Thyroid under Attack: The Adverse Impact of Plasticizers, Pesticides, and PFASs on Thyroid Function
Abstract
:1. Introduction
1.1. Phthalates
Phthalates Exposure and Thyroid Dysfunction
1.2. Bisphenols
1.2.1. BPA Effects in Pregnant Women and Their Progeny
1.2.2. BPA Exposure and Thyroid Cancer
1.2.3. BPA Exposure Effects in Animal Models and In Vitro Studies
1.2.4. Bisphenol Analogs and Thyroid Dysfunction
1.3. Organochloride Pesticides (OCPs)
1.3.1. OCP Exposure and Thyroid Dysfunction in Humans
1.3.2. OCP Exposure and Thyroid Dysfunction in Animal Models
1.4. Per- and Poly-Fluoroalkyl Substances (PFASs)
1.4.1. PFASs Exposure and Thyroid Dysfunction in Humans
1.4.2. PFAS Exposure and Thyroid Dysfunction in Animal Models
1.4.3. PFAS Exposure and Thyroid Dysfunction in In Vitro Studies
1.4.4. PFAS Exposure and Thyroid Cancer
1.5. Concluding Remarks: Gaps and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AKT | protein kinase B |
BPA | bisphenol A. |
BPF | bisphenol F |
BPS | bisphenol S |
CNS | central nervous system |
DBP | di-n-butyl phthalate |
DDE | dichlorodiphenyldichloroethylene |
DDT | dichloro-diphenyl-trichloroethane |
DEHP | di(2-ethylhexyl) phthalate |
DIO1 | deiodinase type 1 |
DIO2 | deiodinase type 2 |
DIO3 | deiodinase type 3 |
DMD | diethylnitrosamine(DEN)-N-methyl-N-nitrosourea (MNU)-N,N-bis(2-hydroxypropyl)nitrous amide (DHPN) |
EDCs | endocrine-disrupting chemicals |
ERK | extracellular signal-regulated kinases |
GH | growth hormone |
HDAC6 | histone deacetylase 6 |
HPT | hypothalamus-pituitary-thyroid |
MCT8 | monocarboxylate transporter 8 |
MEHP | phthalic acid mono-2-ethylhexy |
NIS | sodium–iodide symporter |
NKX2.1 | NK2 homeobox 1 or thyroid transcription factor 1 |
OCPs | organochloride pesticides |
Pax8 | paired box 8 |
PBDEs | polybrominated diphenyl ethers |
PCBs | polychlorinated biphenyls |
PFASs | per- and polyfluoroalkyl substances |
PFDoDA | perfluorododecanoic acid |
PFHxS | perfluorohexanesulfonic acid |
PFNA | perfluorononanoic acid |
PFOA | perfluorooctanoic acid |
PFOS | perfluorooctane sulfonate |
PFUnDA | perfluoroundecanoic acid |
PND | post-natal day |
PTEN | phosphatase and tensin homolog |
rT3 | reverse T3 |
T2 | diiodothyronine |
T3 | triiodothyronine |
T4 | thyroxine |
TBBPA | tetrabromobisphenol A |
TBBPS | tetrabromobisphenol S (TBBPS) |
TBG | thyroxine-binding globulin |
TG | thyroglobulin |
TH | thyroid hormones |
THRB | thyroid hormone receptor beta |
TPO | thyroid peroxidase |
TRH | thyrotropin-releasing hormone |
TSH | thyroid-stimulating hormone or thyrotropin |
TSHR | thyrotropin receptor |
TTR | transthyretin |
References
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [PubMed]
- Mezcua, M.; Martínez-Uroz, M.A.; Gómez-Ramos, M.M.; Gómez, M.J.; Navas, J.M.; Fernández-Alba, A.R. Analysis of Synthetic Endocrine-Disrupting Chemicals in Food: A Review. Talanta 2012, 100, 90–106. [Google Scholar] [CrossRef] [PubMed]
- Foster, W.G.; Agzarian, J. Toward Less Confusing Terminology in Endocrine Disruptor Research. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 152–161. [Google Scholar] [CrossRef] [PubMed]
- De Coster, S.; Van Larebeke, N. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action. J. Environ. Public Health 2012, 2012, 713696. [Google Scholar] [CrossRef]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the Key Characteristics of Endocrine-Disrupting Chemicals as a Basis for Hazard Identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef]
- Di Pietro, G.; Forcucci, F.; Chiarelli, F. Endocrine Disruptor Chemicals and Children’s Health. Int. J. Mol. Sci. 2023, 24, 2671. [Google Scholar] [CrossRef]
- Di Credico, A.; Gaggi, G.; Bucci, I.; Ghinassi, B.; Di Baldassarre, A. The Effects of Combined Exposure to Bisphenols and Perfluoroalkyls on Human Perinatal Stem Cells and the Potential Implications for Health Outcomes. Int. J. Mol. Sci. 2023, 24, 15018. [Google Scholar] [CrossRef]
- Ünüvar, T.; Büyükgebiz, A. Fetal and Neonatal Endocrine Disruptors. JCRPE J. Clin. Res. Pediatr. Endocrinol. 2012, 4, 51–60. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Endocrine Disrupting Chemicals and Breast Cancer: A Systematic Review of Epidemiological Studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 6549–6576. [Google Scholar] [CrossRef]
- Miranda, R.A.; de Moura, E.G.; Lisboa, P.C. Adverse Perinatal Conditions and the Developmental Origins of Thyroid Dysfunction—Lessons from Animal Models. Endocrine 2023, 79, 223–234. [Google Scholar] [CrossRef]
- Toledano, J.M.; Puche-Juarez, M.; Moreno-Fernandez, J.; Gonzalez-Palacios, P.; Rivas, A.; Ochoa, J.J.; Diaz-Castro, J. Implications of Prenatal Exposure to Endocrine-Disrupting Chemicals in Offspring Development: A Narrative Review. Nutrients 2024, 16, 1556. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P. The Developmental Origins of Adult Disease. J. Am. Coll. Nutr. 2004, 23, 588S–595S. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Nakiwala, D.; Goodrich, J.M. What Happens In Utero Does Not Stay In Utero: A Review of Evidence for Prenatal Epigenetic Programming by Per- and Polyfluoroalkyl Substances (PFAS) in Infants, Children, and Adolescents. Curr. Environ. Health Rep. 2023, 10, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tollefsbol, T.O.; Li, S.; Chen, M. Prenatal Epigenetics Diets Play Protective Roles against Environmental Pollution. Clin. Epigenetics 2019, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Herbstman, J. Prenatal Environmental Exposures, Epigenetics, and Disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef]
- Joss-Moore, L.A.; Metcalfe, D.B.; Albertine, K.H.; McKnight, R.A.; Lane, R.H. Epigenetics and Fetal Adaptation to Perinatal Events: Diversity through Fidelity. J. Anim. Sci. 2010, 88, E216–E222. [Google Scholar] [CrossRef]
- Cyr, A.R.; Domann, F.E. The Redox Basis of Epigenetic Modifications: From Mechanisms to Functional Consequences. Antioxid. Redox Signal. 2011, 15, 551–589. [Google Scholar] [CrossRef]
- Pagiatakis, C.; Musolino, E.; Gornati, R.; Bernardini, G.; Papait, R. Epigenetics of Aging and Disease: A Brief Overview. Aging Clin. Exp. Res. 2021, 33, 737–745. [Google Scholar] [CrossRef]
- Cavalli, G.; Heard, E. Advances in Epigenetics Link Genetics to the Environment and Disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef]
- Jain, R.; Epstein, J.A. Epigenetics. Adv. Exp. Med. Biol. 2024, 1441, 341–364. [Google Scholar]
- Jedynak, P.; Siroux, V.; Broséus, L.; Tost, J.; Busato, F.; Gabet, S.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Lyon-Caen, S.; et al. Epigenetic Footprints: Investigating Placental DNA Methylation in the Context of Prenatal Exposure to Phenols and Phthalates. Envrion. Int. 2024, 189, 108763. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kang, B.S.; Kim, O.; Won, S.; Kim, H.S.; Wie, J.H.; Shin, J.E.; Choi, S.K.; Jo, Y.S.; Kim, Y.H.; et al. The Associations between Maternal and Fetal Exposure to Endocrine-Disrupting Chemicals and Asymmetric Fetal Growth Restriction: A Prospective Cohort Study. Front. Public Health 2024, 12, 1351786. [Google Scholar] [CrossRef]
- Mao, J.; Kinkade, J.A.; Bivens, N.J.; Rosenfeld, C.S. MiRNA Changes in the Mouse Placenta Due to Bisphenol A Exposure. Epigenomics 2021, 13, 1909–1919. [Google Scholar] [CrossRef]
