Infodemiology and Infoveillance of the Four Most Widespread Arbovirus Diseases in Italy
Abstract
:1. Introduction
- -
- Up to 50 confirmed cases of neuroinvasive infection—TBE (47 local cases and 3 linked to a trip abroad, with a median age of 58.5 years; 70% males; no deaths);
- -
- A total of 362 confirmed cases of Dengue (82 local cases and 280 linked to trips abroad, with a median age of 37 years; 52% males; one death);
- -
- Approximately 127 confirmed cases of infection with Toscana virus (125 local cases, with a median age of 52 years; 65% males; no deaths);
- -
- Nine confirmed cases of Zika Virus (all linked to trips abroad, with a median age of 30 years; 44% males; no deaths);
- -
- Seven confirmed cases of Chikungunya (all linked to trips abroad, with a median age of 42 years; 71% males; no deaths);
- -
- And over 330 cases of West Nile fever.
2. Materials and Methods
3. Results
4. Discussion
4.1. Data Interpretation
4.2. Implication for Policies and Practices
4.3. Future Perspectives in Research
4.4. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Vector-Borne Diseases. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases# (accessed on 20 February 2024).
- Italian National Institute of Health [Istituto Superiore di Sanità in Italian]. Arboviral Diseases. 2024. Available online: https://www.epicentro.iss.it/en/arboviral-diseases/ (accessed on 20 February 2024).
- Young, P.R. Arboviruses: A Family on the Move; Springer: Singapore, 2018; pp. 1–10. [Google Scholar]
- Ministero della Salute. Piano Nazionale di Prevenzione Sorveglianza e Risposta alle Arbovirosi (PNA) 2020–2025. November 2019. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2947_allegato.pdf (accessed on 20 February 2024).
- Mbim, E.N.; Edet, U.O.; Okoroiwu, H.U.; Nwaokorie, F.O.; Edet, A.E.; Owolabi, A.; Clement, M. Arbovirus and its potential to lead the next global pandemic from sub-Saharan Africa: What lessons have we learned from COVID-19? Germs 2022, 12, 538–547. [Google Scholar] [CrossRef]
- Edelstein, M.; Lee, L.M.; Herten-Crabb, A.; Heymann, D.L.; Harper, D.R. Strengthening Global Public Health Surveillance through Data and Benefit Sharing. Emerg. Infect. Dis. 2018, 24, 1324–1330. [Google Scholar] [CrossRef]
- Italian National Institute of Health [Istituto Superiore di Sanità in Italian]. National Surveillance System of Arboviral Diseases: Regular Bulletins. 2024. Available online: https://www.epicentro.iss.it/en/arboviral-diseases/surveillance (accessed on 20 February 2024).
- Italian National Institute of Health. Bollettino Arbovirosi. Rome. 2024. Available online: https://www.epicentro.iss.it/arbovirosi/dashboard (accessed on 20 February 2024).
- Italian National Institute of Health. Bollettino West Nile Virus. 2024. Available online: https://www.epicentro.iss.it/westnile/bollettino (accessed on 20 February 2024).
- Google Trends. 2024. Available online: https://trends.google.it/trends/?geo=IT (accessed on 20 February 2024).
- Wikipedia. 2024. Available online: https://tools.wmflabs.org/pageviews (accessed on 20 February 2024).
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Italian Medicines Agency. Dengue Fever. 2024. Available online: https://www.epicentro.iss.it/febbre-dengue/prevenzione-trattamento-vaccino#:~:text=QDENGA%20%C3%A8%20theon-ly%20vaccine,Medicines%20Agency)%20a%20December%202022 (accessed on 20 February 2024).
