AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites
Abstract
1. Introduction
2. AI Application in Cultural Heritage Sites
3. Challenges and Limitations
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piscitelli, P.; Miani, A.; Setti, L.; De Gennaro, G.; Rodo, X.; Artinano, B.; Vara, E.; Rancan, L.; Arias, J.; Passarini, F.; et al. The Role of Outdoor and Indoor Air Quality in the Spread of SARS-CoV-2: Overview and Recommendations by the Research Group on COVID-19 and Particulate Matter (RESCOP Commission). Environ. Res. 2022, 211, 113038. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Quantitative Assessment of the Risk of Airborne Transmission of SARS-CoV-2 Infection: Prospective and Retrospective Applications. Environ. Int. 2020, 145, 106112. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.; Ciliberto, E.; Verdura, P.D.; Lo Giudice, E.; Navarra, G. Nanoparticle-Based Concretes for the Restoration of Historical and Contemporary Buildings: A New Way for CO2 Reduction in Architecture. Appl. Phys. A Mater. Sci. Process. 2016, 122, 524. [Google Scholar] [CrossRef]
- Ilieș, D.C.; Safarov, B.; Caciora, T.; Ilieș, A.; Grama, V.; Ilies, G.; Huniadi, A.; Zharas, B.; Hodor, N.; Sandor, M.; et al. Museal Indoor Air Quality and Public Health: An Integrated Approach for Exhibits Preservation and Ensuring Human Health. Sustainability 2022, 14, 2462. [Google Scholar] [CrossRef]
- Lazaridis, M.; Katsivela, E.; Kopanakis, I.; Raisi, L.; Panagiaris, G. Indoor/Outdoor Particulate Matter Concentrations and Microbial Load in Cultural Heritage Collections. Herit. Sci. 2015, 3, 34. [Google Scholar] [CrossRef]
- Saridaki, A.; Glytsos, T.; Raisi, L.; Katsivela, E.; Tsiamis, G.; Kalogerakis, N.; Lazaridis, M. Airborne Particles, Bacterial and Fungal Communities Insights of Two Museum Exhibition Halls with Diverse Air Quality Characteristics. Aerobiologia 2023, 39, 69–86. [Google Scholar] [CrossRef]
- Poydenot, F.; Abdourahamane, I.; Caplain, E.; Der, S.; Haiech, J.; Jallon, A.; Khoutami, I.; Loucif, A.; Marinov, E.; Andreotti, B. Risk Assessment for Long- and Short-Range Airborne Transmission of SARS-CoV-2, Indoors and Outdoors. PNAS Nexus 2022, 1, pgac223. [Google Scholar] [CrossRef]
- Richter, W.R.; Sunderman, M.M.; Mera, T.O.; O’Brien, K.A.; Morgan, K.; Streams, S. Evaluation of Environmental Conditions as a Decontamination Approach for SARS-CoV-2 When Applied to Common Library, Archive and Museum-related Materials. J. Appl. Microbiol. 2022, 132, 3405–3415. [Google Scholar] [CrossRef]
- Henriques, A.; Mounet, N.; Aleixo, L.; Elson, P.; Devine, J.; Azzopardi, G.; Andreini, M.; Rognlien, M.; Tarocco, N.; Tang, J. Modelling Airborne Transmission of SARS-CoV-2 Using CARA: Risk Assessment for Enclosed Spaces. Interface Focus 2022, 12, 20210076. [Google Scholar] [CrossRef]
- Antara, N.; Sen, S. The Impact of COVID-19 on Museum and the Way Forward to Be Resilience. J. Int. Museum Educ. 2020, 2, 54–61. [Google Scholar]
- de Peuter, G.; Oakley, K.; Trusolino, M. The Pandemic Politics of Cultural Work: Collective Responses to the COVID-19 Crisis. Int. J. Cult. Policy 2023, 29, 377–392. [Google Scholar] [CrossRef]
- Capolongo, S.; Rebecchi, A.; Buffoli, M.; Appolloni, L.; Signorelli, C.; Fara, G.M.; D’Alessandro, D. COVID-19 and Cities: From Urban Health Strategies to the Pandemic Challenge. A Decalogue of Public Health Opportunities. Acta Bio Medica Atenei Parm. 2020, 91, 13. [Google Scholar] [CrossRef]