- Robaire, B.; Delbes, G.; Head, J.A.; Marlatt, V.L.; Martyniuk, C.J.; Reynaud, S.; Trudeau, V.L.; Mennigen, J.A. A Cross-Species Comparative Approach to Assessing Multi- and Transgenerational Effects of Endocrine Disrupting Chemicals. Envrion. Res. 2022, 204, 112063. [Google Scholar] [CrossRef] [PubMed]
- Skipper, M. Epigenomics: Epigenetic Variation across the Generations. Nat. Rev. Genet. 2011, 12, 740. [Google Scholar] [CrossRef]
- Carvalho, D.P.; Dupuy, C. Thyroid Hormone Biosynthesis and Release. Mol. Cell. Endocrinol. 2017, 458, 6–15. [Google Scholar] [CrossRef]
- Dai, G.; Levy, O.; Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 1996, 379, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Silveira, J.C.; Kopp, P.A. Pendrin and anoctamin as mediators of apical iodide efflux in thyroid cells. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 374–380. [Google Scholar] [CrossRef]
- Godlewska, M.; Banga, P.J. Thyroid peroxidase as a dual active site enzyme: Focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019, 160, 34–45. [Google Scholar] [CrossRef]
- Heuer, H.; Visser, T.J. Minireview: Pathophysiological importance of thyroid hormone transporters. Endocrinology 2009, 150, 1078–1083. [Google Scholar] [CrossRef]
- Sinha, R.A.; Yen, P.M. Metabolic Messengers: Thyroid Hormones. Nat. Metab. 2024, 6, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Senese, R.; Cioffi, F.; Petito, G.; Goglia, F.; Lanni, A. Thyroid hormone metabolites and analogues. Endocrine 2019, 66, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Ortiga-Carvalho, T.M.; Chiamolera, M.I.; Pazos-Moura, C.C.; Wondisford, F.E. Hypothalamus-Pituitary-Thyroid Axis. Compr. Physiol. 2016, 6, 1387–1428. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Zou, H.; Zhang, S.; Lin, J.; Nie, W.; Cui, Y.; Liu, S.; Han, J. Association of Maternal TSH and Neonatal Metabolism: A Large Prospective Cohort Study in China. Front. Endocrinol. 2022, 13, 1052836. [Google Scholar] [CrossRef]
- Chan, S.Y.; Vasilopoulou, E.; Kilby, M.D. The Role of the Placenta in Thyroid Hormone Delivery to the Fetus. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Salas-Lucia, F.; Stan, M.N.; James, H.; Rajwani, A.; Liao, X.H.; Dumitrescu, A.M.; Refetoff, S. Effect of the Fetal THRB Genotype on the Placenta. J. Clin. Endocrinol. Metab. 2023, 108, e944–e948. [Google Scholar] [CrossRef]
- Zuñiga, L.F.F.; Muñoz, Y.S.; Pustovrh, M.C. Thyroid Hormones: Metabolism and Transportation in the Fetoplacental Unit. Mol. Reprod. Dev. 2022, 89, 526–539. [Google Scholar] [CrossRef]
- Du, J.; Ji, L.; Zhang, X.; Yuan, N.; Sun, J.; Zhao, D. Maternal Isolated Hypothyroxinemia in the First Trimester Is Not Associated with Adverse Pregnancy Outcomes, except for Macrosomia: A Prospective Cohort Study in China. Front. Endocrinol. 2023, 14, 1309787. [Google Scholar] [CrossRef] [PubMed]
- LaFranchi, S.H.; Haddow, J.E.; Hollowell, J.G. Is Thyroid Inadequacy during Gestation a Risk Factor for Adverse Pregnancy and Developmental Outcomes? Thyroid 2005, 15, 60–71. [Google Scholar] [CrossRef]
- Street, M.E.; Shulhai, A.-M.; Petraroli, M.; Patianna, V.; Donini, V.; Giudice, A.; Gnocchi, M.; Masetti, M.; Montani, A.G.; Rotondo, R.; et al. The Impact of Environmental Factors and Contaminants on Thyroid Function and Disease from Fetal to Adult Life: Current Evidence and Future Directions. Front. Endocrinol. 2024, 15, 1429884. [Google Scholar] [CrossRef]
- Serrano-Nascimento, C.; Nunes, M.T. Perchlorate, Nitrate, and Thiocyanate: Environmental Relevant NIS-Inhibitors Pollutants and Their Impact on Thyroid Function and Human Health. Front. Endocrinol. 2022, 13, 995503. [Google Scholar] [CrossRef] [PubMed]
- Bellanger, M.; Demeneix, B.; Grandjean, P.; Zoeller, R.T.; Trasande, L. Neurobehavioral Deficits, Diseases, and Associated Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. J. Clin. Endocrinol. Metab. 2015, 100, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Shams, M.; Alam, I.; Mahbub, M.S. Plastic Pollution during COVID-19: Plastic Waste Directives and Its Long-Term Impact on The Environment. Environ. Adv. 2021, 5, 100119. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Yu, Y.; Dong, W. A Systematic Review of Global Distribution, Sources and Exposure Risk of Phthalate Esters (PAEs) in Indoor Dust. J. Hazard Mater. 2024, 471, 134423. [Google Scholar] [CrossRef] [PubMed]
- Erythropel, H.C.; Maric, M.; Nicell, J.A.; Leask, R.L.; Yargeau, V. Leaching of the Plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl. Microbiol. Biotechnol. 2014, 98, 9967–9981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Guo, J.L.; Xue, J.C.; Bai, C.L.; Guo, Y. Phthalate Metabolites: Characterization, Toxicities, Global Distribution, and Exposure Assessment. Environ. Pollut. 2021, 291, 118106. [Google Scholar] [CrossRef]
- Li, Z.; Wu, D.; Guo, Y.; Mao, W.; Zhao, N.; Zhao, M.; Jin, H. Phthalate Metabolites in Paired Human Serum and Whole Blood. Sci. Total Environ. 2022, 824, 153792. [Google Scholar] [CrossRef]
- Katsikantami, I.; Tzatzarakis, M.N.; Alegakis, A.K.; Karzi, V.; Hatzidaki, E.; Stavroulaki, A.; Vakonaki, E.; Xezonaki, P.; Sifakis, S.; Rizos, A.K.; et al. Phthalate Metabolites Concentrations in Amniotic Fluid and Maternal Urine: Cumulative Exposure and Risk Assessment. Toxicol. Rep. 2020, 7, 529–538. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, M.; Huang, K.; Cui, J.; Liu, H.; Yu, Y.; Ma, S.; Liu, X.; Lin, M. Phthalate Metabolites in Breast Milk from Mothers in Southern China: Occurrence, Temporal Trends, Daily Intake, and Risk Assessment. J. Hazard Mater. 2024, 464, 132895. [Google Scholar] [CrossRef]
- Katsikantami, I.; Tzatzarakis, M.N.; Karzi, V.; Stavroulaki, A.; Xezonaki, P.; Vakonaki, E.; Alegakis, A.K.; Sifakis, S.; Rizos, A.K.; Tsatsakis, A.M. Biomonitoring of Bisphenols A and S and Phthalate Metabolites in Hair from Pregnant Women in Crete. Sci. Total Environ. 2020, 712, 135651. [Google Scholar] [CrossRef]
- Johns, L.E.; Cooper, G.S.; Galizia, A.; Meeker, J.D. Exposure Assessment Issues in Epidemiology Studies of Phthalates. Environ. Int. 2015, 85, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Ryva, B.A.; Pacyga, D.C.; Anderson, K.Y.; Calafat, A.M.; Whalen, J.; Aung, M.T.; Gardiner, J.C.; Braun, J.M.; Schantz, S.L.; Strakovsky, R.S. Associations of Urinary Non-Persistent Endocrine Disrupting Chemical Biomarkers with Early-to-Mid Pregnancy Plasma Sex-Steroid and Thyroid Hormones. Envrion. Int. 2024, 183, 108433. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.Y.; Han, Y.; Gao, H.; Huang, K.; Ge, X.; Xu, Y.Y.; Xu, Y.Q.; Jin, Z.X.; Sheng, J.; Yan, S.Q.; et al. Maternal Phthalate Exposure during the First Trimester and Serum Thyroid Hormones in Pregnant Women and Their Newborns. Chemosphere 2016, 157, 42–48. [Google Scholar] [CrossRef]
- Yang, Z.; Shan, D.; Zhang, T.; Li, L.; Wang, S.; Du, R.; Li, Y.; Wu, S.; Jin, L.; Zhao, Y.; et al. Associations between Exposure to Phthalates and Subclinical Hypothyroidism in Pregnant Women during Early Pregnancy: A Pilot Case-Control Study in China. Environ. Pollut. 2023, 320, 121051. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Moon, S.; Oh, B.C.; Jung, D.; Choi, K.; Park, Y.J. Association between Diethylhexyl Phthalate Exposure and Thyroid Function: A Meta-Analysis. Thyroid 2019, 29, 183–192. [Google Scholar] [CrossRef]
