Quiescent Optical Solitons with Quadratic-Cubic and Generalized Quadratic-Cubic Nonlinearities
Abstract
:1. Introduction
2. The Enhanced Kudryashov’s Procedure
3. Quadratic-Cubic Nonlinearity
3.1. Linear Temporal Evolution
3.2. Generalized Temporal Evolution
4. Generalized Quadratic-Cubic Nonlinearity
4.1. Linear Temporal Evolution
4.2. Generalized Temporal Evolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. Phys. Lett. A 2022, 440, 128146. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350008. [Google Scholar] [CrossRef]
- Fujioka, J.; Cortés, E.; Pérez-Pascual, R.; Rodríguez, R.; Espinosa, A.; Malomed, B.A. Chaotic solitons in the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 033120. [Google Scholar] [CrossRef] [PubMed]
- Hayata, K.; Koshiba, M. Prediction of unique solitary-wave polaritons in quadratic-cubic nonlinear dispersive media. JOSA B 1994, 11, 2581–2585. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 2022, 259, 168888. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Appl. Math. Lett. 2022, 128, 107888. [Google Scholar] [CrossRef]
- Sonmezoglu, A. Stationary optical solitons having Kudryashov’s quintuple power law nonlinearity by extended G′/G–expansion. Optik 2022, 253, 168521. [Google Scholar] [CrossRef]
- Triki, H.; Porsezian, K.; Senthilnathan, K.; Nithyanandan, K. Chirped self-similar solitary waves for the generalized nonlinear Schrödinger equation with distributed two-power-law nonlinearities. Phys. Rev. E 2019, 100, 042208. [Google Scholar] [CrossRef] [PubMed]
- Yalçı, A.M.; Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 2022, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z. Envelope compactons and solitary patterns. Phys. Lett. A 2006, 355, 212–215. [Google Scholar] [CrossRef]
- Biswas, A.; Khalique, C.M. Stationary solutions for nonlinear dispersive Schrödinger’s equation. Nonlinear Dyn. 2011, 63, 623–626. [Google Scholar] [CrossRef]
- Adem, A.R.; Ntsime, B.P.; Biswas, A.; Asma, M.; Ekici, M.; Moshokoa, S.P.; Alzahrani, A.K.; Belic, M.R. Stationary optical solitons with Sasa–Satsuma equation having nonlinear chromatic dispersion. Phys. Lett. A 2020, 384, 126721. [Google Scholar] [CrossRef]
- Adem, A.R.; Ekici, M.; Biswas, A.; Asma, M.; Zayed, E.M.; Alzahrani, A.K.; Belic, M.R. Stationary optical solitons with nonlinear chromatic dispersion having quadratic-cubic law of refractive index. Phys. Lett. A 2020, 384, 126606. [Google Scholar] [CrossRef]
- Adem, A.R.; Ntsime, B.P.; Biswas, A.; Khan, S.; Alzahrani, A.K.; Belic, M.R. Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan–Porsezian–Daniel model having Kerr law of nonlinear refractive index. Ukr. J. Phys. Opt. 2021, 22, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Adem, A.R.; Ntsime, B.P.; Biswas, A.; Ekici, M.; Yildirim, Y.; Alshehri, H.M. Implicit quiescent optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. J. Optoelectron. Adv. Mater. 2022, 24, 450–462. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnous, A.H.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Khan, S.; Alshehri, H.M. Quiescent Optical Solitons with Quadratic-Cubic and Generalized Quadratic-Cubic Nonlinearities. Telecom 2023, 4, 31-42. https://doi.org/10.3390/telecom4010003
Arnous AH, Biswas A, Yıldırım Y, Moraru L, Moldovanu S, Iticescu C, Khan S, Alshehri HM. Quiescent Optical Solitons with Quadratic-Cubic and Generalized Quadratic-Cubic Nonlinearities. Telecom. 2023; 4(1):31-42. https://doi.org/10.3390/telecom4010003
Chicago/Turabian StyleArnous, Ahmed H., Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Catalina Iticescu, Salam Khan, and Hashim M. Alshehri. 2023. "Quiescent Optical Solitons with Quadratic-Cubic and Generalized Quadratic-Cubic Nonlinearities" Telecom 4, no. 1: 31-42. https://doi.org/10.3390/telecom4010003
APA StyleArnous, A. H., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., Iticescu, C., Khan, S., & Alshehri, H. M. (2023). Quiescent Optical Solitons with Quadratic-Cubic and Generalized Quadratic-Cubic Nonlinearities. Telecom, 4(1), 31-42. https://doi.org/10.3390/telecom4010003