Evaluation of UAV Ground Station Network Performance with Machine Learning-Based Bandwidth Allocation
Abstract
1. Introduction
2. Related Work
- Investigate network simulation for UAV-GS applications using 5G specifications, employing the BRFFNN and LSGB machine learning models for bandwidth allocation;
- Develop two different UAV movement patterns and test the effectiveness of using machine learning models for bandwidth allocation;
- Evaluate the QoS for UAV-GS communication within 5G networks. The QoS parameters used are the PDR, throughput, and delay.
3. Methodology
3.1. Application Type for Supervised Learning
3.1.1. Gradient Boosting Model
3.1.2. Feedforward Neural Network
3.2. Experiment Setup
- Text Conversion to Numeric: Fields with the values, for example, “30 ms”, “500 Kbps”, and “80%” were stripped of their units and changed to numeric values;
- Data cleaning: Rows with invalid or missing entries were eliminated. To prevent ordinal bias, one-hot encoding was applied to the Application_Type categorical column;
- Normalization of Features: Numerical features were standardized using Z-score normalization based on Equation (2).
3.3. Quality of Service Parameters
4. Result and Discussion
4.1. UAV Movement Pattern
4.2. Results for PDR with Circular-Shaped UAV Movement
4.3. Results for Delay with Circular-Shaped UAV Movement
4.4. Results for Throughput with Circular-Shaped UAV Movement
4.5. Results for PDR with Random UAV Movement
4.6. Results for Delay with Random UAV Movement
4.7. Results for Throughput with Random UAV Movement
4.8. Comparison of LSGB and BRFFNN Based on UAV Movement Pattern
4.8.1. Circular UAV Movement
4.8.2. Random UAV Movement
4.8.3. Standard Deviation Analysis of Delay and Throughput
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tran, N.P.; Delgado, O.; Jaumard, B.; Bishay, F. ML KPI Prediction in 5G and B5G Networks. In Proceedings of the 2023 Joint European Conference on Networks and Communications and 6G Summit, EuCNC/6G Summit, Gothenburg, Sweden, 6–9 June 2023; pp. 502–507. [Google Scholar] [CrossRef]
- Haider, U.; Waqas, M.; Hanif, M.; Alasmary, H.; Qaisar, S.M. Network load prediction and anomaly detection using ensemble learning in 5G cellular networks. Comput. Commun. 2022, 197, 141–150. [Google Scholar] [CrossRef]
- Shankar, R.; Duraisamy, S. Effects of 5G Technology and its Challenges (November 22, 2022). SSRN Electron. J. 2022, 10, 127–134. [Google Scholar] [CrossRef]
- Mayor, V.; Estepa, R.; Estepa, A. QoS-Aware Multilayer UAV Deployment to Provide VoWiFi Service over 5G Networks. Wirel. Commun. Mob. Comput. 2022, 2022, 3110572. [Google Scholar] [CrossRef]
- Wang, H.; Song, L. A distributed end-to-end fair bandwidth allocation algorithm for multi-path networks. Comput. Electr. Eng. 2024, 120, 109635. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Ho, T.M.; Le, L.B.; Girard, A. UAV placement and bandwidth allocation for UAV based wireless networks. In Proceedings of the 2019 IEEE Global Communications Conference, Big Island, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ito, Y.; Koga, H.; Iida, K. A bandwidth allocation scheme to improve fairness and link utilization in data center networks. IEICE Trans. Commun. 2018, E101B, 679–687. [Google Scholar] [CrossRef]
- Wu, S.; Mao, W.; Liu, C.; Tang, T.; Rong, B. Dynamic traffic prediction with adaptive sampling for 5G HetNet IoT applications. Wirel. Commun. Mob. Comput. 2019, 2019, 4687272. [Google Scholar] [CrossRef]