- Huang, P.C.; Kuo, P.L.; Guo, Y.L.; Liao, P.C.; Lee, C.C. Associations between Urinary Phthalate Monoesters and Thyroid Hormones in Pregnant Women. Hum. Reprod. 2007, 22, 2715–2722. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Calafat, A.M.; Hauser, R. Di(2-Ethylhexyl) Phthalate Metabolites May Alter Thyroid Hormone Levels in Men. Envrion. Health Perspect. 2007, 115, 1029–1034. [Google Scholar] [CrossRef]
- Boas, M.; Frederiksen, H.; Feldt-Rasmussen, U.; Skakkebæk, N.E.; Hegedüs, L.; Hilsted, L.; Juul, A.; Main, K.M. Childhood Exposure to Phthalates: Associations with Thyroid Function, Insulin-like Growth Factor I, and Growth. Envrion. Health Perspect. 2010, 118, 1458–1464. [Google Scholar] [CrossRef]
- Price, S.C.; Chescoe, D.; Grasso, P.; Wright, M.; Hinton, R.H. Alterations in the Thyroids of Rats Treated for Long Periods with Di-(2-Ethylhexyl) Phthalate or with Hypolipidaemic Agents. Toxicol. Lett. 1988, 40, 37–46. [Google Scholar] [CrossRef]
- Hinton, R.H.; Mitchell, F.E.; Mann, A. Effects of Phthalic Acid Esters on the Liver and Thyroid. Envrion. Health Perspect. 1986, 70, 195–210. [Google Scholar] [CrossRef]
- O’Connor, J.C.; Frame, S.R.; Ladics, G.S. Evaluation of a 15-Day Screening Assay Using Intact Male Rats for Identifying Antiandrogens. Toxicol. Sci. 2002, 69, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Kang, J.; Deng, T.; Yang, X.; Chen, M. Exposure to DBP and High Iodine Aggravates Autoimmune Thyroid Disease through Increasing the Levels of IL-17 and Thyroid-Binding Globulin in Wistar Rats. Toxicol. Sci. 2018, 163, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, W.; Zhang, Y.; Kang, Z.; Miao, X.; Na, X. Novel Insights into Di-(2-Ethylhexyl)Phthalate Activation: Implications for the Hypothalamus-Pituitary-Thyroid Axis. Mol. Med. Rep. 2021, 23, 290. [Google Scholar] [CrossRef]
- Poon, R.; Lecavalier, P.; Mueller, R.; Valli, V.E.; Procter, B.G.; Chu, I. Subchronic Oral Toxicity of Di-n-Octyl Phthalate and Di(2-Ethylhexyl) Phthalate in the Rat. Food Chem. Toxicol. 1997, 35, 225–239. [Google Scholar] [CrossRef]
- Howarth, J.A.; Price, S.C.; Dobrota, M.; Kentish, P.A.; Hinton, R.H. Effects on Male Rats of Di-(2-Ethylhexyl) Phthalate and Di-n-Hexylphthalate Administered Alone or in Combination. Toxicol. Lett. 2001, 121, 35–43. [Google Scholar] [CrossRef]
- Erkekoglu, P.; Giray, B.K.; Kizilgün, M.; Hininger-Favier, I.; Rachidi, W.; Roussel, A.M.; Favier, A.; Hincal, F. Thyroidal Effects of Di-(2-Ethylhexyl) Phthalate in Rats of Different Selenium Status. J. Environ. Pathol. Toxicol. Oncol. 2012, 31, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Guan, X.; Yang, M.; Zeng, L.; Liu, C. Roles and Potential Mechanisms of Selenium in Countering Thyrotoxicity of DEHP. Sci. Total Environ. 2018, 619–620, 732–739. [Google Scholar] [CrossRef]
- Sherif, N.A.E.H.; El-Banna, A.; Abdel-Moneim, R.A.; Sobh, Z.K.; Balah, M.I.F. The Possible Thyroid Disruptive Effect of Di-(2-Ethyl Hexyl) Phthalate and the Potential Protective Role of Selenium and Curcumin Nanoparticles: A Toxicological and Histological Study. Toxicol. Res. 2022, 11, 108–121. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, L.; Wei, L.; Li, L. DEHP Reduces Thyroid Hormones via Interacting with Hormone Synthesis-Related Proteins, Deiodinases, Transthyretin, Receptors, and Hepatic Enzymes in Rats. Environ. Sci. Pollut. Res. 2015, 22, 12711–12719. [Google Scholar] [CrossRef]
- Ye, H.; Ha, M.; Yang, M.; Yue, P.; Xie, Z.; Liu, C. Di2-Ethylhexyl Phthalate Disrupts Thyroid Hormone Homeostasis through Activating the Ras/Akt/TRHr Pathway and Inducing Hepatic Enzymes. Sci. Rep. 2017, 7, 40153. [Google Scholar] [CrossRef]
- Dong, X.; Dong, J.; Zhao, Y.; Guo, J.; Wang, Z.; Liu, M.; Zhang, Y.; Na, X. Effects of Long-Term in Vivo Exposure to Di-2-Ethylhexylphthalate on Thyroid Hormones and the Tsh/Tshr Signaling Pathways in Wistar Rats. Int. J. Envrion. Res. Public Health 2017, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Zhou, L.; Wang, S.; Liu, T.; Zhu, J.; Jia, Y.; Xu, J.; Chen, H.; Wang, Q.; Xu, F.; et al. Effect of Di-(2-Ethylhexyl) Phthalate on the Hypothalamus-Pituitary-Thyroid Axis in Adolescent Rat. Endocr. J. 2022, 69, 217–224. [Google Scholar] [CrossRef]
- Majeed, K.A.; Yousaf, M.S.; Tahir, M.S.; Khan, A.R.; Khan, S.; Saeed, A.A.; Rehman, H. Effects of Subacute Exposure of Dibutyl Phthalate on the Homeostatic Model Assessment, Thyroid Function, and Redox Status in Rats. Biomed. Res. Int. 2021, 2021, 5521516. [Google Scholar] [CrossRef]
- Wenzel, A.; Franz, C.; Breous, E.; Loos, U. Modulation of Iodide Uptake by Dialkyl Phthalate Plasticisers in FRTL-5 Rat Thyroid Follicular Cells. Mol. Cell. Endocrinol. 2005, 244, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Ghisari, M.; Bonefeld-Jorgensen, E.C. Effects of Plasticizers and Their Mixtures on Estrogen Receptor and Thyroid Hormone Functions. Toxicol. Lett. 2009, 189, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, H.H.; Song, Y.S.; Kim, O.H.; Choi, K.; Kim, S.; Oh, B.C.; Park, Y.J. DEHP Down-Regulates Tshr Gene Expression in Rat Thyroid Tissues and FRTL-5 Rat Thyrocytes: A Potential Mechanism of Thyroid Disruption. Endocrinol. Metab. 2021, 36, 447–454. [Google Scholar] [CrossRef]
- Barlas, N.; Göktekin, E.; Karabulut, G. Influence of in Utero Di-n-Hexyl Phthalate and Di-Cyclohexyl Phthalate Exposure on the Endocrine Glands and T3, T4, and TSH Hormone Levels of Male and Female Rats: Postnatal Outcomes. Toxicol. Ind. Health 2020, 36, 399–416. [Google Scholar] [CrossRef]
- Sousa-Vidal, É.K.; Henrique, G.; da Silva, R.E.C.; Serrano-Nascimento, C. Intrauterine Exposure to Di(2-Ethylhexyl) Phthalate (DEHP) Disrupts the Function of the Hypothalamus-Pituitary-Thyroid Axis of the F1 Rats during Adult Life. Front. Endocrinol. 2023, 13, 995491. [Google Scholar] [CrossRef]
- Yin, J.; Liu, S.; Li, Y.; Hu, L.; Liao, C.; Jiang, G. Exposure to MEHP during Pregnancy and Lactation Impairs Offspring Growth and Development by Disrupting Thyroid Hormone Homeostasis. Envrion. Sci. Technol. 2024, 58, 3726–3736. [Google Scholar] [CrossRef]
- Dong, J.; Cong, Z.; You, M.; Fu, Y.; Wang, Y.; Wang, Y.; Fu, H.; Wei, L.; Chen, J. Effects of Perinatal Di (2-Ethylhexyl) Phthalate Exposure on Thyroid Function in Rat Offspring. Envrion. Toxicol. Pharmacol. 2019, 67, 53–60. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Fu, X.; Zhou, F.; Yu, H.; Na, X. Transcriptomics and Metabonomics Analyses of Maternal DEHP Exposure on Male Offspring. Environ. Sci. Pollut. Res. 2018, 25, 26322–26329. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Liu, X.; Li, J.; Zhang, L.; Zhao, Y.; Liu, S.; Ni, S.; Wu, Y. Associations of Urinary Phthalate Metabolites with Risk of Papillary Thyroid Cancer. Chemosphere 2020, 241, 125093. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Zhang, J.; Hwang, S.; Cho, S.; Yu, W.J.; Jeong, J.S.; Park, I.H.; Lee, B.C.; Jee, S.H.; Lim, K.M.; et al. Transcriptome-Metabolome-Wide Association Study (TMWAS) in Rats Revealed a Potential Carcinogenic Effect of DEHP in Thyroid Associated with Eicosanoids. Envrion. Res. 2022, 214, 113805. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rasheed, S.; Rehman, K.; Imran, M.; Assiri, M.A. Toxicological Evaluation of Bisphenol Analogues: Preventive Measures and Therapeutic Interventions. RSC Adv. 2023, 13, 21613–21628. [Google Scholar] [CrossRef]
