]
- Akiyama, M. Characterization of the F-box proteins FBXW2 and FBXL14 in the initiation of bone regeneration in transplants given to nude mice. Open Biomed. Eng. J. 2018, 12, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Nakamura, M. Bone regeneration and neovascularization processes in a pellet culture system for periosteal cells. Cell Transplant. 2009, 18, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Q.; Al-Tamimi, M.; Uddin, S.; Steinhoff, M. F-box proteins in cancer stemness: An emerging prognostic and therapeutic target. Drug Discov. Today 2021, 26, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M. FBXW2 localizes with osteocalcin in bovine periosteum on culture dishes as visualized by double immunostaining. Heliyon 2018, 4, e00782. [Google Scholar] [CrossRef]
- Akiyama, M. Role of FBXW2 in explant cultures of bovine periosteum-derived cells. BMC Res. Notes 2021, 14, 410. [Google Scholar] [CrossRef]
- Akiyama, M. Elastic fibers and F-Box and WD-40 domain-containing protein 2 in bovine periosteum and blood vessels. Biomimetics 2023, 8, 7. [Google Scholar] [CrossRef]
- Van Beylen, K.; Papantoniou, I.; Aerts, J.M. Microcarrier screening and evaluation for dynamic expansion of human periosteum-derived progenitor cells in a xenogeneic free medium. Front. Bioeng. Biotechnol. 2021, 9, 624890. [Google Scholar] [CrossRef]
- Cha, H.M.; Kim, S.M.; Choi, Y.S.; Kim, D.I. Scaffold-free three-dimensional culture systems for mass production of periosteum-derived progenitor cells. J. Biosci. Bioeng. 2015, 120, 218–222. [Google Scholar] [CrossRef]
- Choi, Y.S.; Noh, S.E.; Lim, S.M.; Lee, C.W.; Kim, C.S.; Im, M.W.; Lee, M.H.; Kim, D.I. Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol. Lett. 2008, 30, 593–601. [Google Scholar] [CrossRef]
- Ito, R.; Matsumiya, T.; Kon, T.; Narita, N.; Kubota, K.; Sakaki, H.; Ozaki, T.; Imaizumi, T.; Kobayashi, W.; Kimura, H. Periosteum-derived cells respond to mechanical stretch and activate Wnt and BMP signaling pathways. Biomed. Res. 2014, 35, 69–79. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N.; Yang, M.; Sun, T.; Zhang, J.; Zhao, Y.; Huo, N.; Li, Z. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J. Orthop. Transl. 2022, 33, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Basalyga, D.M.; Simionescu, D.T.; Xiong, W.; Baxter, B.T.; Starcher, B.C.; Vyavahare, N.R. Elastin degradation and calcification in an abdominal aorta injury model: Role of matrix metalloproteinases. Circulation 2004, 110, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Simionescu, A.; Simionescu, D.T.; Vyavahare, N.R. Osteogenic responses in fibroblasts activated by elastin degradation products and transforming growth factor-beta1: Role of myofibroblasts in vascular calcification. Am. J. Pathol. 2007, 171, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosaka, N.; Mizobuchi, M.; Ogata, H.; Kumata, C.; Kondo, F.; Koiwa, F.; Kinugasa, E.; Akizawa, T. Elastin degradation accelerates phosphate-induced mineralization of vascular smooth muscle cells. Calcif. Tissue Int. 2009, 85, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Pai, A.; Leaf, E.M.; El-Abbadi, M.; Giachelli, C.M. Elastin degradation and vascular smooth muscle cell phenotype change precede cell loss and arterial medial calcification in a uremic mouse model of chronic kidney disease. Am. J. Pathol. 2011, 178, 764–773. [Google Scholar] [CrossRef]
