Factors and Inequality of Underweight and Overweight among Women of Reproductive Age in Myanmar: Evidence from the Demographic Health Survey 2015–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Survey Tools and Data Collection
2.3. Data Analysis
2.4. Ethical Consideration
3. Results
3.1. Sociodemographic Characteristics of the Respondents
3.2. Correlates of Underweight and Overweight/Obesity
3.3. Socioeconomic Inequalities in Underweight and Overweight/Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanson, M.; Gluckman, P.; Bustreo, F. Obesity and the health of future generations. Lancet Diabetes Endocrinol. 2016, 4, 966–967. [Google Scholar] [CrossRef]
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalán, C.; Uauy, R.; Herring, S.; Gillman, M.W. Preconceptional and maternal obesity: Epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016, 4, 1025–1036. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet (Lond. Engl.) 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Snehalatha, C. Rising burden of obesity in Asia. J. Obes. 2010, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angkurawaranon, C.; Jiraporncharoen, W.; Chenthanakij, B.; Doyle, P.; Nitsch, D. Urban environments and obesity in southeast Asia: A systematic review, meta-analysis and meta-regression. PLoS ONE 2014, 9, e113547. [Google Scholar] [CrossRef] [PubMed]
- Bhurosy, T.; Jeewon, R. Overweight and obesity epidemic in developing countries: A problem with diet, physical activity, or socioeconomic status? Sci. World J. 2014, 2014, 964236. [Google Scholar] [CrossRef] [Green Version]
- Kelly, T.; Yang, W.; Chen, C.-S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. (Lond.) 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet (Lond. Engl.) 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet (Lond. Engl.) 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Djalalinia, S.; Qorbani, M.; Peykari, N.; Kelishadi, R. Health impacts of Obesity. Pak. J. Med. Sci. 2015, 31, 239–242. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet (Lond. Engl.) 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Dağ, Z.Ö.; Dilbaz, B. Impact of obesity on infertility in women. J. Turk. Ger. Gynecol. Assoc. 2015, 16, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Fedorcsák, P.; Dale, P.O.; Storeng, R.; Ertzeid, G.; Bjercke, S.; Oldereid, N.; Omland, A.K.; Åbyholm, T.; Tanbo, T. Impact of overweight and underweight on assisted reproduction treatment. Hum. Reprod. 2004, 19, 2523–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashen, H.; Ledger, W.; Bernal, A.L.; Barlow, D. Extremes of body mass do not adversely affect the outcome of superovulation and in-vitro fertilization. Hum. Reprod. 1999, 14, 712–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashen, H.; Fear, K.; Sturdee, D.W. Obesity is associated with increased risk of first trimester and recurrent miscarriage: Matched case-control study. Hum. Reprod. 2004, 19, 1644–1646. [Google Scholar] [CrossRef]
- Nkoka, O.; Ntenda, P.A.M.; Senghore, T.; Bass, P. Maternal overweight and obesity and the risk of caesarean birth in Malawi. Reprod. Health 2019, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2020, 113, 533–535. [Google Scholar] [CrossRef]
- Hemond, J.; Robbins, R.B.; Young, P.C. The Effects of Maternal Obesity on Neonates, Infants, Children, Adolescents, and Adults. Clin. Obs. Gynecol. 2016, 59, 216–227. [Google Scholar] [CrossRef]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. for the Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet (Lond. Engl.) 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet (Lond. Engl.) 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S.; for the Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet (Lond. Engl.) 2008, 371, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Maleta, K. Undernutrition. Malawi Med. J. 2006, 18, 189–205. [Google Scholar] [PubMed]
- Ministry of Health and Sports (MoHS) and ICF. Nepal Health Facility Survey 2015; Ministry of Health and Sports: Naypyitaw, Myanmar, 2017. Available online: https://www.dhsprogram.com/pubs/pdf/FR324/FR324.pdf (accessed on 2 February 2020).