- Agarwal, A.; Gandhi, S.; Tripathi, A.D.; Gupta, A.; Iammarino, M.; Sidhu, J.K. Food Contamination from Packaging Material with Special Focus on the Bisphenol-A. Crit. Rev. Biotechnol. 2024, 1–11. [Google Scholar] [CrossRef]
- Estévez-Danta, A.; Rodil, R.; Quintana, J.B.; Montes, R. Determination of the Urinary Concentrations of Six Bisphenols in Public Servants by Online Solid-Phase Extraction-Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2024, 416, 4469–4480. [Google Scholar] [CrossRef]
- Derakhshan, A.; Philips, E.M.; Ghassabian, A.; Santos, S.; Asimakopoulos, A.G.; Kannan, K.; Kortenkamp, A.; Jaddoe, V.W.V.; Trasande, L.; Peeters, R.P.; et al. Association of Urinary Bisphenols during Pregnancy with Maternal, Cord Blood and Childhood Thyroid Function. Envrion. Int. 2021, 146, 106160. [Google Scholar] [CrossRef]
- Muhamad, M.S.; Salim, M.R.; Lau, W.J.; Yusop, Z. A Review on Bisphenol A Occurrences, Health Effects and Treatment Process via Membrane Technology for Drinking Water. Environ. Sci. Pollut. Res. 2016, 23, 11549–11567. [Google Scholar] [CrossRef]
- Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid Hormone Action Is Disrupted by Bisphenol A as an Antagonist. J. Clin. Endocrinol. Metab. 2002, 87, 5185–5190. [Google Scholar] [CrossRef]
- Zoeller, R.T.; Bansal, R.; Parris, C. Bisphenol-A, an Environmental Contaminant That Acts as a Thyroid Hormone Receptor Antagonist in Vitro, Increases Serum Thyroxine, and Alters RC3/Neurogranin Expression in the Developing Rat Brain. Endocrinology 2005, 146, 607–612. [Google Scholar] [CrossRef]
- Stavreva, D.A.; Varticovski, L.; Levkova, L.; George, A.A.; Davis, L.; Pegoraro, G.; Blazer, V.; Iwanowicz, L.; Hager, G.L. Novel Cell-Based Assay for Detection of Thyroid Receptor Beta-Interacting Environmental Contaminants. Toxicology 2016, 368–369, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.G.; Tang, Y.; Liu, Y.X.; Yuan, Y.; Zhao, B.Q.; Chao, X.J.; Zhu, B.Z. Low Concentrations of Bisphenol a Suppress Thyroid Hormone Receptor Transcription through a Nongenomic Mechanism. Toxicol. Appl. Pharmacol. 2012, 259, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Ferguson, K.K. Relationship between Urinary Phthalate and Bisphenol a Concentrations and Serum Thyroid Measures in u.s. Adults and Adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Envrion. Health Perspect. 2011, 119, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Sriphrapradang, C.; Chailurkit, L.O.; Aekplakorn, W.; Ongphiphadhanakul, B. Association between Bisphenol A and Abnormal Free Thyroxine Level in Men. Endocrine 2013, 44, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Du, X.; Liu, H.; Guo, X.; Zhang, B.; Wang, Y.; Wang, B.; Zhang, H.; Guo, H. Association between Bisphenol A Exposure and Thyroid Dysfunction in Adults: A Systematic Review and Meta-Analysis. Toxicol. Ind. Health 2023, 39, 188–203. [Google Scholar] [CrossRef]
- Chevrier, J.; Gunier, R.B.; Bradman, A.; Holland, N.T.; Calafat, A.M.; Eskenazi, B.; Harley, K.G. Maternal Urinary Bisphenol a during Pregnancy and Maternal and Neonatal Thyroid Function in the CHAMACOS Study. Envrion. Health Perspect. 2013, 121, 138–144. [Google Scholar] [CrossRef]
- Romano, M.E.; Webster, G.M.; Vuong, A.M.; Thomas Zoeller, R.; Chen, A.; Hoofnagle, A.N.; Calafat, A.M.; Karagas, M.R.; Yolton, K.; Lanphear, B.P.; et al. Gestational Urinary Bisphenol A and Maternal and Newborn Thyroid Hormone Concentrations: The HOME Study. Envrion. Res. 2015, 138, 453–460. [Google Scholar] [CrossRef]
- Park, C.; Choi, W.; Hwang, M.; Lee, Y.; Kim, S.; Yu, S.; Lee, I.; Paek, D.; Choi, K. Associations between Urinary Phthalate Metabolites and Bisphenol A Levels, and Serum Thyroid Hormones among the Korean Adult Population—Korean National Environmental Health Survey (KoNEHS) 2012–2014. Sci. Total Environ. 2017, 584–585, 950–957. [Google Scholar] [CrossRef]
- Minatoya, M.; Sasaki, S.; Araki, A.; Miyashita, C.; Itoh, S.; Yamamoto, J.; Matsumura, T.; Mitsui, T.; Moriya, K.; Cho, K.; et al. Cord Blood Bisphenol A Levels and Reproductive and Thyroid Hormone Levels of Neonates The Hokkaido Study on Environment and Children’s Health. Epidemiology 2017, 28, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Sanlidag, B.; Dalkan, C.; Yetkin, O.; Bahçeciler, N.N. Evaluation of Dose Dependent Maternal Exposure to Bisphenol a on Thyroid Functions in Newborns. J. Clin. Med. 2018, 7, 119. [Google Scholar] [CrossRef]
- Xiong, C.; Xu, L.; Dong, X.; Cao, Z.; Wang, Y.; Chen, K.; Guo, M.; Xu, S.; Li, Y.; Xia, W.; et al. Trimester-Specific Associations of Maternal Exposure to Bisphenols with Neonatal Thyroid Stimulating Hormone Levels: A Birth Cohort Study. Sci. Total Environ. 2023, 880, 163354. [Google Scholar] [CrossRef] [PubMed]
- Chailurkit, L.O.; Aekplakorn, W.; Ongphiphadhanakul, B. The Association of Serum Bisphenol A with Thyroid Autoimmunity. Int. J. Envrion. Res. Public Health 2016, 13, 1153. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, H.; Zhang, J.; Gao, X.; Jin, H.; Liu, R.; Zhang, Z.; Zhang, X.; Wang, X.; Qu, P.; et al. Bisphenol A at a Human Exposed Level Can Promote Epithelial-Mesenchymal Transition in Papillary Thyroid Carcinoma Harbouring BRAFV600E Mutation. J. Cell. Mol. Med. 2021, 25, 1739–1749. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, N.; Jin, H.; Liu, R.; Zhang, Z.; Cheng, C.; Fan, Z.; Zhang, G.; Xiao, M.; Wu, S.; et al. Bisphenol A Drives Di(2-Ethylhexyl) Phthalate Promoting Thyroid Tumorigenesis via Regulating HDAC6/PTEN and c-MYC Signaling. J. Hazard Mater. 2022, 425, 127911. [Google Scholar] [CrossRef]
- Chen, P.P.; Yang, P.; Liu, C.; Deng, Y.L.; Luo, Q.; Miao, Y.; Zhang, M.; Cui, F.P.; Zeng, J.Y.; Shi, T.; et al. Urinary Concentrations of Phenols, Oxidative Stress Biomarkers and Thyroid Cancer: Exploring Associations and Mediation Effects. J. Envrion. Sci. 2022, 120, 30–40. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, X.; Lu, J.; Zou, R.; Ding, R.; Hua, X. Assessment of Five Typical Environmental Endocrine Disruptors and Thyroid Cancer Risk: A Meta-Analysis. Front. Endocrinol. 2023, 14, 1283087. [Google Scholar] [CrossRef]
- Kobayashi, K.; Miyagawa, M.; Wang, R.S.; Suda, M.; Sekiguchi, S.; Honma, T. Effects of in Utero and Lactational Exposure to Bisphenol A on Thyroid Status in F1 Rat Offspring. Ind. Health 2005, 43, 685–690. [Google Scholar] [CrossRef]
- Ahmed, R.G. Maternal Bisphenol A Alters Fetal Endocrine System: Thyroid Adipokine Dysfunction. Food Chem. Toxicol. 2016, 95, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.O.; Bourguignon, N.S.; Arocena, P.; Rosa, M.; Libertun, C.; Lux-Lantos, V. Neonatal Exposure to Bisphenol A Alters the Hypothalamic-Pituitary-Thyroid Axis in Female Rats. Toxicol. Lett. 2018, 285, 81–86. [Google Scholar] [CrossRef]
- Silva, B.S.; Bertasso, I.M.; Pietrobon, C.B.; Lopes, B.P.; Santos, T.R.; Peixoto-Silva, N.; Carvalho, J.C.; Claudio-Neto, S.; Manhães, A.C.; Cabral, S.S.; et al. Effects of Maternal Bisphenol A on Behavior, Sex Steroid and Thyroid Hormones Levels in the Adult Rat Offspring. Life Sci. 2019, 218, 253–264. [Google Scholar] [CrossRef]
