The Role of Follicle-Stimulating Hormone in Bone Loss During Menopause Transition: A Narrative Review
Abstract
1. Introduction
2. Hormonal Changes During Perimenopause
2.1. Definition and Stages of Perimenopause
2.2. Fluctuations in Hormone Levels During Perimenopause
3. Bone Loss in Perimenopausal Women
3.1. Timing and Magnitude of BMD Loss
3.2. Bone Mineral Density
3.3. Bone Turnover Markers
3.4. Factors Influencing Bone Loss
4. The Potential Role of FSH Beyond Reproduction
5. Associations Between FSH and Bone Health During Perimenopause
5.1. Studies Evaluating FSH and Bone Health
5.1.1. Association Between FSH and BMD
5.1.2. Association Between BTMs
5.2. Summary of Findings
6. Clinical Implications
7. Limitations of Current Evidence and Future Direction
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMH | Anti-Müllerian hormone |
| BAP | Bone alkaline phosphatase |
| BMD | Bone mineral density |
| BMI | Body mass index |
| BTMs | Bone turnover markers |
| CTX | C-telopeptide of type 1 collagen |
| DXA | Dual-energy X-ray absorptiometry |
| E2 | Estradiol |
| FMP | Final menstrual period |
| FSH | Follicle-stimulating hormone |
| FSHR | FSH receptor |
| HPG | Hypothalamic-pituitary-gonadal |
| LH | Luteinizing hormone |
| NTX | N-telopeptide of type 1 collagen |
| OC | Osteocalcin |
| PINP | Procollagen I N-propeptide |
| SHBG | Sex hormone-binding globulin |
| SWAN | Study of Women’s Health Across the Nations |
References
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Talaulikar, V. Menopause transition: Physiology and symptoms. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 81, 3–7. [Google Scholar] [CrossRef]
- Lizneva, D.; Yuen, T.; Sun, L.; Kim, S.M.; Atabiekov, I.; Munshi, L.B.; Epstein, S.; New, M.; Zaidi, M. Emerging concepts in the epidemiology, pathophysiology, and clinical care of osteoporosis across the menopausal transition. Matrix Biol. 2018, 71–72, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Karlamangla, A.S.; Burnett-Bowie, S.A.M.; Crandall, C.J. Bone Health during the Menopause Transition and Beyond. Obstet. Gynecol. Clin. N. Am. 2018, 45, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, M.; Turner, C.H.; Canalis, E.; Pacifici, R.; Sun, L.; Iqbal, J.; Guo, X.E.; Silverman, S.; Epstein, S.; Rosen, C.J. Bone loss or lost bone: Rationale and recommendations for the diagnosis and treatment of early postmenopausal bone loss. Curr. Osteoporos. Rep. 2009, 7, 118–126. [Google Scholar] [CrossRef]
- Sowers, M.R.; Zheng, H.; Jannausch, M.L.; McConnell, D.; Nan, B.; Harlow, S.; Randolph, J.F. Amount of Bone Loss in Relation to Time around the Final Menstrual Period and Follicle-Stimulating Hormone Staging of the Transmenopause. J. Clin. Endocrinol. Metab. 2010, 95, 2155–2162. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone Mineral Density Changes during the Menopause Transition in a Multiethnic Cohort of Women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Park, Y.M.; Jankowski, C.M.; Swanson, C.M.; Hildreth, K.L.; Kohrt, W.M.; Moreau, K.L. Bone Mineral Density in Different Menopause Stages is Associated with Follicle Stimulating Hormone Levels in Healthy Women. Int. J. Environ. Res. Public Health 2021, 18, 1200. [Google Scholar] [CrossRef]