- Hong, S.A.; Peltzer, K.; Lwin, K.T.; Aung, L.S. The prevalence of underweight, overweight and obesity and their related socio-demographic and lifestyle factors among adult women in Myanmar, 2015–2016. PLoS ONE 2018, 13, e0194454. [Google Scholar] [CrossRef] [Green Version]
- Das Gupta, R.; Sajal, I.H.; Hasan, M.; Sutradhar, I.; Haider, M.R.; Sarker, M. Frequency of television viewing and association with overweight and obesity among women of the reproductive age group in Myanmar: Results from a nationwide cross-sectional survey. BMJ Open 2019, 9, e024680. [Google Scholar] [CrossRef] [Green Version]
- Kamal, S.M.M.; Hassan, C.H.; Alam, G.M. Dual burden of underweight and overweight among women in Bangladesh: Patterns, prevalence, and sociodemographic correlates. J. Health Popul. Nutr. 2015, 33, 92–105. [Google Scholar]
- Rai, A.; Gurung, S.; Thapa, S.; Saville, N.M. Correlates and inequality of underweight and overweight among women of reproductive age: Evidence from the 2016 Nepal Demographic Health Survey. PLoS ONE 2019, 14, e0216644. [Google Scholar] [CrossRef]
- Sengupta, A.; Angeli, F.; Syamala, T.S.; Dagnelie, P.C.; van Schayck, C.P. Overweight and obesity prevalence among Indian women by place of residence and socio-economic status: Contrasting patterns from “underweight states” and “overweight states” of India. Soc. Sci. Med. 2015, 138, 161–169. [Google Scholar] [CrossRef]
- Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet (Lond. Engl.) 2004, 363, 157–163. [CrossRef]
- O’Donnell, O.; van Doorslaer, E.; Rannan-Eliya, R.P.; Somanathan, A.; Adhikari, S.R.; Akkazieva, B.; Harbianto, D.; Garg, C.C.; Hanvoravongchai, P.; Herrin, A.N.; et al. Who pays for health care in Asia? J. Health Econ. 2008, 27, 460–475. [Google Scholar] [CrossRef]
- Stata Cooperation. Stata 16; Stata Cooperation: College Station, TX, USA, 2019. [Google Scholar]
- Biswas, T.; Islam, M.S.; Linton, N.; Rawal, L.B. Socio-Economic Inequality of Chronic Non-Communicable Diseases in Bangladesh. PLoS ONE 2016, 11, e0167140. [Google Scholar] [CrossRef] [Green Version]
- Al Kibria, G.M.; Swasey, K.; Hasan, M.Z.; Sharmeen, A.; Day, B. Prevalence and factors associated with underweight, overweight and obesity among women of reproductive age in India. Glob. Health Res. Policy 2019, 4, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanwi, T.S.; Chakrabarty, S.; Hasanuzzaman, S.; Saltmarsh, S.; Winn, S. Socioeconomic correlates of overweight and obesity among ever-married urban women in Bangladesh. BMC Public Health 2019, 19, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishwajit, G. Household wealth status and overweight and obesity among adult women in Bangladesh and Nepal. Obes. Sci. Pract. 2017, 3, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Akil, L.; Ahmad, H.A. Effects of socioeconomic factors on obesity rates in four southern states and Colorado. Ethn. Dis. 2011, 21, 58–62. [Google Scholar]