- Viguié, C.; Collet, S.H.; Gayrard, V.; Picard-Hagen, N.; Puel, S.; Roques, B.B.; Toutain, P.L.; Lacroix, M.Z. Maternal and Fetal Exposure to Bisphenol A Is Associated with Alterations of Thyroid Function in Pregnant Ewes and Their Newborn Lambs. Endocrinology 2013, 154, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Guignard, D.; Gayrard, V.; Lacroix, M.Z.; Puel, S.; Picard-Hagen, N.; Viguié, C. Evidence for Bisphenol A-Induced Disruption of Maternal Thyroid Homeostasis in the Pregnant Ewe at Low Level Representative of Human Exposure. Chemosphere 2017, 182, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Iwamuro, S.; Sakakibara, M.; Terao, M.; Ozawa, A.; Kurobe, C.; Shigeura, T.; Kato, M.; Kikuyama, S. Teratogenic and Anti-Metamorphic Effects of Bisphenol A on Embryonic and Larval Xenopus Laevis. Gen. Comp. Endocrinol. 2003, 133, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Iwamuro, S.; Yamada, M.; Kato, M.; Kikuyama, S. Effects of Bisphenol A on Thyroid Hormone-Dependent up-Regulation of Thyroid Hormone Receptor α and β and down-Regulation of Retinoid X Receptor γ in Xenopus Tail Culture. Life Sci. 2006, 79, 2165–2171. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhu, M.; Song, S.; Qin, Z. A Multiwell-Based Assay for Screening Thyroid Hormone Signaling Disruptors Using Thibz Expression as a Sensitive Endpoint in Xenopus Laevis. Molecules 2022, 27, 798. [Google Scholar] [CrossRef]
- Volz, S.N.; Poulsen, R.; Hansen, M.; Holbech, H. Bisphenol A Alters Retinal Morphology, Visually Guided Behavior, and Thyroid Hormone Levels in Zebrafish Larvae. Chemosphere 2024, 348, 140776. [Google Scholar] [CrossRef]
- Gentilcore, D.; Porreca, I.; Rizzo, F.; Ganbaatar, E.; Carchia, E.; Mallardo, M.; De Felice, M.; Ambrosino, C. Bisphenol A Interferes with Thyroid Specific Gene Expression. Toxicology 2013, 304, 21–31. [Google Scholar] [CrossRef]
- Wu, Y.; Beland, F.A.; Fang, J.L. Effect of Triclosan, Triclocarban, 2,2′,4,4′-Tetrabromodiphenyl Ether, and Bisphenol A on the Iodide Uptake, Thyroid Peroxidase Activity, and Expression of Genes Involved in Thyroid Hormone Synthesis. Toxicol. Vitr. 2016, 32, 310–319. [Google Scholar] [CrossRef]
- Porreca, I.; Ulloa Severino, L.; D’Angelo, F.; Cuomo, D.; Ceccarelli, M.; Altucci, L.; Amendola, E.; Nebbioso, A.; Mallardo, M.; De Felice, M.; et al. “Stockpile” of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells. PLoS ONE 2016, 11, e0151618. [Google Scholar] [CrossRef]
- Da Silva, M.M.; Xavier, L.L.F.; Gonçalves, C.F.L.; Santos-Silva, A.P.; Paiva-Melo, F.D.; De Freitas, M.L.; Fortunato, R.S.; Miranda-Alves, L.; Ferreira, A.C.F. Bisphenol a Increases Hydrogen Peroxide Generation by Thyrocytes Both in Vivo and in Vitro. Endocr. Connect. 2018, 7, 1196–1207. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Ren, X.M.; Li, Y.Y.; Yao, X.F.; Li, C.H.; Qin, Z.F.; Guo, L.H. Bisphenol A Alternatives Bisphenol S and Bisphenol F Interfere with Thyroid Hormone Signaling Pathway in Vitro and in Vivo. Environ. Pollut. 2018, 237, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, X.Y.; Li, Y.Y.; Yin, N.Y.; Faiola, F.; Qin, Z.F.; Wei, W.J. Bisphenol F Disrupts Thyroid Hormone Signaling and Postembryonic Development in Xenopus Laevis. Envrion. Sci. Technol. 2018, 52, 1602–1611. [Google Scholar] [CrossRef]
- Berto-Júnior, C.; Santos-Silva, A.P.; Ferreira, A.C.F.; Graceli, J.B.; de Carvalho, D.P.; Soares, P.; Romeiro, N.C.; Miranda-Alves, L. Unraveling Molecular Targets of Bisphenol A and S in the Thyroid Gland. Environ. Sci. Pollut. Res. 2018, 25, 26916–26926. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Xu, Y.; Wang, M.; Cui, S.; Zhang, H.; Lu, L. Bisphenol Analogues Induce Thyroid Dysfunction via the Disruption of the Thyroid Hormone Synthesis Pathway. Sci. Total Environ. 2023, 900, 165711. [Google Scholar] [CrossRef] [PubMed]
- Turusov, V.; Rakitsky, V.; Tomatis, L. Dichlorodiphenyltrichloroethane (DDT): Ubiquity, Persistence, and Risks. Environ. Health Perspect. 2002, 110, 125–128. [Google Scholar] [CrossRef]
- Woolley, D.E.; Talens, G.M. Distribution of DDT, DDD, and DDE in Tissues of Neonatal Rats and in Milk and Other Tissues of Mother Rats Chronically Exposed to DDT. Toxicol. Appl. Pharmacol. 1971, 18, 907–916. [Google Scholar] [CrossRef]
- Sanz-gallardo, M.I.; Guallar, E.; Martín-moreno, J.M.; Van ’T Veer, P.; Kok, F.J.; Longnecker, M.P.; Strain, J.J.; Martin, B.C.; Kardinaal, A.F.M.; Fernández-Crehuet, J.; et al. Determinants of p, p′-Dichlorodiphenyldichloroethane (DDE) Concentration in Adipose Tissue in Women from Five European Cities. Arch. Envrion. Health 1999, 54, 277–283. [Google Scholar] [CrossRef]
- Makgoba, L.; Abrams, A.; Röösli, M.; Cissé, G.; Dalvie, M.A. DDT Contamination in Water Resources of Some African Countries and Its Impact on Water Quality and Human Health. Heliyon 2024, 10, e28054. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Vargas, D.A.; de Morais, T.P.; Randi, M.A.F.; Filipak Neto, F.; Ortolani-Machado, C.F.; Martins, C.d.C.; Oliveira, A.P.; Nazário, M.G.; da, S. Ferreira, F.C.A.; Opuskevitch, I.; et al. Multispecies and Multibiomarker Assessment of Fish Health from Iguaçu River Reservoir, Southern Brazil. Envrion. Monit. Assess. 2024, 196, 564. [Google Scholar] [CrossRef]
- Cody, V. Conformational Analysis of Environmental Agents: Use of X-ray Crystallographic Data to Determine Molecular Reactivity. Envrion. Health Perspect. 1985, 61, 163–183. [Google Scholar] [CrossRef]
- Liu, C.; Shi, Y.; Li, H.; Wang, Y.; Yang, K. P, p-DDE Disturbs the Homeostasis of Thyroid Hormones via Thyroid Hormone Receptors, Transthyretin, and Hepatic Enzymes. Horm. Metab. Res. 2011, 43, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Cheek, A.O.; Kow, K.; Chen, J.; McLachlan, J.A. Potential Mechanisms of Thyroid Disruption in Humans: Interaction of Organochlorine Compounds with Thyroid Receptor, Transthyretin, and Thyroid-Binding Globulin. Envrion. Health Perspect. 1999, 107, 273–278. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.A.; Davies, J.E.; Edmundson, W.F.; Reich, G.A. Transplacental Passage of Pesticides. Am. J. Obs. Gynecol. 1970, 107, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, T.M.; Santana, J.d.M.; Granzotto, F.H.B.; dos Anjos, B.S.; Guerra Neto, D.; Azevedo, L.M.G.; Pereira, M. Pesticide Contamination of Lactating Mothers’ Milk in Latin America: A Systematic Review. Rev. Saude Publica 2024, 58, 19. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cho, Y.H.; Won, S.; Ku, J.L.; Moon, H.B.; Park, J.; Choi, G.; Kim, S.; Choi, K. Maternal Exposures to Persistent Organic Pollutants Are Associated with DNA Methylation of Thyroid Hormone-Related Genes in Placenta Differently by Infant Sex. Envrion. Int. 2019, 130, 104956. [Google Scholar] [CrossRef]
- Chen, E.; da Cruz, R.S.; Nascimento, A.; Joshi, M.; Pereira, D.G.; Dominguez, O.; Fernandes, G.; Smith, M.; Paiva, S.P.C.; de Assis, S. Paternal DDT Exposure Induces Sex-Specific Programming of Fetal Growth, Placenta Development and Offspring’s Health Phenotypes in a Mouse Model. Sci. Rep. 2024, 14, 7567. [Google Scholar] [CrossRef]
- Yamazaki, K.; Itoh, S.; Araki, A.; Miyashita, C.; Minatoya, M.; Ikeno, T.; Kato, S.; Fujikura, K.; Mizutani, F.; Chisaki, Y.; et al. Associations between Prenatal Exposure to Organochlorine Pesticides and Thyroid Hormone Levels in Mothers and Infants: The Hokkaido Study on Environment and Children’s Health. Envrion. Res. 2020, 189, 109840. [Google Scholar] [CrossRef]
- Takser, L.; Mergler, D.; Baldwin, M.; de Grosbois, S.; Smargiassi, A.; Lafond, J. Thyroid Hormones in Pregnancy in Relation to Environmental Exposure to Organochlorine Compounds and Mercury. Envrion. Health Perspect. 2005, 113, 1039–1045. [Google Scholar] [CrossRef]