- Greendale, G.A.; Sowers, M.; Han, W.; Huang, M.; Finkelstein, J.S.; Crandall, C.J.; Lee, J.S.; Karlamangla, A.S. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: Results from the Study of Women’s Health Across the Nation (SWAN). J. Bone Miner. Res. 2012, 27, 111–118. [Google Scholar] [CrossRef]
- Seifert-Klauss, V.; Fillenberg, S.; Schneider, H.; Luppa, P.; Mueller, D.; Kiechle, M. Bone loss in premenopausal, perimenopausal and postmenopausal women: Results of a prospective observational study over 9 years. Climacteric 2012, 15, 433–440. [Google Scholar] [CrossRef]
- Guthrie, J.; Dennerstein, L.; Taffe, J.R.; Lehert, P.; Burger, H. The menopausal transition: A 9-year prospective population-based study. The Melbourne Women’s Midlife Health Project. Climacteric 2004, 7, 375–389. [Google Scholar] [CrossRef]
- Gutierrez-Buey, G.; Restituto, P.; Botella, S.; Monreal, I.; Colina, I.; Rodríguez-Fraile, M.; Calleja, A.; Varo, N. Trabecular bone score and bone remodelling markers identify perimenopausal women at high risk of bone loss. Clin. Endocrinol. 2019, 91, 391–399. [Google Scholar] [CrossRef]
- Wright, V.J.; Schwartzman, J.D.; Itinoche, R.; Wittstein, J. The musculoskeletal syndrome of menopause. Climacteric 2024, 27, 466–472. [Google Scholar] [CrossRef]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef]
- Zaidi, M.; Iqbal, J.; Blair, H.C.; Zallone, A.; Davies, T.; Sun, L. Paradigm Shift in the Pathophysiology of Postmenopausal and Thyrotoxic Osteoporosis. Mt. Sinai J. Med. J. Transl. Pers. Med. 2009, 76, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Gera, S.; Kuo, T.C.; Gumerova, A.A.; Korkmaz, F.; Sant, D.; DeMambro, V.; Sudha, K.; Padilla, A.; Prevot, G.; Munitz, J.; et al. FSH-blocking therapeutic for osteoporosis. eLife 2022, 11, e78022. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Peng, Y.; Sharrow, A.C.; Iqbal, J.; Zhang, Z.; Papachristou, D.J.; Zaidi, S.; Zhu, L.-L.; Yaroslavskiy, B.B.; Zhou, H.; et al. FSH directly regulates bone mass. Cell 2006, 125, 247–260. [Google Scholar] [CrossRef]
- Zhu, L.L.; Tourkova, I.; Yuen, T.; Robinson, L.J.; Bian, Z.; Zaidi, M.; Blair, H.C. Blocking FSH action attenuates osteoclastogenesis. Biochem. Biophys. Res. Commun. 2012, 422, 54–58. [Google Scholar] [CrossRef]
- Wu, X.Y.; Yu, S.J.; Zhang, H.; Xie, H.; Luo, X.H.; Peng, Y.Q.; Yuan, L.Q.; Dai, R.C.; Sheng, Z.F.; Liu, S.P.; et al. Early bone mineral density decrease is associated with FSH and LH, not estrogen. Clin. Chim. Acta 2013, 415, 69–73. [Google Scholar] [CrossRef]
- Lu, B.; Han, Q.; Zhao, S.; Ding, S.; Bao, G.; Liu, Y. Associations between hormones, metabolic markers, and bone mass in perimenopausal and postmenopausal women. J. Bone Miner. Metab. 2025, 43, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pi, Y.Z.; Zhang, H.; Dai, R.C.; Yuan, L.Q.; Sheng, Z.F.; Wu, X. Association of follicle-stimulating hormone with bone turnover markers and bone mineral density in Chinese women across the menopausal transition. J. Clin. Lab. Anal. 2023, 37, e24899. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Su, B.; Liu, Z.; Chen, Y. Follicle-stimulating hormone and blood lead levels with bone mineral density and the risk of fractures in pre- and postmenopausal women. Front. Endocrinol. 2022, 13, 1054048. [Google Scholar] [CrossRef]
- Uehara, M.; Wada-Hiraike, O.; Hirano, M.; Koga, K.; Yoshimura, N.; Tanaka, S.; Osuga, Y. Relationship between bone mineral density and ovarian function and thyroid function in perimenopausal women with endometriosis: A prospective study. BMC Womens Health 2022, 22, 134. [Google Scholar] [CrossRef] [PubMed]