- Powell, L.M.; Slater, S.; Mirtcheva, D.; Bao, Y.; Chaloupka, F.J. Food store availability and neighborhood characteristics in the United States. Prev. Med. (Baltim.) 2007, 44, 189–195. [Google Scholar] [CrossRef]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef]
- Jeffery, R.W.; Wing, R.R.; Sherwood, N.E.; Tate, D.F. Physical activity and weight loss: Does prescribing higher physical activity goals improve outcome? Am. J. Clin. Nutr. 2003, 78, 684–689. [Google Scholar] [CrossRef]
- Tzotzas, T.; Vlahavas, G.; Papadopoulou, S.K.; Kapantais, E.; Kaklamanou, D.; Hassapidou, M. Marital status and educational level associated to obesity in Greek adults: Data from the National Epidemiological Survey. BMC Public Health 2010, 10, 732. [Google Scholar] [CrossRef] [Green Version]
- Girard, A.W.; Self, J.L.; McAuliffe, C.; Olude, O. The effects of household food production strategies on the health and nutrition outcomes of women and young children: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 205–222. [Google Scholar] [CrossRef]
- Jones, K.M.; Specio, S.E.; Shrestha, P.; Brown, K.H.; Allen, L.H. Nutrition knowledge and practices, and consumption of vitamin A--rich plants by rural Nepali participants and nonparticipants in a kitchen-garden program. Food Nutr. Bull. 2005, 26, 198–208. [Google Scholar] [CrossRef] [Green Version]
- More, N.S.; Bapat, U.; Das, S.; Alcock, G.; Patil, S.; Porel, M.; Vaidya, L.; Fernandez, A.; Joshi, W.; Osrin, D. Community mobilization in Mumbai slums to improve perinatal care and outcomes: A cluster randomized controlled trial. PLoS Med. 2012, 9, e1001257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prost, A.; Colbourn, T.; Seward, N.; Azad, K.; Coomarasamy, A.; Copas, A.; Houweling, T.A.J.; Fottrell, E.; Kuddus, A.; Lewycka, S.; et al. Women’s groups practising participatory learning and action to improve maternal and newborn health in low-resource settings: A systematic review and meta-analysis. Lancet (Lond. Engl.) 2013, 381, 1736–1746. [Google Scholar] [CrossRef] [Green Version]
- Harris-Fry, H.A.; Paudel, P.; Harrisson, T.; Shrestha, N.; Jha, S.; Beard, B.J.; Copas, A.; Shrestha, B.P.; Manandhar, D.S.; Costello, A.M.; et al. Participatory Women’s Groups with Cash Transfers Can Increase Dietary Diversity and Micronutrient Adequacy during Pregnancy, whereas Women’s Groups with Food Transfers Can Increase Equity in Intrahousehold Energy Allocation. J. Nutr. 2018, 148, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | BMI (%) | |||
---|---|---|---|---|---|
Percentage (%) | 95% CI | Underweight (%) | Normal Weight (%) | Overweight/Obesity (%) | |
Age (in Years) *** | |||||
15–19 | 14.1 | 13.4–14.8 | 26.7 | 60.1 | 13.2 |