- Nygren, D.; Norén, J.; De Marinis, Y.; Holmberg, A.; Fraenkel, C.J.; Rasmussen, M. Association between SARS-CoV-2 and Exposure Risks in Health Care Workers and University Employees—A Cross-Sectional Study. Infect. Dis. 2021, 53, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Camic, P.M.; Chatterjee, H.J. Museums and Art Galleries as Partners for Public Health Interventions. Perspect. Public Health 2013, 133, 66–71. [Google Scholar] [CrossRef]
- Marcianò, A.; Chen, D.; Fabrocini, F.; Fields, C.; Greco, E.; Gresnigt, N.; Jinklub, K.; Lulli, M.; Terzidis, K.; Zappala, E. Quantum Neural Networks and Topological Quantum Field Theories. Neural Netw. 2022, 153, 164–178. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zaidi, S.M.H.; Shakir, M.Z.; Shafi, U.; Malik, M.M.; Haque, A.; Mumtaz, S.; Zaidi, S.A.R. Internet of Things (Iot) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective. Electron. 2021, 10, 184. [Google Scholar] [CrossRef]
- Cattai, F.; D’Orazio, A.; Sbardella, G. A Systematic Review on the Application of Ultraviolet Germicidal Irradiation to HVAC Systems. Energies 2023, 16, 7569. [Google Scholar] [CrossRef]
- Pigeot-Remy, S.; Lazzaroni, J.C.; Simonet, F.; Petinga, P.; Vallet, C.; Petit, P.; Vialle, P.J.; Guillard, C. Survival of Bioaerosols in HVAC System Photocatalytic Filters. Appl. Catal. B Environ. 2014, 144, 654–664. [Google Scholar] [CrossRef]
- Mathur, G. Energy Consumption of Titanium Dioxide & Ultraviolet Germicidal (UV-C) Photocatalytic Air Purification System for Automotive Cabins. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- D’Orazio, A.; D’Alessandro, D. Air Bio-Contamination Control in Hospital Environment by UV-C Rays and HEPA Filters in HVAC Systems. Ann. Ig. Med. Prev. Comunita 2020, 32, 449–461. [Google Scholar] [CrossRef]
- Greco, E.; Ciliberto, E.; Cirino, A.M.E.; Capitani, D.; Di Tullio, V. A New Preparation of Doped Photocatalytic TiO2 Anatase Nanoparticles: A Preliminary Study for the Removal of Pollutants in Confined Museum Areas. Appl. Phys. A Mater. Sci. Process. 2016, 122, 530. [Google Scholar] [CrossRef]
- Greco, E.; Shang, J.; Zhu, J.; Zhu, T. Synthesis of Polyacetylene-like Modified Graphene Oxide Aerogel and Its Enhanced Electrical Properties. ACS Omega 2019, 4, 20948–20954. [Google Scholar] [CrossRef]
- Greco, E.; Balsamo, S.A.; Maccarrone, G.; Mello, D.; Ciliberto, E.; Shang, J.; Zhu, T. Gold-Core Lithium-Doped Titania Shell Nanostructures for Plasmon-Enhanced Visible Light Harvesting with Photocatalytic Activity. J. Nanoparticle Res. 2020, 22, 164. [Google Scholar] [CrossRef]
- Ali, M.A.; Ali, M.F.; Ciliberto, E.; Greco, E.; Mello, D.; Viscuso, E. A New Method for the Preparation of Gelatin Nanolayer: A Possible Approach to the In Situ Consolidation of Damaged Gelatin Photographic Emulsions. Appl. Phys. A Mater. Sci. Process. 2016, 122, 552. [Google Scholar] [CrossRef]
- Perles, A.; Pérez-Marín, E.; Mercado, R.; Segrelles, J.D.; Blanquer, I.; Zarzo, M.; Garcia-Diego, F.J. An Energy-Efficient Internet of Things (IoT) Architecture for Preventive Conservation of Cultural Heritage. Futur. Gener. Comput. Syst. 2018, 81, 566–581. [Google Scholar] [CrossRef]