- Shieh, A.; Greendale, G.A.; Cauley, J.A.; Karvonen-Gutierrez, C.; Crandall, C.J.; Karlamangla, A.S. Estradiol and Follicle-Stimulating Hormone as Predictors of Onset of Menopause Transition-Related Bone Loss in Pre- and Perimenopausal Women. J. Bone Miner. Res. 2019, 34, 2246–2253. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Song, Y.; Li, C.; Wang, E.; Zheng, D.; Qu, F.; Zhou, J. Bone turnover alterations across the menopausal transition in south-eastern Chinese women. Climacteric 2016, 19, 400–405. [Google Scholar] [CrossRef]
- Crandall, C.J.; Tseng, C.H.; Karlamangla, A.S.; Finkelstein, J.S.; Randolph, J.F.; Thurston, R.C.; Huang, M.-H.; Zheng, H.; Greendale, G.A. Serum Sex Steroid Levels and Longitudinal Changes in Bone Density in Relation to the Final Menstrual Period. J. Clin. Endocrinol. Metab. 2013, 98, E654–E663. [Google Scholar] [CrossRef]
- Cheung, E.; Tsang, S.; Bow, C.; Soong, C.; Yeung, S.; Loong, C.; Cheung, C.-L.; Kan, A.; Lo, S.; Tam, S.; et al. Bone loss during menopausal transition among southern Chinese women. Maturitas 2011, 69, 50–56. [Google Scholar] [CrossRef]
- Sowers, M.R.; Jannausch, M.; McConnell, D.; Little, R.; Greendale, G.A.; Finkelstein, J.S.; Neer, R.M.; Johnston, J.; Ettinger, B. Hormone predictors of bone mineral density changes during the menopausal transition. J. Clin. Endocrinol. Metab. 2006, 91, 1261–1267. [Google Scholar] [CrossRef]
- Yasui, T.; Uemura, H.; Tomita, J.; Miyatani, Y.; Yamada, M.; Miura, M.; Irahara, M. Association of serum undercarboxylated osteocalcin with serum estradiol in pre-, peri- and early post-menopausal women. J. Endocrinol. Investig. 2006, 29, 913–918. [Google Scholar] [CrossRef]
- Vural, F.; Vural, B.; Yucesoy, I.; Badur, S. Ovarian aging and bone metabolism in menstruating women aged 35–50 years. Maturitas 2005, 52, 147–153. [Google Scholar] [CrossRef]
- Sowers, M.R.; Greendale, G.A.; Bondarenko, I.; Finkelstein, J.S.; Cauley, J.A.; Neer, R.M.; Ettinger, B. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos. Int. 2003, 14, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhu, S.; Antaris, A.L.; Chen, H.; Xiao, Y.; Lu, X.; Jiang, L.; Diao, S.; Yu, K.; Wang, Y.; et al. Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem. Sci. 2017, 8, 3703–3711. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Yu, C.; Zhang, X.; Zhang, H.; Guan, Q.; Zhao, J.; Xu, J. Follicle-Stimulating Hormone Increases the Risk of Postmenopausal Osteoporosis by Stimulating Osteoclast Differentiation. PLoS ONE 2015, 10, e0134986. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Liu, P.; Yuen, T.; Haider, S.; He, J.; Romero, R.; Chen, H.; Bloch, M.; Kim, S.-M.; Lizneva, D.; et al. Epitope-specific monoclonal antibodies to FSHβ increase bone mass. Proc. Natl. Acad. Sci. USA 2018, 115, 2192–2197. [Google Scholar] [CrossRef]
- Robinson, L.J.; Tourkova, I.; Wang, Y.; Sharrow, A.C.; Landau, M.S.; Yaroslavskiy, B.B.; Sun, L.; Zaidi, M.; Blair, H.C. FSH-Receptor Isoforms and FSH-dependent Gene Transcription in Human Monocytes and Osteoclasts. Biochem. Biophys. Res. Commun. 2010, 394, 12–17. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Zhu, L.L.; Peng, Y.; Liu, X.; Li, J.; Agrawal, M.; Robinson, L.J.; Iqbal, J.; Blair, H.C.; et al. Further Evidence for Direct Pro-Resorptive Actions of FSH. Biochem. Biophys. Res. Commun. 2010, 394, 6–11. [Google Scholar] [CrossRef]