20–29 | 28.9 | 28.1–29.9 | 18.5 | 51.9 | 29.6 |
30–39 | 30.9 | 30.0–31.9 | 9.9 | 42.2 | 47.9 |
40–49 | 26.1 | 25.1–27.1 | 10.7 | 36.5 | 52.8 |
Education *** | |||||
No education | 12.5 | 11.0–14.2 | 14.6 | 50.5 | 34.9 |
Primary education | 41.4 | 39.6–43.2 | 13.3 | 46.2 | 40.5 |
Secondary education | 36.0 | 34.3–37.8 | 17.4 | 45.1 | 37.4 |
College and higher | 10.1 | 9.0–11.3 | 13.3 | 43.0 | 43.7 |
Employment Status *** | |||||
Unemployment | 27.3 | 25.7–29.0 | 16.1 | 44.4 | 39.5 |
Non-Manual | 25.7 | 23.9–27.5 | 10.5 | 40.3 | 49.2 |
Manual | 47.0 | 44.8–49.3 | 16.7 | 50.2 | 33.1 |
Marital Status *** | |||||
Never married | 33.1 | 32.0–34.3 | 23.2 | 53.5 | 23.3 |
Married | 60.4 | 59.2–61.6 | 10.5 | 41.8 | 47.7 |
Widowed/Divorced/Separated | 6.5 | 5.9–7.1 | 13.7 | 47.3 | 39.0 |
Media Exposure *** | |||||
No | 13.1 | 11.7–14.6 | 14.1 | 52.2 | 33.7 |
Yes | 86.9 | 85.5–88.3 | 15.1 | 45.1 | 39.8 |
Wealth index *** | |||||
Poorest | 17.7 | 16.0–19.4 | 19.3 | 54.5 | 26.2 |
Poor | 18.8 | 17.5–20.2 | 14.9 | 51.5 | 33.6 |
Middle | 20.7 | 19.2–22.2 | 15.9 | 45.3 | 38.8 |
Richer | 20.9 | 19.2–22.7 | 13.4 | 43.5 | 43.1 |
Richest | 22.0 | 19.9–24.2 | 12.0 | 37.6 | 50.4 |
Place of residence *** | |||||
Rural | 71.2 | 69.8–72.6 | 16.0 | 49.1 | 34.9 |
Urban | 28.8 | 27.4–30.2 | 12.3 | 38.5 | 49.2 |
Province of Residence *** | |||||
Naypyitaw | 2.3 | 2.0–2.7 | 16.2 | 46.8 | 37.0 |
Kachin | 2.9 | 2.4–3.4 | 10.0 | 43.4 | 46.6 |
Kayah | 0.5 | 0.4–0.6 | 8.9 | 54.5 | 36.6 |
Kayin | 2.4 | 2.1–2.6 | 13.0 | 46.2 | 40.8 |
Chin | 0.8 | 0.7–0.9 | 8.6 | 61.1 | 30.3 |
Sagaing | 11.1 | 10.3–11.9 | 12.9 | 45.8 | 41.3 |
Taninthayi | 2.2 | 2.0–2.5 | 15.5 | 42.0 | 42.5 |
Bago | 9.8 | 9.1–10.6 | 21.7 | 42.8 | 35.5 |
Magway | 8.5 | 7.8–9.3 | 18.0 | 49.7 | 32.3 |
Mandalay | 12.1 | 11.1–13.1 | 16.9 | 46.6 | 36.5 |
Mon | 3.6 | 3.3–3.9 | 14.0 | 45.4 | 40.7 |
Rakhine | 5.9 | 5.3–6.6 | 18.9 | 55.8 | 25.3 |
Yangon | 14.9 | 13.8–16.1 | 11.7 | 37.8 | 50.5 |
Shan | 10.2 | 9.1–11.4 | 7.9 | 51.3 | 40.9 |
Ayeyarwa | 12.8 | 11.8–13.8 | 17.3 | 46.6 | 36.1 |
Characteristics | Crude | Adjusted | ||||||
---|---|---|---|---|---|---|---|---|
Underweight | Overweight/Obesity | Underweight | Overweight/Obesity | |||||
Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | |
Age (in Years) | ||||||||
15–19 | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
20–29 | 1.89 *** | 1.57–2.27 | 0.19 *** | 0.16–0.24 | 1.36 * | 1.06–1.74 | 0.26 *** | 0.20–0.32 |
30–39 | 1.51 *** | 1.28–1.79 | 0.50 *** | 0.45–0.57 | 1.39 ** | 1.15–1.67 | 0.54 *** | 0.47–0.62 |
40–49 | 1.24 * | 1.04–1.48 | 1.28 *** | 1.13–1.44 | 1.27 ** | 1.07–1.52 | 1.23 ** | 1.08–1.40 |
Education | ||||||||
No education | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
Primary education | 0.99 | 0.79–1.25 | 1.27 ** | 1.11–1.45 | 0.80 | 0.64–1.00 | 1.20 * | 1.03–1.40 |