- Mitro, N.; Krommyda, M.; Amditis, A. Smart Tags: IoT Sensors for Monitoring the Micro-Climate of Cultural Heritage Monuments. Appl. Sci. 2022, 12, 2315. [Google Scholar] [CrossRef]
- Lee, W.; Lee, D.H. Cultural Heritage and the Intelligent Internet of Things. J. Comput. Cult. Herit. 2019, 12, 21. [Google Scholar] [CrossRef]
- Alouani, D.J.; Rajapaksha, R.R.P.; Jani, M.; Rhoads, D.D.; Sadria, N. Specificity of SARS-CoV-2 Real-Time PCR Improved by Deep Learning Analysis. J. Clin. Microbiol. 2021, 59, 10-1128. [Google Scholar] [CrossRef]
- Khan, R.S.; Rehman, I.U. Spectroscopy as a Tool for Detection and Monitoring of Coronavirus (COVID-19). Expert Rev. Mol. Diagn. 2020, 20, 647–649. [Google Scholar] [CrossRef]
- Barauna, V.G.; Singh, M.N.; Barbosa, L.L.; Marcarini, W.D.; Vassallo, P.F.; Mill, J.G.; Ribeiro-Rodrigues, R.; Campos, L.C.G.; Warnke, P.H.; Martin, F.L. Ultrarapid on-Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity. Anal. Chem. 2021, 93, 2950–2958. [Google Scholar] [CrossRef] [PubMed]
- Keshta, I. AI-Driven IoT for Smart Health Care: Security and Privacy Issues. Inform. Med. Unlocked 2022, 30, 100903. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Vamseekrishna, A.; Nishitha, R.; Kumar, T.A.; Hanuman, K.; Supriya, C.G. Prediction of Temperature and Humidity Using IoT and Machine Learning Algorithm. In Proceedings of the Advances in Intelligent Systems and Computing, Península de Santa Elena, Ecuador, 10–12 February 2021; Springer: Singapore, 2021; Volume 1312, pp. 271–279. [Google Scholar]
- Rahman, R.A.; Hashim, U.R.; Ahmad, S. IoT Based Temperature and Humidity Monitoring Framework. Bull. Electr. Eng. Inform. 2020, 9, 229–237. [Google Scholar] [CrossRef]
- Varshini, B.; Yogesh, H.; Pasha, S.D.; Suhail, M.; Madhumitha, V.; Sasi, A. IoT-Enabled Smart Doors for Monitoring Body Temperature and Face Mask Detection. Glob. Transit. Proc. 2021, 2, 246–254. [Google Scholar] [CrossRef]
- Rahman, M.S.; Safa, N.T.; Sultana, S.; Salam, S.; Karamehic-Muratovic, A.; Overgaard, H.J. Role of Artificial Intelligence-Internet of Things (AI-IoT) Based Emerging Technologies in the Public Health Response to Infectious Diseases in Bangladesh. Parasite Epidemiol. Control 2022, 18, e00266. [Google Scholar] [CrossRef] [PubMed]
- Popkova, E.G.; Sergi, B.S. Digital Public Health: Automation Based on New Datasets and the Internet of Things. Socioecon. Plann. Sci. 2022, 80, 101039. [Google Scholar] [CrossRef]
- Sahu, K.S.; Majowicz, S.E.; Dubin, J.A.; Morita, P.P. NextGen Public Health Surveillance and the Internet of Things (IoT). Front. Public Health 2021, 9, 756675. [Google Scholar] [CrossRef] [PubMed]
- Tham, K.W. Indoor Air Quality and Its Effects on Humans—A Review of Challenges and Developments in the Last 30 Years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Ahmed Abdul–Wahab, S.A.; En, S.C.F.; Elkamel, A.; Ahmadi, L.; Yetilmezsoy, K. A Review of Standards and Guidelines Set by International Bodies for the Parameters of Indoor Air Quality. Atmos. Pollut. Res. 2015, 6, 751–767. [Google Scholar] [CrossRef]
AI Application | Description | Limitations |
---|---|---|
Indoor Air Quality Monitoring | AI-driven systems integrate with HVAC to optimize air filtration and circulation, detect patterns indicating deteriorating air quality, and deploy advanced purification technologies. | Technical hurdles due to architectural constraints, reliance on data quality, and continuous need for updates. |