- Chin, K.Y. The Relationship between Follicle-stimulating Hormone and Bone Health: Alternative Explanation for Bone Loss beyond Oestrogen? Int. J. Med. Sci. 2018, 15, 1373–1383. [Google Scholar] [CrossRef]
- Zhu, L.L.; Blair, H.; Cao, J.; Yuen, T.; Latif, R.; Guo, L.; Tourkova, I.L.; Li, J.; Davies, T.F.; Sun, L.; et al. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl. Acad. Sci. USA 2012, 109, 14574–14579. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cheng, Y.; Xu, W.; Bian, Z. Protective effects of follicle-stimulating hormone inhibitor on alveolar bone loss resulting from experimental periapical lesions in ovariectomized rats. J. Endod. 2010, 36, 658–663. [Google Scholar] [CrossRef]
- Mills, E.G.; Yang, L.; Nielsen, M.F.; Kassem, M.; Dhillo, W.S.; Comninos, A.N. The Relationship Between Bone and Reproductive Hormones Beyond Estrogens and Androgens. Endocr. Rev. 2021, 42, 691–719. [Google Scholar] [CrossRef]
- Khosla, S. Estrogen Versus FSH Effects on Bone Metabolism: Evidence from Interventional Human Studies. Endocrinology 2020, 161, bqaa111. [Google Scholar] [CrossRef]
- Agrawal, M.; Zhu, G.; Sun, L.; Zaidi, M.; Iqbal, J. The Role of FSH and TSH in Bone Loss and Its Clinical Relevance. Curr. Osteoporos. Rep. 2010, 8, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.G.; Hale, G.E.; Dennerstein, L.; Robertson, D.M. Cycle and hormone changes during perimenopause: The key role of ovarian function. Menopause 2008, 15, 603–612. [Google Scholar] [CrossRef]
- Santoro, N. Perimenopause: From Research to Practice. J. Womens Health 2016, 25, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J. Executive summary of the Stages of Reproductive Aging Workshop +10: Addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012, 97, 1159–1168. [Google Scholar] [CrossRef]
- Brinton, R.D.; Yao, J.; Yin, F.; Mack, W.J.; Cadenas, E. Perimenopause as a neurological transition state. Nat. Rev. Endocrinol. 2015, 11, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Rodriguez, A.; Kauffman, A.S.; Cherrington, B.D.; Borges, C.S.; Roepke, T.A.; Laconi, M. Emerging insights into Hypothalamic-pituitary-gonadal (HPG) axis regulation and interaction with stress signaling. J. Neuroendocr. 2018, 30, e12590. [Google Scholar] [CrossRef]
- Butler, L.; Santoro, N. The reproductive endocrinology of the menopausal transition. Steroids 2011, 76, 627–635. [Google Scholar] [CrossRef]
- Delamater, L.; Santoro, N. Management of the Perimenopause. Clin. Obstet. Gynecol. 2018, 61, 419–432. [Google Scholar] [CrossRef]
- Prior, J.C.; Hitchcock, C.L. The endocrinology of perimenopause: Need for a paradigm shift. Front. Biosci. 2011, 3, 474–486. [Google Scholar] [CrossRef]
- Randolph, J.F., Jr.; Zheng, H.; Sowers, M.R.; Crandall, C.; Crawford, S.; Gold, E.B.; Vuga, M. Change in follicle-stimulating hormone and estradiol across the menopausal transition: Effect of age at the final menstrual period. J. Clin. Endocrinol. Metab. 2011, 96, 746–754. [Google Scholar] [CrossRef]
- Endocrinology of the Perimenopausal Woman|GLOWM [Internet]. Available online: http://www.glowm.com/section-view/heading/Endocrinology of the Perimenopausal Woman/item/82 (accessed on 2 May 2025).