Secondary education | 1.34 * | 1.06–1.68 | 1.20 * | 1.03–1.39 | 0.97 | 0.77–1.22 | 1.25 * | 1.02–1.51 |
College and higher | 1.06 | 0.80–1.42 | 1.47 *** | 1.20–1.80 | 0.90 | 0.67–1.21 | 0.91 | 0.70–1.18 |
Employment Status | ||||||||
Unemployment | 1.39 *** | 1.17–1.65 | 0.73 *** | 0.63–0.85 | 1.42 *** | 1.18–1.71 | 0.82 * | 0.70–0.97 |
Non-Manual | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
Manual | 1.27 ** | 1.08–1.49 | 0.54 *** | 0.48–0.61 | 1.32 ** | 1.11–1.57 | 0.69 *** | 0.60–0.80 |
Marital Status | ||||||||
Never married | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
Married | 0.58 *** | 0.51–0.67 | 2.63 *** | 2.35–2.94 | 0.62 *** | 0.52–0.73 | 2.05 *** | 1.79–2.35 |
Widowed/Divorced/Separated | 0.66 ** | 0.50–0.88 | 1.90 *** | 1.56–2.31 | 0.75 | 0.55–1.02 | 1.29 * | 1.03–1.60 |
Media Exposure | ||||||||
No | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
Yes | 1.24 * | 1.00–1.53 | 0.65 *** | 1.18–1.59 | 1.16 | 0.95–1.42 | 1.00 | 0.85–1.18 |
Wealth Index | ||||||||
Poorest | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
Poor | 0.81 * | 0.67–0.99 | 1.36 *** | 1.18–1.57 | 0.77 * | 0.63–0.94 | 1.32 ** | 1.12–1.55 |
Middle | 0.99 | 0.80–1.23 | 1.78 *** | 1.52–2.10 | 0.87 | 0.70–1.08 | 1.76 *** | 1.47–2.11 |
Richer | 0.87 | 0.71–1.06 | 2.07 *** | 1.75–2.45 | 0.76 * | 0.62–0.95 | 1.91 *** | 1.58–2.30 |
Richest | 0.90 | 0.73–1.11 | 2.79 *** | 2.35–3.31 | 0.79 | 0.61–1.04 | 2.32 *** | 1.87–2.88 |
Place of Residence | ||||||||
Rural | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
Urban | 0.98 | 0.85–1.13 | 1.80 *** | 1.57–2.06 | 1.02 | 0.85–1.23 | 1.31 ** | 1.12–1.52 |
Province of Residence | ||||||||
Naypyitaw | 1.00 | - | 1.00 | - | 1.00 | - | 1.00 | - |
Kachin | 0.67 | 0.38–1.16 | 1.36 * | 1.05–1.76 | 0.65 | 0.37–1.13 | 1.35 * | 1.03–1.77 |
Kayah | 0.47 *** | 0.31–0.71 | 0.85 | 0.61–1.18 | 0.45 *** | 0.30–0.69 | 0.89 | 0.64–1.24 |
Kayin | 0.82 | 0.56–1.19 | 1.12 | 0.84–1.49 | 0.80 | 0.54–1.18 | 1.13 | 0.86–1.50 |
Chin | 0.41 *** | 0.27–0.61 | 0.63 ** | 0.45–0.87 | 0.38 *** | 0.25–0.57 | 0.70 * | 0.50–0.98 |
Sagaing | 0.81 | 0.57–1.17 | 1.14 | 0.86–1.51 | 0.80 | 0.55–1.15 | 1.15 | 0.85–1.55 |
Taninthayi | 1.06 | 0.70–1.61 | 1.28 | 0.98–1.67 | 1.02 | 0.67–1.54 | 1.39 * | 1.03–1.88 |
Bago | 1.49 * | 1.01–2.12 | 1.05 | 0.83–1.32 | 1.45 | 1.00–2.11 | 1.11 | 0.85–1.43 |
Magway | 1.05 | 0.72–1.52 | 0.82 | 0.62–1.08 | 1.04 | 0.71–1.53 | 0.88 | 0.66–1.19 |
Mandalay | 1.05 | 0.73–1.51 | 0.99 | 0.76–1.28 | 1.03 | 0.71–1.49 | 0.99 | 0.74–1.31 |
Mon | 0.89 | 0.60–1.31 | 1.13 | 0.86–1.50 | 0.84 | 0.57–1.26 | 1.11 | 0.80–1.54 |
Rakhine | 0.98 | 0.67–1.42 | 0.57 *** | 0.42–0.78 | 0.91 | 0.62–1.33 | 0.80 | 0.57–1.11 |
Yangon | 0.89 | 0.62–1.29 | 1.69 *** | 1.28–2.23 | 0.80 | 0.55–1.17 | 1.46 * | 1.08–1.96 |
Shan | 0.44 ** | 0.28–0.71 | 1.01 | 0.76–1.34 | 0.43 ** | 0.26–0.70 | 1.16 | 0.87–1.55 |