- Tao, Y.; Wei, H.; Yixin, Z. A dynamic allocation strategy of bandwidth of networked control systems with bandwidth constraints. In Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 3–5 October 2016; pp. 1153–1158. [Google Scholar] [CrossRef]
- Borsatti, D.; Giust, F.; Gramaglia, M.; Hoffmann, M.; Kaloxylos, A.; Li, X.; Mangues-Bafalluy, J.; McKeown, D.; Moggio, F.; Moltchanov, D.; et al. Mission Critical Communications Support With 5G and Network Slicing. IEEE Trans. Netw. Serv. Manag. 2023, 20, 595–607. [Google Scholar] [CrossRef]
- Spantideas, S.T.; Giannopoulos, A.E.; Trakadas, P. Smart Mission Critical Service Management: Architecture, Deployment Options, and Experimental Results. IEEE Trans. Netw. Serv. Manag. 2025, 22, 1108–1128. [Google Scholar] [CrossRef]
- Rawat, P.; Haddad, M.; Altman, E. Towards efficient disaster management: 5G and Device to Device communication. In Proceedings of the 2015 2nd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Rennes, France, 30 November–2 December 2015; pp. 79–87. [Google Scholar] [CrossRef]
- Apostolakis, K.C.; Margetis, G.; Stephanidis, C.; Duquerrois, J.M.; Drouglazet, L.; Lallet, A.; Delmas, S.; Cordeiro, L.; Gomes, A.; Amor, M.; et al. Cloud-native 5G infrastructure and network applications (NetApps) for public protection and disaster relief: The 5G-EPICENTRE Project. In Proceedings of the 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; pp. 235–240. [Google Scholar] [CrossRef]
- Abubakar, A.I.; Mollel, M.S.; Onireti, O.; Ozturk, M.; Ahmad, I.; Asad, S.M.; Sambo, Y.; Zoha, A.; Hussain, S.; Imran, M.A. Coverage and throughput analysis of an energy efficient UAV base station positioning scheme. Comput. Netw. 2023, 232, 109854. [Google Scholar] [CrossRef]
- Tanuja, K.S.; Shanmukaswamy, C.V.; Gurushankar, H.B.; Dinesh, H.A. Dynamic Bandwidth Allocation Scheme for Enhanced Performance in 5G Point-To-Point Networks. ICTACT J. Commun. Technol. 2023, 6948, 2945–2951. [Google Scholar] [CrossRef]
- Hou, R.; Lui, K.S.; Li, J. Scheduling in Multihop Wireless Networks with Zero-Forcing Precoding. IEEE Trans. Veh. Technol. 2015, 64, 5817–5830. [Google Scholar] [CrossRef]
- Mandloi, D.; Arya, R. QoS-aware UAV mounted base station deployment in a disaster scenario with user position estimation. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 6, 100281. [Google Scholar] [CrossRef]
- Nafees, M.; Thompson, J.; Safari, M. Multi-Tier Variable Height UAV Networks: User Coverage and Throughput Optimization. IEEE Access 2021, 9, 119684–119699. [Google Scholar] [CrossRef]
- Khangura, S.K.; Akın, S. Online available bandwidth estimation using multiclass supervised learning techniques. Comput. Commun. 2021, 170, 177–189. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, J.; Zhao, H.; Zhou, H.; Li, J.; Li, F.; Xiong, Z.; Liu, J.; Li, Y. Modifying the one-hot encoding technique can enhance the adversarial robustness of the visual model for symbol recognition. Expert Syst. Appl. 2024, 250, 123751. [Google Scholar] [CrossRef]
- Kaluri, R.; Rajput, D.S.; Xin, Q.; Lakshmanna, K.; Bhattacharya, S. Roughsets-based Approach for Predicting Battery Life in IoT. Intell. Autom. Soft Comput. 2021, 27, 453–469. [Google Scholar] [CrossRef]
- Yıldız, A. 5G Quality of Service: Data-Driven Insights. Available online: https://www.kaggle.com/code/xreina8/5g-quality-of-service-data-driven-insights (accessed on 1 July 2025).