- Grub, J.; Süss, H.; Willi, J.; Ehlert, U. Steroid Hormone Secretion over the Course of the Perimenopause: Findings from the Swiss Perimenopause Study. Front. Glob. Womens Health 2021, 2, 774308. [Google Scholar] [CrossRef]
- Ji, M.X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar] [CrossRef]
- Riggs, B.L.; Melton, L.J.I.I.I.; Robb, R.A.; Camp, J.J.; Atkinson, E.J.; McDaniel, L.; Amin, S.; Rouleau, P.A.; Khosla, S. A Population-Based Assessment of Rates of Bone Loss at Multiple Skeletal Sites: Evidence for Substantial Trabecular Bone Loss in Young Adult Women and Men1. J. Bone Miner. Res. 2008, 23, 205–214. [Google Scholar] [CrossRef]
- Haseltine, K.N.; Chukir, T.; Smith, P.J.; Jacob, J.T.; Bilezikian, J.P.; Farooki, A. Bone Mineral Density: Clinical Relevance and Quantitative Assessment. J. Nucl. Med. 2021, 62, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Roberts, C.C.; Bencardino, J.T.; Arnold, E.; Baccei, S.J.; Cassidy, R.C.; Chang, E.Y.; Fox, M.G.; Greenspan, B.S.; Gyftopoulos, S.; et al. ACR Appropriateness Criteria® Osteoporosis and Bone Mineral Density. J. Am. Coll. Radiol. 2017, 14, S189–S202. [Google Scholar] [CrossRef] [PubMed]
- Warriner, A.H.; Patkar, N.M.; Curtis, J.R.; Delzell, E.; Gary, L.; Kilgore, M.; Saag, K. Which Fractures Are Most Attributable to Osteoporosis? J. Clin. Epidemiol. 2011, 64, 46–53. [Google Scholar] [CrossRef] [PubMed]
- van Oostwaard, M.; Marques, A. Osteoporosis and the Nature of Fragility Fracture: An Overview. In Fragility Fracture and Orthogeriatric Nursing: Holistic Care and Management of the Fragility Fracture and Orthogeriatric Patient, 1st ed.; Hertz, K., Santy-Tomlinson, J., Eds.; Springer: Cham, Switzerland, 2018; pp. 17–34. [Google Scholar] [CrossRef]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef]
- DeSapri, K.T.; Brook, R. To scan or not to scan? DXA in postmenopausal women. Clevel. Clin. J. Med. 2020, 87, 205–210. [Google Scholar] [CrossRef]
- Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr. Rev. 2022, 44, 417–473. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chen, L.R.; Chen, K.H. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef]
- Thapa, S.; Nandy, A.; Rendina-Ruedy, E. Endocrinal metabolic regulation on the skeletal system in post-menopausal women. Front. Physiol. 2022, 13, 1052429. [Google Scholar] [CrossRef]
- Hsu, S.H.; Chen, L.R.; Chen, K.H. Primary Osteoporosis Induced by Androgen and Estrogen Deficiency: The Molecular and Cellular Perspective on Pathophysiological Mechanisms and Treatments. Int. J. Mol. Sci. 2024, 25, 12139. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, R.; Tulay, P. The Interactions between Bone Remodelling, Estrogen Hormone and EPH Family Genes. Crit. Rev. Eukaryot. Gene Expr. 2018, 28, 135–138. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, K.; Li, R.M.; Li, J.N.; Gao, S.F.; Ma, L.N. Association between testosterone levels and bone mineral density in females aged 40–60 years from NHANES 2011–2016. Sci. Rep. 2022, 12, 16426. [Google Scholar] [CrossRef]
- Aggarwal, N.; Raveendran, A.; Khandelwal, N.; Sen, R.K.; Thakur, J.S.; Dhaliwal, L.K.; Singla, V.; Manoharan, S.R.R. Prevalence and related risk factors of osteoporosis in peri- and postmenopausal Indian women. J. Mid-Life Health 2011, 2, 81–85. [Google Scholar] [CrossRef]
- Unnanuntana, A.; Rebolledo, B.J.; Michael Khair, M.; DiCarlo, E.F.; Lane, J.M. Diseases Affecting Bone Quality: Beyond Osteoporosis. Clin. Orthop. Relat. Res. 2011, 469, 2194–2206. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P. Drugs Causing Bone Loss. In Bone Regulators and Osteoporosis Therapy; Handbook of Experimental Pharmacology; Stern, P.H., Ed.; Springer: Cham, Switzerland, 2020; Volume 262, pp. 475–497. [Google Scholar]