- Provenzano, S.; Gianfredi, V.; Santangelo, O.E. Insight the data: Wikipedia’s researches and real cases of arboviruses in Italy. Public Health 2021, 192, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Liu, J.; Zhao, Z.; Onishi, M.; Kawaguchi, A.; Bandara, A.; Harada, K.; Aoyama, T.; Nagai-Tanima, M. Explanation of hand, foot, and mouth disease cases in Japan using Google Trends before and during the COVID-19: Infodemiology study. BMC Infect. Dis. 2022, 22, 806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alibudbud, R. Wikipedia page views for health research: A review. Front. Big Data 2023, 6, 1199060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peiffer-Smadja, N.; Rawson, T.M.; Ahmad, R.; Buchard, A.; Georgiou, P.; Lescure, F.X.; Birgand, G.; Holmes, A.H. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin. Microbiol. Infect. 2020, 26, 584–595, Erratum in Clin. Microbiol. Infect.2020, 26, 1118. https://doi.org/10.1016/j.cmi.2020.05.020. [Google Scholar] [CrossRef] [PubMed]
- Koksal, S.; Pesando, L.M.; Rotondi, V.; Sanliturk, E. Harnessing the Potential of Google Searches for Understanding Dynamics of Intimate Partner Violence Before and After the COVID-19 Outbreak. Eur. J. Popul. 2022, 38, 517–545. [Google Scholar] [CrossRef]
- Provenzano, S.; Santangelo, O.E.; Gianfredi, V. Infodemiology and infoveillance: Framework for contagious exanthematous diseases, of childhood in Italy. Pathog. Glob. Health 2024, 2024, 1–8. [Google Scholar] [CrossRef]
- Lan, R.; Campana, F.; Tardivo, D.; Catherine, J.H.; Vergnes, J.N.; Hadj-Saïd, M. Relationship between internet research data of oral neoplasms and public health programs in the European Union. BMC Oral Health 2021, 21, 648. [Google Scholar] [CrossRef] [PubMed]
- Steinert, Y.; Naismith, L.; Mann, K. Faculty development initiatives designed to promote leadership in medical education. A BEME systematic review: BEME Guide No. 19. Med. Teach. 2012, 34, 483–503. [Google Scholar] [CrossRef] [PubMed]
- Guttman, O.T.; Lazzara, E.H.; Keebler, J.R.; Webster, K.L.W.; Gisick, L.M.; Baker, A.L. Dissecting Communication Barriers in Healthcare: A Path to Enhancing Communication Resiliency, Reliability, and Patient Safety. J. Patient Saf. 2021, 17, e1465–e1471. [Google Scholar] [CrossRef] [PubMed]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Appl. Sci. 2023, 13, 7082. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Iyamu, I.; Gomez-Ramirez, O.; Xu, A.X.; Chang, H.J.; Watt, S.; McKee, G.; Gilbert, M. Challenges in the development of digital public health interventions and mapped solutions: Findings from a scoping review. Digit. Health 2022, 8, 20552076221102255. [Google Scholar] [CrossRef] [PubMed]
- Meckawy, R.; Stuckler, D.; Mehta, A.; Al-Ahdal, T.; Doebbeling, B.N. Effectiveness of early warning systems in the detection of infectious diseases outbreaks: A systematic review. BMC Public Health 2022, 22, 2216. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tsao, S.F.; Basri, M.A.; Chen, H.H.; Butt, Z.A. Digital Disease Surveillance for Emerging Infectious Diseases: An Early Warning System Using the Internet and Social Media Data for COVID-19 Forecasting in Canada. Stud. Health Technol. Inform. 2023, 302, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Wiratsudakul, A.; Suparit, P.; Modchang, C. Dynamics of Zika virus outbreaks: An overview of mathematical modeling approaches. PeerJ 2018, 6, e4526. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Yue, Y. Big data analytics and COVID-19 vaccine. Comput. Methods Programs Biomed. Update 2022, 2, 100062. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Y.; Gao, G.; Wu, D. Internet search data with spatiotemporal analysis in infectious disease surveillance: Challenges and perspectives. Front. Public Health 2022, 10, 958835. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.; Bhardwaj, A.; Aledavood, T.; De Choudhury, M.; Kumar, S. Examining the impact of sharing COVID-19 misinformation online on mental health. Sci. Rep. 2022, 12, 8045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balzarini, F.; Frascella, B.; Oradini-Alacreu, A.; Gaetti, G.; Lopalco, P.L.; Edelstein, M.; Azzopardi-Muscat, N.; Signorelli, C.; Odone, A. Does the use of personal electronic health records increase vaccine uptake? A systematic review. Vaccine 2020, 38, 5966–5978. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.E.; Renson, A.; Zivich, P.N. Social Media- and Internet-Based Disease Surveillance for Public Health. Annu. Rev. Public Health 2020, 41, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Salathe, M. Digital Pharmacovigilance and Disease Surveillance: Combining Traditional and Big-Data Systems for Better Public Health. J. Infect. Dis. 2016, 214 (Suppl. 4), S399–S403. [Google Scholar] [CrossRef]