- Luo, D.; Pu, Y.; Tian, H.; Wu, W.; Sun, X.; Zhou, T.; Tao, Y.; Yuan, J.; Shen, X.; Feng, Y.; et al. Association of in Utero Exposure to Organochlorine Pesticides with Thyroid Hormone Levels in Cord Blood of Newborns. Environ. Pollut. 2017, 231, 78–86. [Google Scholar] [CrossRef]
- Asawasinsopon, R.; Prapamontol, T.; Prakobvitayakit, O.; Vaneesorn, Y.; Mangklabruks, A.; Hock, B. The Association between Organochlorine and Thyroid Hormone Levels in Cord Serum: A Study from Northern Thailand. Envrion. Int. 2006, 32, 554–559. [Google Scholar] [CrossRef]
- Kezios, K.L.; Liu, X.; Cirillo, P.M.; Cohn, B.A.; Kalantzi, O.I.; Wang, Y.; Petreas, M.X.; Park, J.S.; Factor-Litvak, P. Dichlorodiphenyltrichloroethane (DDT), DDT Metabolites and Pregnancy Outcomes. Reprod. Toxicol. 2013, 35, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Chevrier, J.; Eskenazi, B.; Holland, N.; Bradman, A.; Barr, D.B. Effects of Exposure to Polychlorinated Biphenyls and Organochlorine Pesticides on Thyroid Function during Pregnancy. Am. J. Epidemiol. 2008, 168, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mariano, J.Á.; Torres-Sánchez, L.; Bassol-Mayagoitia, S.; Escamilla-Nuñez, M.C.; Cebrian, M.E.; Villeda-Gutiérrez, É.A.; López-Rodríguez, G.; Félix-Arellano, E.E.; Blanco-Muñoz, J. Effect of Exposure to p,p′-DDE during the First Half of Pregnancy in the Maternal Thyroid Profile of Female Residents in a Mexican Floriculture Area. Envrion. Res. 2017, 156, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Espinosa, M.J.; Vizcaino, E.; Murcia, M.; Llop, S.; Espada, M.; Seco, V.; Marco, A.; Rebagliato, M.; Grimalt, J.O.; Ballester, F. Association between Thyroid Hormone Levels and 4,4′-DDE Concentrations in Pregnant Women (Valencia, Spain). Envrion. Res. 2009, 109, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, J.P.; Cuellar, M.; Bonde, J.P.; González-Alzaga, B.; Mercado, L.A. Associations of Maternal o,P′-DDT and p,P′-DDE Levels with Birth Outcomes in a Bolivian Cohort. Envrion. Res. 2016, 151, 469–477. [Google Scholar] [CrossRef]
- Kao, C.C.; Que, D.E.; Bongo, S.J.; Tayo, L.L.; Lin, Y.H.; Lin, C.W.; Lin, S.L.; Gou, Y.Y.; Hsu, W.L.; Shy, C.G.; et al. Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment. Int. J. Envrion. Res. Public Health 2019, 16, 1438. [Google Scholar] [CrossRef]
- Álvarez-Pedrerol, M.; Ribas-Fitó, N.; Torrent, M.; Carrizo, D.; Grimalt, J.O.; Sunyer, J. Effects of PCBs, p,p′-DDT, p,p′-DDE, HCB and β-HCH on Thyroid Function in Preschool Children. Occup. Envrion. Med. 2008, 65, 452–457. [Google Scholar] [CrossRef]
- Hagmar, L.; Björk, J.; Sjödin, A.; Bergman, Å.; Erfurth, E.M. Plasma Levels of Persistent Organohalogens and Hormone Levels in Adult Male Humans. Arch. Envrion. Health 2001, 56, 138–143. [Google Scholar] [CrossRef]
- Sugiura-Ogasawara, M.; Ozaki, Y.; Sonta, S.I.; Makino, T.; Suzumori, K. PCBs, Hexachlorobenzene and DDE Are Not Associated with Recurrent Miscarriage. Am. J. Reprod. Immunol. 2003, 50, 485–489. [Google Scholar] [CrossRef]
- Dufour, P.; Pirard, C.; Petrossians, P.; Beckers, A.; Charlier, C. Association between Mixture of Persistent Organic Pollutants and Thyroid Pathologies in a Belgian Population. Envrion. Res. 2020, 181, 108922. [Google Scholar] [CrossRef]
- Rylander, L.; Wallin, E.; Jönssson, B.A.; Stridsberg, M.; Erfurth, E.M.; Hagmar, L. Associations between CB-153 and p,p′-DDE and Hormone Levels in Serum in Middle-Aged and Elderly Men. Chemosphere 2006, 65, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Koifman, R.J.; Sarcinelli, P.N.; Simões Rosa, A.C.; Clapauch, R.; Koifman, S. Long-Term Exposure to Organochlorine Pesticides and Thyroid Status in Adults in a Heavily Contaminated Area in Brazil. Envrion. Res. 2013, 127, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Altshul, L.; Hauser, R. Serum PCBs, p, p′-DDE and HCB Predict Thyroid Hormone Levels in Men. Envrion. Res. 2007, 104, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ru, H.; Ni, Z.; Zhang, X.; Xie, H.; Yao, F.; Zhang, H.; Li, Y.; Zhong, L. Comparative Thyroid Disruption by o,p′-DDT and p,p′-DDE in Zebrafish Embryos/Larvae. Aquat. Toxicol. 2019, 216, 105280. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.C.; Frame, S.R.; Davis, L.G.; Cook, J.C. Detection of the Environmental Antiandrogen p,p′-DDE in CD and Long- Evans Rats Using a Tier I Screening Battery and a Hershberger Assay. Toxicol. Sci. 1999, 51, 44–53. [Google Scholar] [CrossRef]
- Liu, C.; Ha, M.; Li, L.; Yang, K. PCB153 and p,p′-DDE Disorder Thyroid Hormones via Thyroglobulin, Deiodinase 2, Transthyretin, Hepatic Enzymes and Receptors. Environ. Sci. Pollut. Res. 2014, 21, 11361–11369. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Yaglov, V.V. Mechanisms of Disruptive Action of Dichlorodiphenyltrichloroethane (DDT) on the Function of Thyroid Follicular Epitheliocytes. Bull. Exp. Biol. Med. 2015, 160, 231–233. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Sledneva, Y.P.; Yaglov, V.V. Morphofunctional Changes in the Thyroid Gland of Pubertal and Postpubertal Rats Exposed to Low Dose of DDT. Bull. Exp. Biol. Med. 2016, 162, 260–263. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Yaglov, V.V. Altered Thyroid Hormone Production Induced by Long-Term Exposure to Low Doses of the Endocrine Disruptor Dichlorodiphenyltrichloroethane. Biochem. Mosc. Suppl. B Biomed. Chem. 2015, 9, 339–342. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Yaglov, V.V. Changes in Thyroid Status of Rats after Prolonged Exposure to Low Dose Dichlorodiphenyltrichloroethane. Bull. Exp. Biol. Med. 2014, 156, 760–762. [Google Scholar] [CrossRef]
- Coperchini, F.; Teliti, M.; Greco, A.; Croce, L.; Rotondi, M. Per-Polyfluoroalkyl Substances (PFAS) as Thyroid Disruptors: Is There Evidence for Multi-Transgenerational Effects? Expert. Rev. Endocrinol. Metab. 2024, 19, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Djordjevic, A.B.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef]
- Steenland, K.; Winquist, A. PFAS and Cancer, a Scoping Review of the Epidemiologic Evidence. Environ. Res. 2021, 194, 110690. [Google Scholar] [CrossRef]
- Coperchini, F.; Awwad, O.; Rotondi, M.; Santini, F.; Imbriani, M.; Chiovato, L. Thyroid Disruption by Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA). J. Endocrinol. Investig. 2017, 40, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; De Marco, G.; Croce, L.; Denegri, M.; Greco, A.; Magri, F.; Tonacchera, M.; Imbriani, M.; Rotondi, M.; Chiovato, L. PFOA, PFHxA and C6O4 Differently Modulate the Expression of CXCL8 in Normal Thyroid Cells and in Thyroid Cancer Cell Lines. Environ. Sci. Pollut. Res. 2023, 30, 63522–63534. [Google Scholar] [CrossRef] [PubMed]
- van Gerwen, M.; Colicino, E.; Guan, H.; Dolios, G.; Nadkarni, G.N.; Vermeulen, R.C.H.; Wolff, M.S.; Arora, M.; Genden, E.M.; Petrick, L.M. Per- and Polyfluoroalkyl Substances (PFAS) Exposure and Thyroid Cancer Risk. eBioMedicine 2023, 97, 104831. [Google Scholar] [CrossRef]
- Wang, Y.; Starling, A.P.; Haug, L.S.; Eggesbo, M.; Becher, G.; Thomsen, C.; Travlos, G.; King, D.; Hoppin, J.A.; Rogan, W.J.; et al. Association between Perfluoroalkyl Substances and Thyroid Stimulating Hormone among Pregnant Women: A Cross-Sectional Study. Envrion. Health 2013, 12, 76. [Google Scholar] [CrossRef]