- Sinha, A.; Vyavahare, N.R. High-glucose levels and elastin degradation products accelerate osteogenesis in vascular smooth muscle cells. Diab. Vasc. Dis. Res. 2013, 10, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R. Magnesium to counteract elastin degradation and vascular calcification in chronic obstructive pulmonary disease. Med. Hypotheses 2017, 107, 74–77. [Google Scholar] [CrossRef]
- Bartstra, J.W.; Spiering, W.; van den Ouweland, J.M.W.; Mali, W.; Janssen, R.; de Jong, P.A. Increased elastin degradation in pseudoxanthoma elasticum is associated with peripheral arterial disease independent of calcification. J. Clin. Med. 2020, 9, 2771. [Google Scholar] [CrossRef]
- Boraldi, F.; Moscarelli, P.; Lofaro, F.D.; Sabia, C.; Quaglino, D. The mineralization process of insoluble elastin fibrillar structures: Ionic environment vs. degradation. Int. J. Biol. Macromol. 2020, 149, 693–706. [Google Scholar] [CrossRef]
- Zhao, S.; Cao, J.; Li, J.; Yang, X.; Cao, P.; Lan, J.; Lu, G. Association between serum elastin-derived peptides and abdominal aortic calcification in peritoneal dialysis patients: A cross-sectional study. Ren. Fail. 2021, 43, 860–868. [Google Scholar] [CrossRef]
- Pranskunas, M.; Simoliunas, E.; Alksne, M.; Kaupinis, A.; Juodzbalys, G. Periosteum-derived mesenchymal stem cells secretome—Cell-free strategy for endogenous bone regeneration: Proteomic analysis in vitro. J. Oral Maxillofac. Res. 2021, 12, e2. [Google Scholar] [CrossRef] [PubMed]
Protein | Antigen Retrieval | Primary Antibody | Secondary Antibody |
---|---|---|---|
FBXL14 (with and without ascorbic acid) | Proteinase K (Room Temperature, 10 min) | #SAB2103691 1:500 4 h (Sigma-Aldrich, Saint Louis, MO, USA) | Alexa FluorTM 594 goat anti-rabbit IgG (H+L) #A11037 1:200 1 h (Invitrogen, Eugene, OR, USA) |
Von Willebrand factor | Proteinase K (Room Temperature, 10 min) | #ab6994 1:300 4 h (Abcam, Cambridge, UK) | |
Elastin (without ascorbic acid) | Proteinase K (Room Temperature, 10 min) | Elastin (BA-4) #sc-58756 1:200 4 h (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) | Alexa FluorTM 488 goat anti-mouse IgG (H+L) #A32731 1:200 1 h (Invitrogen) |
Osteocalcin (without ascorbic acid) | Proteinase K (Room Temperature, 10 min) | Monoclonal antibody to osteocalcin #M042 1:500 4 h (Takara Bio Inc., Shiga, Japan) | |
FBXW2 (without ascorbic acid) | Proteinase K (Room Temperature, 10 min) | #PA5-18189 1:200 4 h (Invitrogen) | Mouse anti-goat IgG-CFL 594 #sc516243 1:200 1 h (Santa Cruz Biotechnology, Inc.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akiyama, M. Roles of Two F-Box Proteins: FBXL14 in the Periosteum and FBXW2 at Elastic Fibers. Osteology 2023, 3, 1-10. https://doi.org/10.3390/osteology3010001
Akiyama M. Roles of Two F-Box Proteins: FBXL14 in the Periosteum and FBXW2 at Elastic Fibers. Osteology. 2023; 3(1):1-10. https://doi.org/10.3390/osteology3010001
Chicago/Turabian StyleAkiyama, Mari. 2023. "Roles of Two F-Box Proteins: FBXL14 in the Periosteum and FBXW2 at Elastic Fibers" Osteology 3, no. 1: 1-10. https://doi.org/10.3390/osteology3010001
APA StyleAkiyama, M. (2023). Roles of Two F-Box Proteins: FBXL14 in the Periosteum and FBXW2 at Elastic Fibers. Osteology, 3(1), 1-10. https://doi.org/10.3390/osteology3010001