- Straub, R.H.; Cutolo, M.; Pacifici, R. Evolutionary medicine and bone loss in chronic inflammatory diseases—A theory of inflammation-related osteopenia. Semin. Arthritis Rheum. 2015, 45, 220–228. [Google Scholar] [CrossRef]
- Bhartiya, D.; Patel, H. An overview of FSH-FSHR biology and explaining the existing conundrums. J. Ovarian Res. 2021, 14, 144. [Google Scholar] [CrossRef]
- Taneja, C.; Gera, S.; Kim, S.; Iqbal, J.; Yuen, T.; Zaidi, M. FSH–metabolic circuitry and menopause. J. Mol. Endocrinol. 2019, 63, R73–R80. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ling, Y.; Kuang, H. Research progress on FSH-FSHR signaling in the pathogenesis of non-reproductive diseases. Front. Cell Dev. Biol. 2024, 12, 1506450. [Google Scholar] [CrossRef]
- Liu, P.; Ji, Y.; Yuen, T.; Rendina-Ruedy, E.; DeMambro, V.E.; Dhawan, S.; Abu-Amer, W.; Izadmehr, S.; Zhou, B.; Shin, A.C.; et al. Blocking FSH Induces Thermogenic Adipose Tissue and Reduces Body Fat. Nature 2017, 546, 107–112. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Wei, D.; Chen, Y. Associations of Serum Follicle-Stimulating Hormone and Luteinizing Hormone Levels with Fat and Lean Mass during Menopausal Transition. Obes. Facts 2023, 16, 184–193. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, Y.; Du, Y.; Jin, X.; Zhang, Z. Follicle stimulating hormone, its association with glucose and lipid metabolism during the menopausal transition. J. Obstet. Gynaecol. Res. 2020, 46, 1419–1424. [Google Scholar] [CrossRef]
- Mattick, L.J.; Bea, J.W.; Hovey, K.M.; Wactawski-Wende, J.; Cauley, J.A.; Crandall, C.J.; Tian, L.; Ochs-Balcom, H.M. Follicle-stimulating hormone is associated with low bone mass in postmenopausal women. Osteoporos. Int. 2023, 34, 693–701. [Google Scholar] [CrossRef]
- Baron, R. FSH versus estrogen: Who’s guilty of breaking bones? Cell Metab. 2006, 3, 302–305. [Google Scholar] [CrossRef]
- Chen, J.; Liao, Y.; Sheng, Y.; Yao, H.; Li, T.; He, Z.; Ye, W.W.Y.; Yin, M.; Tang, H.; Zhao, Y.; et al. FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD+ axis. Metabolism 2025, 165, 156147. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Z.; He, P.; Zhou, J. Possible mechanisms underlying the regulation of postmenopausal osteoporosis by follicle-stimulating hormone. Heliyon 2024, 10, e35405. [Google Scholar] [CrossRef]
- Cannon, J.G.; Cortez-Cooper, M.; Meaders, E.; Stallings, J.; Haddow, S.; Kraj, B.; Sloan, G.; Mulloy, A. Follicle-stimulating hormone, interleukin-1, and bone density in adult women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R790–R798. [Google Scholar] [CrossRef]
- Iqbal, J.; Sun, L.; Kumar, T.R.; Blair, H.C.; Zaidi, M. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc. Natl. Acad. Sci. USA 2006, 103, 14925–14930. [Google Scholar] [CrossRef]
- Cannon, J.G.; Kraj, B.; Sloan, G. Follicle-stimulating hormone promotes RANK expression on human monocytes. Cytokine 2011, 53, 141–144. [Google Scholar] [CrossRef]
- Wu, Y.; Torchia, J.; Yao, W.; Lane, N.E.; Lanier, L.L.; Nakamura, M.C.; Humphrey, M.B. Bone Microenvironment Specific Roles of ITAM Adapter Signaling during Bone Remodeling Induced by Acute Estrogen-Deficiency. PLoS ONE 2007, 2, e586. [Google Scholar] [CrossRef] [PubMed]
- Sowers, M.R.; Finkelstein, J.S.; Ettinger, B.; Bondarenko, I.; Neer, R.M.; Cauley, J.A.; Sherman, S.; Greendale, G. The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos. Int. 2003, 14, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Kawai, H.; Furuhashi, M.; Suganuma, N. Serum follicle-stimulating hormone level is a predictor of bone mineral density in patients with hormone replacement therapy. Arch. Gynecol. Obstet. 2004, 269, 192–195. [Google Scholar] [CrossRef]
| Author (Year) | Study Design | Population | Mean Age (Years) | Mean FSH Level (IU/L) | Mean E2 Level (pmol/L) | Measured Bone Outcome | Main Findings |
|---|---|---|---|---|---|---|---|