Ayeyarwa | 1.07 | 0.75–1.53 | 0.98 | 0.74–1.31 | 1.05 | 0.73–1.51 | 1.15 | 0.85–1.56 |
Variables | Poorest (Q1) | Richest (Q5) | Q1–Q5 | Q1:Q5 | Concentration Index © | Standard Error (SE) |
---|---|---|---|---|---|---|
(%) | (%) | |||||
Total | 19.3 | 12.0 | 7.3 | 1.61 | −0.06 *** | 0.01 |
Age (in Years) | ||||||
15–19 | 21.8 | 31.0 | −9.2 | 0.70 | 0.07 * | 0.03 |
20–29 | 20.4 | 15.3 | 5.1 | 1.33 | −0.05 ** | 0.02 |
30–39 | 13.9 | 7.2 | 6.7 | 1.93 | −0.06 ** | 0.01 |
40–49 | 24.4 | 4.6 | 19.8 | 5.30 | −0.13 *** | 0.02 |
Education | ||||||
No education | 19.5 | 10.0 | 9.5 | 1.95 | −0.1 *** | 0.03 |
Primary education | 18.2 | 9.9 | 8.3 | 1.84 | −0.08 *** | 0.01 |
Secondary education | 23.2 | 13.9 | 9.3 | 1.67 | −0.07 *** | 0.02 |
College and higher | 22.5 | 10.8 | 11.7 | 2.08 | −0.1 *** | 0.03 |
Employment Status | ||||||
Unemployment | 18.1 | 13.6 | 4.5 | 1.33 | −0.05 ** | 0.02 |
Non-Manual | 14.6 | 10.2 | 4.4 | 1.43 | 0.02 | 0.01 |
Manual | 20.7 | 13.5 | 7.2 | 1.53 | −0.06 *** | 0.01 |
Marital Status | ||||||
Never married | 27.1 | 20.0 | 7.1 | 1.36 | −0.05 ** | 0.02 |
Married | 16.6 | 5.8 | 10.8 | 2.86 | −0.1 *** | 0.01 |
Widowed/Divorced/Separated | 23.4 | 8.8 | 14.6 | 2.66 | −0.13 *** | 0.03 |
Media Exposure | ||||||
No | 18.1 | 8.5 | 9.6 | 2.13 | −0.08 *** | 0.02 |
Yes | 19.9 | 12.2 | 7.7 | 1.63 | −0.06 *** | 0.01 |
Place of Residence | ||||||
Rural | 19.3 | 14.3 | 5 | 1.35 | −0.05 *** | 0.01 |
Urban | 20.7 | 11.3 | 9.4 | 1.83 | −0.04 * | 0.02 |
Province of Residence | ||||||
Naypyitaw | 18.8 | 12.9 | 5.9 | 1.46 | −0.06 | 0.04 |
Kachin | 13.5 | 6.3 | 7.2 | 2.14 | −0.04 | 0.03 |
Kayah | 2.6 | 8.5 | −5.9 | 0.31 | 0.03 | 0.02 |
Kayin | 19.3 | 8.9 | 10.4 | 2.17 | −0.09 * | 0.04 |
Chin | 14.8 | 5.1 | 9.7 | 2.90 | −0.09 *** | 0.02 |
Sagaing | 16.3 | 8.1 | 8.2 | 2.01 | −0.04 | 0.02 |
Taninthayi | 15.2 | 19.4 | −4.2 | 0.78 | 0.02 | 0.04 |
Bago | 27.4 | 12.4 | 15 | 2.21 | −0.08 * | 0.04 |
Magway | 23.7 | 16.7 | 7 | 1.42 | −0.04 | 0.03 |
Mandalay | 24 | 15.4 | 8.6 | 1.56 | −0.07 * | 0.03 |
Mon | 13.4 | 9.1 | 4.3 | 1.47 | 0.04 | 0.03 |
Rakhine | 20.6 | 16.1 | 4.5 | 1.28 | −0.04 | 0.04 |
Yangon | 17.9 | 10.4 | 7.5 | 1.72 | −0.04 * | 0.02 |
Shan | 7.7 | 9.9 | −2.2 | 0.78 | 0.02 | 0.03 |
Ayeyarwa | 21 | 13.8 | 7.2 | 1.52 | −0.1 *** | 0.02 |
Variables | Poorest (Q1) | Richest (Q5) | Q5–Q1 | Q5:Q1 | Concentration Ind©(C) | Standard Error (SE) |
---|---|---|---|---|---|---|
(%) | (%) | |||||
Total | 26.2 | 50.4 | 24.2 | 1.92 | 0.19 *** | 0.01 |
Age (in Years) | ||||||
15–19 | 10.1 | 18.0 | 7.9 | 1.78 | 0.07 * | 0.03 |
20–29 | 24.5 | 35.3 | 10.8 | 1.44 | 0.08 *** | 0.02 |
30–39 | 33.7 | 59.0 | 25.3 | 1.75 | 0.22 *** | 0.02 |
40–49 | 27.5 | 72.4 | 44.9 | 2.63 | 0.34 *** | 0.02 |
Education | ||||||
No education | 23 | 57.5 | 34.5 | 2.50 | 0.26 *** | 0.03 |
Primary education | 28.7 | 61.1 | 32.4 | 2.13 | 0.24 *** | 0.02 |