- Gong, W.; Xu, H.; Lu, J.; Kim, J.; Zhao, Y.; Li, N.; Zhang, Y.; Yang, J.; Xu, D.; Liang, H. Gradient boosting decision tree algorithms for accelerating nanofiltration membrane design and discovery. Desalination 2024, 592, 118072. [Google Scholar] [CrossRef]
- Topkova, T.; Pleninger, S.; Hospodka, J.; Kraus, J. Evaluation of DME network capability using combination of rule-based model and gradient boosting regression. J. Air Transp. Manag. 2024, 119, 102637. [Google Scholar] [CrossRef]
- Meiseles, A.; Rokach, L. Iterative Feature eXclusion (IFX): Mitigating feature starvation in gradient boosted decision trees. Knowl.-Based Syst. 2024, 289, 111546. [Google Scholar] [CrossRef]
- Wang, F.; Mamo, T. Computers & Industrial Engineering Gradient boosted regression model for the degradation analysis of prismatic cells. Comput. Ind. Eng. 2020, 144, 106494. [Google Scholar] [CrossRef]
- Jibril, M.M.; Zayyan, M.A.; Malami, S.I.; Usman, A.G.; Salami, B.A.; Rotimi, A.; Abba, S.I. Implementation of nonlinear computing models and classical regression for predicting compressive strength of high-performance concrete. Appl. Eng. Sci. 2023, 15, 100133. [Google Scholar] [CrossRef]
- El-sharkawy, M.; Wael, M.; Mashaly, M.; Azab, E. Re-configurable parallel Feed-Forward Neural Network implementation using FPGA. Integration 2024, 97, 102176. [Google Scholar] [CrossRef]
- Alcántara, J.U.R.; Pozos-Estrada, A.; Gómez-Martinez, R. Use of Artificial Neural Networks to Predict Wind-Induced External Pressure Coefficients on a Low-Rise Building: A Comparative Study. Adv. Civ. Eng. 2022, 2022, 8796384. [Google Scholar] [CrossRef]
- Courville, A.; Goodfellow, I.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2017; Volume 521, p. 785. [Google Scholar] [CrossRef]
- Fazeldehkordi, E.; Amiri, I.S.; Akanbi, O.A. Literature Review. In A Study of Black Hole Attack Solutions; Elsevier: Amsterdam, The Netherlands, 2016; pp. 7–57. [Google Scholar] [CrossRef]
Model | Key Hyperparameters |
---|---|
BRFFNN | - Hidden layers: 3 (5, 10, and 15 neurons) - Activation: Sigmoid - Training algorithm: Bayesian regularization backpropagation - Learning rate: 0.01 (adaptive) - Epochs: 500 (best at epoch 478) |
Gradient Boosting | - Learning rate: 0.1 - Number of estimators: 150 - Max tree depth: 3 - Subsampling rate: 0.8 - Loss function: Least squares |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljubouri, M.A.; Teoh, S.S. Evaluation of UAV Ground Station Network Performance with Machine Learning-Based Bandwidth Allocation. Telecom 2025, 6, 59. https://doi.org/10.3390/telecom6030059
Aljubouri MA, Teoh SS. Evaluation of UAV Ground Station Network Performance with Machine Learning-Based Bandwidth Allocation. Telecom. 2025; 6(3):59. https://doi.org/10.3390/telecom6030059
Chicago/Turabian StyleAljubouri, Mohammed A., and Soo Siang Teoh. 2025. "Evaluation of UAV Ground Station Network Performance with Machine Learning-Based Bandwidth Allocation" Telecom 6, no. 3: 59. https://doi.org/10.3390/telecom6030059
APA StyleAljubouri, M. A., & Teoh, S. S. (2025). Evaluation of UAV Ground Station Network Performance with Machine Learning-Based Bandwidth Allocation. Telecom, 6(3), 59. https://doi.org/10.3390/telecom6030059