| Li et al. (2023) [21] | Cross-sectional | 487 women in menopause transition | 50 ± 8.5 | 23.2 ± 19.9 | - | BAP, OC, CTX, NTX; BMD, LS & total hip | Higher FSH levels were independently associated with increased BTMs (r = 0.339–0.583, p < 0.001) and decreased BMD (r = −0.629 and −0.514, p < 0.001) |
| Uehara et al. (2022) [23] | Prospective | 207 perimenopausal women with endometriosis | 45.02 ± 2.73 | 33.42 ± 41.84 | 341.36 ± 394.6 | BMD, LS | High FSH levels were associated with decreased BMD (r = −0.3126, p < 0.0001) |
| Shieh et al. (2019) [24] | Longitudinal (SWAN data) | 1559 pre- and perimenopausal women | 46.1 ± 2.6 | - | - | BMD, LS & FN | Both lower E2 and greater FSH values were associated with greater risk of imminent bone loss, independent of relevant clinical risk factors (p < 0.0001) |
| Ma et al. (2016) [25] | Cross-sectional | 464 women in menopause transition | 46.93 ± 0.30 | 57.68 ± 1.72 | 132.01 ± 11.12 | CTX, PINP | Level of FSH was independently related to CTX (r = 0.380, p < 0.01) and PINP (r = 0.272, p < 0.01) |
| Crandall et al. (2013) [26] | Longitudinal (SWAN cohort) | 720 pre- and early perimenopausal women | 46.21 ± 2.53 | - | - | BMD, LS & FN | The only hormonal predictor significantly associated with FN bone loss was FSH |
| Wu et al. (2013) [19] | Cross-sectional | 368 women in menopause transition | - | - | - | BMD, LS, left hip & left forearm | Decreased rate of BMD was significantly negatively correlated with FSH (r = −0.429 to −0.622, all p = 0.000) |
| Seifert-Klauss et al. (2012) [10] | Prospective observational | 50 women in menopause transition | 48.3 ± 5.4 | 74.1 ± 21.0 | 65.35 ± 90,7 | BAP, OC, CTX; BMD, LS | Increased FSH levels were associated with accelerated BMD loss (r = 0.5; p = 0.01) |
| Cheung et al. (2011) [27] | Prospective | 160 women in menopause transition | 47.7 ± 2.2 | 27.73 ± 32 | 238.89 ± 306 | BMD, LS, FN & total hip | Higher baseline FSH levels predicted more rapid bone loss; FSH was an independent predictor of BMD decline at FN (p = 0.034) and total hip (p = 0.022) |
| Sowers et al. (2006) [28] | Longitudinal (SWAN data) | 2311 pre- and early perimenopausal women | 46.4 ± 2.7 | 21.4 ± 21.5 | 244.9 ± 200.8 | BMD, LS, FN & total hip | Loss of BMD at the LS and hip was most strongly related to the interaction between baseline FSH and its longitudinal changes, rather than E2 levels or changes |
| Vural et al. (2005) [30] | Cross-sectional | 87 women before menopause | 41.6 ± 3.9 | - | - | NTX, OC; BMD, LS & FN | Higher gonadotropin levels, independent from age, were correlated with increased bone resorption (p = 0.015, R2 = 0.190) |
| Sowers et al. (2003) [31] | Longitudinal (SWAN data) | 2375 pre- and early perimenopausal women | 46.4 ± 2.7 | 24.1 ± 25.4 | 276.45 ± 280.12 | OC, NTX; BMD, LS | Higher FSH levels, but not other reproductive hormones, were positively associated with higher NTX (partial r2 = 2.1%, p < 0.0001) and OC concentrations (partial r2 = 4.1%, p < 0.0001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jugulytė, N.; Bartkevičienė, D. The Role of Follicle-Stimulating Hormone in Bone Loss During Menopause Transition: A Narrative Review. Endocrines 2025, 6, 54. https://doi.org/10.3390/endocrines6040054
Jugulytė N, Bartkevičienė D. The Role of Follicle-Stimulating Hormone in Bone Loss During Menopause Transition: A Narrative Review. Endocrines. 2025; 6(4):54. https://doi.org/10.3390/endocrines6040054
Chicago/Turabian StyleJugulytė, Nida, and Daiva Bartkevičienė. 2025. "The Role of Follicle-Stimulating Hormone in Bone Loss During Menopause Transition: A Narrative Review" Endocrines 6, no. 4: 54. https://doi.org/10.3390/endocrines6040054
APA StyleJugulytė, N., & Bartkevičienė, D. (2025). The Role of Follicle-Stimulating Hormone in Bone Loss During Menopause Transition: A Narrative Review. Endocrines, 6(4), 54. https://doi.org/10.3390/endocrines6040054