Secondary education | 23.1 | 47.6 | 24.5 | 2.06 | 0.17 *** | 0.02 |
College and higher | 5.1 | 47.4 | 42.3 | 9.29 | 0.16 *** | 0.04 |
Employment Status | ||||||
Unemployment | 28.5 | 49.2 | 20.7 | 1.73 | 0.18 *** | 0.03 |
Non-Manual | 31.3 | 52.4 | 21.1 | 1.67 | 0.09 *** | 0.03 |
Manual | 24.3 | 47.0 | 22.7 | 1.93 | 0.15 *** | 0.02 |
Marital Status | ||||||
Never married | 10.3 | 31.9 | 21.6 | 3.10 | 0.16 *** | 0.02 |
Married | 31.4 | 64.9 | 33.5 | 2.07 | 0.27 *** | 0.02 |
Widowed/Divorced/Separated | 19.8 | 57.5 | 37.7 | 2.90 | 0.34 *** | 0.05 |
Media Exposure | ||||||
No | 23.4 | 49.7 | 26.3 | 2.12 | 0.23 *** | 0.03 |
Yes | 27.4 | 50.4 | 23.0 | 1.84 | 0.18 *** | 0.02 |
Place of Residence | ||||||
Rural | 26 | 45.2 | 19.2 | 1.74 | 0.14 *** | 0.02 |
Urban | 30.4 | 52.1 | 21.7 | 1.71 | 0.1 *** | 0.03 |
Province of Residence | ||||||
Naypyitaw | 19.9 | 52.2 | 32.3 | 2.62 | 0.28 *** | 0.03 |
Kachin | 33.3 | 55.9 | 22.6 | 1.68 | 0.13 * | 0.05 |
Kayah | 29.3 | 46.0 | 16.7 | 1.57 | 0.14 * | 0.06 |
Kayin | 26.5 | 51.4 | 24.9 | 1.94 | 0.23 *** | 0.04 |
Chin | 11.9 | 59.2 | 47.3 | 4.97 | 0.33 *** | 0.03 |
Sagaing | 27.3 | 59.0 | 31.7 | 2.16 | 0.17 *** | 0.04 |
Taninthayi | 33.9 | 44.2 | 10.3 | 1.30 | 0.1 * | 0.04 |
Bago | 24 | 45.5 | 21.5 | 1.90 | 0.16 *** | 0.04 |
Magway | 22 | 37.0 | 15.0 | 1.68 | 0.1 * | 0.04 |
Mandalay | 24.3 | 45.7 | 21.4 | 1.88 | 0.18 *** | 0.04 |
Mon | 34.2 | 40.4 | 6.2 | 1.18 | 0.05 | 0.05 |
Rakhine | 16.4 | 51.9 | 35.5 | 3.16 | 0.25 *** | 0.03 |
Yangon | 40.4 | 51.5 | 11.1 | 1.27 | 0.1 * | 0.05 |
Shan | 23.7 | 54.8 | 31.1 | 2.31 | 0.23 *** | 0.05 |
Ayeyarwa | 31.4 | 40.0 | 8.6 | 1.27 | 0.13 *** | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.D.; Haider, M.R.; Das, S. Factors and Inequality of Underweight and Overweight among Women of Reproductive Age in Myanmar: Evidence from the Demographic Health Survey 2015–2016. Epidemiologia 2020, 1, 31-43. https://doi.org/10.3390/epidemiologia1010006
Gupta RD, Haider MR, Das S. Factors and Inequality of Underweight and Overweight among Women of Reproductive Age in Myanmar: Evidence from the Demographic Health Survey 2015–2016. Epidemiologia. 2020; 1(1):31-43. https://doi.org/10.3390/epidemiologia1010006
Chicago/Turabian StyleGupta, Rajat Das, Mohammad Rifat Haider, and Subhasish Das. 2020. "Factors and Inequality of Underweight and Overweight among Women of Reproductive Age in Myanmar: Evidence from the Demographic Health Survey 2015–2016" Epidemiologia 1, no. 1: 31-43. https://doi.org/10.3390/epidemiologia1010006
APA StyleGupta, R. D., Haider, M. R., & Das, S. (2020). Factors and Inequality of Underweight and Overweight among Women of Reproductive Age in Myanmar: Evidence from the Demographic Health Survey 2015–2016. Epidemiologia, 1(1), 31-43. https://doi.org/10.3390/epidemiologia1010006