- Wang, Y.; Rogan, W.J.; Chen, P.C.; Lien, G.W.; Chen, H.Y.; Tseng, Y.C.; Longnecker, M.P.; Wang, S.L. Association between Maternal Serum Perfluoroalkyl Substances during Pregnancy and Maternal and Cord Thyroid Hormones: Taiwan Maternal and Infant Cohort Study. Envrion. Health Perspect. 2014, 122, 529–534. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Lai, J.; Luan, H.; Cai, Z.; Wang, Y.; Zhao, Y.; Wu, Y. Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study. Sci. Rep. 2016, 6, 21699. [Google Scholar] [CrossRef]
- Derakhshan, A.; Kortenkamp, A.; Shu, H.; Broeren, M.A.C.; Lindh, C.H.; Peeters, R.P.; Bornehag, C.G.; Demeneix, B.; Korevaar, T.I.M. Association of Per- and Polyfluoroalkyl Substances with Thyroid Homeostasis during Pregnancy in the SELMA Study. Envrion. Int. 2022, 167, 107420. [Google Scholar] [CrossRef]
- Preston, E.V.; Webster, T.F.; Claus Henn, B.; McClean, M.D.; Gennings, C.; Oken, E.; Rifas-Shiman, S.L.; Pearce, E.N.; Calafat, A.M.; Fleisch, A.F.; et al. Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Maternal and Neonatal Thyroid Function in the Project Viva Cohort: A Mixtures Approach. Envrion. Int. 2020, 139, 105728. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, Z.; Miao, M.; Tian, Y.; Zhou, Y.; Wen, S.; Chen, Y.; Sun, X.; Yuan, W. Prenatal Exposure to Perfluoroalkyl Substances and Thyroid Hormone Concentrations in Cord Plasma in a Chinese Birth Cohort. Envrion. Health 2020, 19, 127. [Google Scholar] [CrossRef]
- Preston, E.V.; Webster, T.F.; Oken, E.; Henn, B.C.; McClean, M.D.; Rifas-Shiman, S.L.; Pearce, E.N.; Braverman, L.E.; Calafat, A.M.; Ye, X.; et al. Maternal Plasma Per-and Polyfluoroalkyl Substance Concentrations in Early Pregnancy and Maternal and Neonatal Thyroid Function in a Prospective Birth Cohort: Project Viva (USA). Envrion. Health Perspect. 2018, 126, 027013. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Araki, A.; Miyashita, C.; Yamazaki, K.; Goudarzi, H.; Minatoya, M.; Ait Bamai, Y.; Kobayashi, S.; Okada, E.; Kashino, I.; et al. Association between Perfluoroalkyl Substance Exposure and Thyroid Hormone/Thyroid Antibody Levels in Maternal and Cord Blood: The Hokkaido Study. Envrion. Int. 2019, 133, 105139. [Google Scholar] [CrossRef]
- Yao, Q.; Vinturache, A.; Lei, X.; Wang, Z.; Pan, C.; Shi, R.; Yuan, T.; Gao, Y.; Tian, Y. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Fetal Thyroid Hormones, and Infant Neurodevelopment. Envrion. Res. 2022, 206, 112561. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Zhang, J.; Dai, Y.; Ding, J.; Guo, J.; Qi, X.; Wu, C.; Zhou, Z. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Fetal Thyroid Function, and Intelligence Quotient at 7 Years of Age: Findings from the Sheyang Mini Birth Cohort Study. Envrion. Int. 2024, 187, 108720. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, U.J.; Kim, H.Y.; Choi, S.D.; Oh, J.E. Perfluoroalkyl Substances in Serum from South Korean Infants with Congenital Hypothyroidism and Healthy Infants—Its Relationship with Thyroid Hormones. Envrion. Res. 2016, 147, 399–404. [Google Scholar] [CrossRef]
- Webster, G.M.; Rauch, S.A.; Marie, N.S.; Mattman, A.; Lanphear, B.P.; Venners, S.A. Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007-2008). Envrion. Health Perspect. 2016, 124, 935–942. [Google Scholar] [CrossRef]
- Gallo, E.; Barbiellini Amidei, C.; Barbieri, G.; Fabricio, A.S.C.; Gion, M.; Pitter, G.; Daprà, F.; Russo, F.; Gregori, D.; Fletcher, T.; et al. Perfluoroalkyl Substances and Thyroid Stimulating Hormone Levels in a Highly Exposed Population in the Veneto Region. Envrion. Res. 2022, 203, 111794. [Google Scholar] [CrossRef]
- Rodríguez-Carrillo, A.; Salamanca-Fernández, E.; den Hond, E.; Verheyen, V.J.; Fábelová, L.; Murinova, L.P.; Pedraza-Díaz, S.; Castaño, A.; García-Lario, J.V.; Remy, S.; et al. Association of Exposure to Perfluoroalkyl Substances (PFAS) and Phthalates with Thyroid Hormones in Adolescents from HBM4EU Aligned Studies. Envrion. Res. 2023, 237, 116897. [Google Scholar] [CrossRef]
- Tan, K.; Zhang, Q.Q.; Wang, Y.; Wang, C.; Hu, C.; Wang, L.; Liu, H.; Tian, Z. Associations between Per- and Polyfluoroalkyl Substances Exposure and Thyroid Hormone Levels in the Elderly. Sci. Total Environ. 2024, 920, 170761. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, J.; Gao, A. Contact to Perfluoroalkyl Substances and Thyroid Health Effects: A Meta-Analysis Directing on Pregnancy. Chemosphere 2023, 315, 137748. [Google Scholar] [CrossRef] [PubMed]
- Curran, I.; Hierlihy, S.L.; Liston, V.; Pantazopoulos, P.; Nunnikhoven, A.; Tittlemier, S.; Barker, M.; Trick, K.; Bondy, G. Altered Fatty Acid Homeostasis and Related Toxicologic Sequelae in Rats Exposed to Dietary Potassium Perfluorooctanesulfonate (PFOS). J. Toxicol. Environ. Health Part A Curr. Issues 2008, 71, 1526–1541. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Thibodeaux, J.R.; Eastvold, M.L.; Ehresman, D.J.; Bjork, J.A.; Froehlich, J.W.; Lau, C.; Singh, R.J.; Wallace, K.B.; Butenhoff, J.L. Thyroid Hormone Status and Pituitary Function in Adult Rats given Oral Doses of Perfluorooctanesulfonate (PFOS). Toxicology 2008, 243, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Curran, I.; Williams, A.; Bondy, G.; Yauk, C.L.; Wade, M.G. Hepatic MiRNA Profiles and Thyroid Hormone Homeostasis in Rats Exposed to Dietary Potassium Perfluorooctanesulfonate (PFOS). Envrion. Toxicol. Pharmacol. 2016, 41, 330–339. [Google Scholar] [CrossRef]
- Davidsen, N.; Ramhøj, L.; Lykkebo, C.A.; Kugathas, I.; Poulsen, R.; Rosenmai, A.K.; Evrard, B.; Darde, T.A.; Axelstad, M.; Bahl, M.I.; et al. PFOS-Induced Thyroid Hormone System Disrupted Rats Display Organ-Specific Changes in Their Transcriptomes. Environ. Pollut. 2022, 305, 330–339. [Google Scholar] [CrossRef]
- Davidsen, N.; Ramhøj, L.; Ballegaard, A.S.R.; Rosenmai, A.K.; Henriksen, C.S.; Svingen, T. Perfluorooctanesulfonic Acid (PFOS) Disrupts Cadherin-16 in the Developing Rat Thyroid Gland. Curr. Res. Toxicol. 2024, 6, 330–339. [Google Scholar] [CrossRef]
- Keiter, S.; Baumann, L.; Färber, H.; Holbech, H.; Skutlarek, D.; Engwall, M.; Braunbeck, T. Long-Term Effects of a Binary Mixture of Perfluorooctane Sulfonate (PFOS) and Bisphenol A (BPA) in Zebrafish (Danio Rerio). Aquat. Toxicol. 2012, 118–119, 330–339. [Google Scholar] [CrossRef]
- Shi, X.; Liu, C.; Wu, G.; Zhou, B. Waterborne Exposure to PFOS Causes Disruption of the Hypothalamus-Pituitary-Thyroid Axis in Zebrafish Larvae. Chemosphere 2009, 77, 330–339. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Lu, S.; Sang, N.; Li, G.; Xie, P.; Liu, C.; Zhang, L.; Xing, Y. Exposure to PFDoA Causes Disruption of the Hypothalamus-Pituitary-Thyroid Axis in Zebrafish Larvae. Environ. Pollut. 2018, 235, 974–982. [Google Scholar] [CrossRef]
- Degitz, S.J.; Degoey, P.P.; Haselman, J.T.; Olker, J.H.; Stacy, E.H.; Blanksma, C.; Meyer, S.; Mattingly, K.Z.; Blackwell, B.; Opseth, A.S.; et al. Evaluating Potential Developmental Toxicity of Perfluoroalkyl and Polyfluoroalkyl Substances in Xenopus laevis Embryos and Larvae. J. Appl. Toxicol. 2024, 44, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Crute, C.E.; Hall, S.M.; Landon, C.D.; Garner, A.; Everitt, J.I.; Zhang, S.; Blake, B.; Olofsson, D.; Chen, H.; Murphy, S.K.; et al. Evaluating Maternal Exposure to an Environmental per and Polyfluoroalkyl Substances (PFAS) Mixture during Pregnancy: Adverse Maternal and Fetoplacental Effects in a New Zealand White (NZW) Rabbit Model. Sci. Total Environ. 2022, 838, 156499. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Strazzeri, C.; Rhoden, K.J. Perfluorooctane Sulfonic Acid, a Persistent Organic Pollutant, Inhibits Iodide Accumulation by Thyroid Follicular Cells in Vitro. Mol. Cell. Endocrinol. 2020, 515, 110922. [Google Scholar] [CrossRef] [PubMed]