Visitor Flow Management | AI systems monitor crowd density in real-time using video analytics and IoT sensors, alerting managers to overcrowded areas and predicting peak times for better planning. | Privacy concerns, need for strict adherence to ethical standards, and balancing safety with visitor privacy. |
Predictive Analytics for Health Safety | AI analyzes historical data and current health metrics to forecast potential outbreaks, enabling proactive preventive measures and effective communication with visitors. | Financial constraints, especially for non-profit sites, and the need for specialized knowledge to manage AI systems. |
Pathogen Detection | Real-time PCR and spectroscopic analysis detect the presence of pathogens, aiding in early detection and swift implementation of quarantine and sanitation measures. | Over-reliance on technology may undervalue human expertise and decision-making capabilities. |
Interactive Guides and Educational Tools | Natural language processing and machine learning provide personalized tours and information, enhancing cultural experiences while promoting safety. | Need for tailored solutions to fit the unique context of each site, which can vary widely in terms of size, type, and visitor demographics. |
AI Subject | Description |
---|---|
Environmental Monitoring | Utilizing AI to monitor and control indoor environmental conditions, ensuring optimal air quality and pathogen detection. |
Health Safety Protocols | Implementing AI-driven health safety measures to predict and prevent potential outbreaks and ensure visitor and staff safety. |
Visitor Management | Using AI to manage visitor flows, monitor crowd density, and optimize entry and exit points to maintain social distancing. |
Educational Enhancement | Enhancing visitor experience through AI-powered interactive guides, personalized tours, and educational tools. |
Operational Efficiency | Improving overall site operations through AI applications in environmental monitoring, visitor management, and health safety protocols. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, E.; Gaetano, A.S.; De Spirt, A.; Semeraro, S.; Piscitelli, P.; Miani, A.; Mecca, S.; Karaj, S.; Trombin, R.; Hodgton, R.; et al. AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites. Epidemiologia 2024, 5, 267-274. https://doi.org/10.3390/epidemiologia5020018
Greco E, Gaetano AS, De Spirt A, Semeraro S, Piscitelli P, Miani A, Mecca S, Karaj S, Trombin R, Hodgton R, et al. AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites. Epidemiologia. 2024; 5(2):267-274. https://doi.org/10.3390/epidemiologia5020018
Chicago/Turabian StyleGreco, Enrico, Anastasia Serena Gaetano, Alessia De Spirt, Sabrina Semeraro, Prisco Piscitelli, Alessandro Miani, Saverio Mecca, Stela Karaj, Rita Trombin, Rachel Hodgton, and et al. 2024. "AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites" Epidemiologia 5, no. 2: 267-274. https://doi.org/10.3390/epidemiologia5020018
APA StyleGreco, E., Gaetano, A. S., De Spirt, A., Semeraro, S., Piscitelli, P., Miani, A., Mecca, S., Karaj, S., Trombin, R., Hodgton, R., & Barbieri, P. (2024). AI-Enhanced Tools and Strategies for Airborne Disease Prevention in Cultural Heritage Sites. Epidemiologia, 5(2), 267-274. https://doi.org/10.3390/epidemiologia5020018