- Wu, G.C.; Tao, S.S.; Zhao, C.N.; Mao, Y.M.; Wu, Q.; Dan, Y.L.; Pan, H.F. Leveraging Google Trends to investigate the global public interest in rheumatoid arthritis. Rheumatol. Int. 2019, 39, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Palomo-Llinares, R.; Sánchez-Tormo, J.; Wanden-Berghe, C.; Sanz-Valero, J. Trends and Seasonality of Information Searches Carried Out through Google on Nutrition and Healthy Diet in Relation to Occupational Health: Infodemiological Study. Nutrients 2021, 13, 4300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santangelo, O.E.; Provenzano, S.; Gianfredi, V. Infodemiology of flu: Google trends-based analysis of Italians’ digital behavior and a focus on SARS-CoV-2, Italy. J. Prev. Med. Hyg. 2021, 62, E586–E591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Milinovich, G.; Xu, Z.; Bambrick, H.; Mengersen, K.; Tong, S.; Hu, W. Monitoring Pertussis Infections Using Internet Search Queries. Sci. Rep. 2017, 7, 10437. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.J.; Hung, M.C.; Srivastav, A.; Grohskopf, L.A.; Kobayashi, M.; Harris, A.M.; Dooling, K.L.; Markowitz, L.E.; Rodriguez-Lainz, A.; Williams, W.W. Surveillance of Vaccination Coverage Among Adult Populations—United States, 2018. MMWR Surveill. Summ. 2021, 70, 1–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malik, S. A comparative study of two major search engines: Google and Yahoo. Orient. J. Comp. Sci. Technol. 2014, 7, 29–37. [Google Scholar]
- Gianfredi, V.; Nucci, D.; Nardi, M.; Santangelo, O.E.; Provenzano, S. Using Google Trends and Wikipedia to Investigate the Global Public’s Interest in the Pancreatic Cancer Diagnosis of a Celebrity. Int. J. Environ. Res. Public Health 2023, 20, 2106. [Google Scholar] [CrossRef] [PubMed]
Dengue GT | Dengue Wikipedia | |||
---|---|---|---|---|
Dengue ISS | rho | 0.71 | r | 0.32 |
p-value | <0.001 | p-value | 0.001 | |
observations | 108 | observations | 102 | |
TOSV GT | TOSV Wikipedia | |||
TOSV ISS | rho | 0.40 | r | 0.33 |
p-value | <0.001 | p-value | 0.001 | |
observations | 96 | observations | 96 | |
TBE GT | TBE Wikipedia | |||
TBE ISS | rho | 0.71 | r | 0.36 |
p-value | <0.001 | p-value | <0.001 | |
observations | 84 | observations | 84 | |
WNV GT | WNV Wikipedia | |||
WNV ISS | rho | 0.67 | r | 0.60 |
p-value | <0.001 | p-value | <0.001 | |
observations | 139 | observations | 102 |
Dependent variable: Dengue GT | Dependent variable: Dengue Wikipedia | |||||||
---|---|---|---|---|---|---|---|---|
Independent variable | Coefficient | 95% CI | p-value | Durbin Watson | Coefficient | 95% CI | p-value | Durbin Watson |
Dengue ISS | 0.74 | 0.64–0.84 | <0.001 | 1.80 | 181.77 | 73.45–290.10 | 0.001 | 1.91 |
Dependent variable: TOSV GT | Dependent variable: TOSV Wikipedia | |||||||
Independent variable | Coefficient | 95% CI | p-value | Durbin Watson | Coefficient | 95% CI | p-value | Durbin Watson |
TOSV ISS | 0.33 | 0.05–0.62 | 0.020 | 1.43 | 10.43 | 4.32–16.54 | 0.001 | 0.69 |
Dependent variable: TBE GT | Dependent variable: TBE Wikipedia | |||||||
Independent variable | Coefficient | 95% CI | p-value | Durbin Watson | Coefficient | 95% CI | p-value | Durbin Watson |
TBE ISS | 2.65 | 2.22–3.07 | <0.001 | 1.63 | 72.41 | 31.56–113.26 | <0.001 | 0.27 |
Dependent variable: WNV GT | Dependent variable: WNV Wikipedia | |||||||
Independent variable | Coefficient | 95% CI | p-value | Durbin Watson | Coefficient | 95% CI | p-value | Durbin Watson |
WNV ISS | 0.52 | 0.48–0.56 | <0.001 | 1.47 | 342.67 | 252.30–433.04 | <0.001 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santangelo, O.E.; Provenzano, S.; Vella, C.; Firenze, A.; Stacchini, L.; Cedrone, F.; Gianfredi, V. Infodemiology and Infoveillance of the Four Most Widespread Arbovirus Diseases in Italy. Epidemiologia 2024, 5, 340-352. https://doi.org/10.3390/epidemiologia5030024
Santangelo OE, Provenzano S, Vella C, Firenze A, Stacchini L, Cedrone F, Gianfredi V. Infodemiology and Infoveillance of the Four Most Widespread Arbovirus Diseases in Italy. Epidemiologia. 2024; 5(3):340-352. https://doi.org/10.3390/epidemiologia5030024
Chicago/Turabian StyleSantangelo, Omar Enzo, Sandro Provenzano, Carlotta Vella, Alberto Firenze, Lorenzo Stacchini, Fabrizio Cedrone, and Vincenza Gianfredi. 2024. "Infodemiology and Infoveillance of the Four Most Widespread Arbovirus Diseases in Italy" Epidemiologia 5, no. 3: 340-352. https://doi.org/10.3390/epidemiologia5030024
APA StyleSantangelo, O. E., Provenzano, S., Vella, C., Firenze, A., Stacchini, L., Cedrone, F., & Gianfredi, V. (2024). Infodemiology and Infoveillance of the Four Most Widespread Arbovirus Diseases in Italy. Epidemiologia, 5(3), 340-352. https://doi.org/10.3390/epidemiologia5030024