- De Toni, L.; Di Nisio, A.; Rocca, M.S.; Pedrucci, F.; Garolla, A.; Dall’Acqua, S.; Guidolin, D.; Ferlin, A.; Foresta, C. Comparative Evaluation of the Effects of Legacy and New Generation Perfluoralkyl Substances (PFAS) on Thyroid Cells In Vitro. Front. Endocrinol. 2022, 13, 915096. [Google Scholar] [CrossRef]
- Stoker, T.E.; Wang, J.; Murr, A.S.; Bailey, J.R.; Buckalew, A.R. High-Throughput Screening of ToxCast PFAS Chemical Library for Potential Inhibitors of the Human Sodium Iodide Symporter. Chem. Res. Toxicol. 2023, 36, 380–389. [Google Scholar] [CrossRef]
- Song, M.; Kim, Y.J.; Park, Y.K.; Ryu, J.C. Changes in Thyroid Peroxidase Activity in Response to Various Chemicals. J. Environ. Monit. 2012, 14, 2121–2126. [Google Scholar] [CrossRef]
- Croce, L.; Coperchini, F.; Tonacchera, M.; Imbriani, M.; Rotondi, M.; Chiovato, L. Effect of Long- and Short-Chain Perfluorinated Compounds on Cultured Thyroid Cells Viability and Response to TSH. J. Endocrinol. Investig. 2019, 42, 2121–2126. [Google Scholar] [CrossRef]
- Coperchini, F.; Greco, A.; Rotondi, M. Changing the Structure of PFOA and PFOS: A Chemical Industry Strategy or a Solution to Avoid Thyroid-Disrupting Effects? J. Endocrinol. Investig. 2024, 47, 1863–1879. [Google Scholar] [CrossRef]
- Sun, S.; Guo, H.; Wang, J.; Dai, J. Hepatotoxicity of Perfluorooctanoic Acid and Two Emerging Alternatives Based on a 3D Spheroid Model. Environ. Pollut. 2019, 246, 955–962. [Google Scholar] [CrossRef]
- Coperchini, F.; Croce, L.; Denegri, M.; Pignatti, P.; Agozzino, M.; Netti, G.S.; Imbriani, M.; Rotondi, M.; Chiovato, L. Adverse Effects of in Vitro GenX Exposure on Rat Thyroid Cell Viability, DNA Integrity and Thyroid-Related Genes Expression. Environ. Pollut. 2020, 264, 114778. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Pignatti, P.; Lacerenza, S.; Negri, S.; Sideri, R.; Testoni, C.; de Martinis, L.; Cottica, D.; Magri, F.; Imbriani, M.; et al. Exposure to Perfluorinated Compounds: In Vitro Study on Thyroid Cells. Environ. Sci. Pollut. Res. 2015, 22, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, K.; Li, W.; Chai, Y.; Zhu, J.; Chu, B.; Li, N.; Yan, J.; Zhang, S.; Yang, Y. Varied Thyroid Disrupting Effects of Perfluorooctanoic Acid (PFOA) and Its Novel Alternatives Hexafluoropropylene-Oxide-Dimer-Acid (GenX) and Ammonium 4,8-Dioxa-3H-Perfluorononanoate (ADONA) in Vitro. Envrion. Int. 2021, 156, 106745. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Croce, L.; Pignatti, P.; Ricci, G.; Gangemi, D.; Magri, F.; Imbriani, M.; Rotondi, M.; Chiovato, L. The New Generation PFAS C6O4 Does Not Produce Adverse Effects on Thyroid Cells in Vitro. J. Endocrinol. Investig. 2021, 44, 1625–1635. [Google Scholar] [CrossRef]
- Liu, L.; Yan, P.; Liu, X.; Zhao, J.; Tian, M.; Huang, Q.; Yan, J.; Tong, Z.; Zhang, Y.; Zhang, J.; et al. Profiles and transplacental transfer of per- and polyfluoroalkyl substances in maternal and umbilical cord blood: A birth cohort study in Zhoushan, Zhejiang Province, China. J. Hazard. Mater. 2024, 466, 133501. [Google Scholar] [CrossRef]
- Jing, L.; Shi, Z. Per- and Polyfluoroalkyl Substances (PFAS) Exposure Might Be a Risk Factor for Thyroid Cancer. eBioMedicine 2023, 98, 104866. [Google Scholar] [CrossRef]
- Cirello, V.; Lugaresi, M.; Moneta, C.; Dufour, P.; Manzo, A.; Carbone, E.; Colombo, C.; Fugazzola, L.; Charlier, C.; Pirard, C. Thyroid Cancer and Endocrine Disruptive Chemicals: A Case–Control Study on per-Fluoroalkyl Substances and Other Persistent Organic Pollutants. Eur. Thyroid J. 2024, 13, e230192. [Google Scholar] [CrossRef]
- Durham, J.; Tessmann, J.W.; Deng, P.; Hennig, B.; Zaytseva, Y.Y. The Role of Perfluorooctane Sulfonic Acid (PFOS) Exposure in Inflammation of Intestinal Tissues and Intestinal Carcinogenesis. Front. Toxicol. 2023, 5, 1244457. [Google Scholar] [CrossRef]
- Alsen, M.; Leung, A.M.; van Gerwen, M. Per- and Polyfluoroalkyl Substances (PFAS) in Community Water Systems (CWS) and the Risk of Thyroid Cancer: An Ecological Study. Toxics 2023, 11, 786. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thapar, I.; Brooks, B.W. Epigenetic Changes by Per- and Polyfluoroalkyl Substances (PFAS). Environ. Pollut. 2021, 279, 116929. [Google Scholar] [CrossRef]
- Coperchini, F.; Greco, A.; Croce, L.; Teliti, M.; Calì, B.; Chytiris, S.; Magri, F.; Rotondi, M. Do PFCAs Drive the Establishment of Thyroid Cancer Microenvironment? Effects of C6O4, PFOA and PFHxA Exposure in Two Models of Human Thyroid Cells in Primary Culture. Envrion. Int. 2024, 187, 108717. [Google Scholar] [CrossRef]
- Pan, J.; Liu, P.; Yu, X.; Zhang, Z.; Liu, J. The Adverse Role of Endocrine Disrupting Chemicals in the Reproductive System. Front. Endocrinol. 2024, 14, 1324993. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Gaskins, A.J.; Meeker, J.D.; Braun, J.M.; Chavarro, J.E. Endocrine-Disrupting Chemicals and Male Reproductive Health. Fertil. Steril. 2023, 120, 1138–1149. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Cevallos, P.; Murúa-Beltrán Gall, S.; Uribe, M.; Chávez-Tapia, N.C. Understanding the Relationship between Nonalcoholic Fatty Liver Disease and Thyroid Disease. Int. J. Mol. Sci. 2023, 24, 14605. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O.A.; Asghar, R.; Makwana, S.; Yahya, M.; Kumar, N.; Khawar, M.H.; Ahmed, A.; Islam, T.; Kumari, K.; Shadmani, S.; et al. Thyroid and Its Ripple Effect: Impact on Cardiac Structure, Function, and Outcomes. Cureus 2024, 16, e51574. [Google Scholar] [CrossRef]
- Salari, N.; Fattahi, N.; Abdolmaleki, A.; Heidarian, P.; Shohaimi, S.; Mohammadi, M. The Global Prevalence of Sexual Dysfunction in Men with Thyroid Gland Disorders: A Systematic Review and Meta-Analysis. J. Diabetes Metab. Disord. 2024, 23, 395–403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, V.G.; Henrique, G.; Sousa-Vidal, É.K.; de Souza, R.M.M.; Tavares, E.F.C.; Mezzalira, N.; Marques, T.d.O.; Alves, B.M.; Pinto, J.A.A.; Irikura, L.N.N.; et al. Thyroid under Attack: The Adverse Impact of Plasticizers, Pesticides, and PFASs on Thyroid Function. Endocrines 2024, 5, 430-453. https://doi.org/10.3390/endocrines5030032
Rodrigues VG, Henrique G, Sousa-Vidal ÉK, de Souza RMM, Tavares EFC, Mezzalira N, Marques TdO, Alves BM, Pinto JAA, Irikura LNN, et al. Thyroid under Attack: The Adverse Impact of Plasticizers, Pesticides, and PFASs on Thyroid Function. Endocrines. 2024; 5(3):430-453. https://doi.org/10.3390/endocrines5030032
Chicago/Turabian StyleRodrigues, Vinicius Gonçalves, Guilherme Henrique, Érica Kássia Sousa-Vidal, Rafaela Martins Miguel de Souza, Evelyn Franciny Cardoso Tavares, Nathana Mezzalira, Thacila de Oliveira Marques, Bruna Monteiro Alves, João Anthony Araújo Pinto, Luana Naomi Niwa Irikura, and et al. 2024. "Thyroid under Attack: The Adverse Impact of Plasticizers, Pesticides, and PFASs on Thyroid Function" Endocrines 5, no. 3: 430-453. https://doi.org/10.3390/endocrines5030032
APA StyleRodrigues, V. G., Henrique, G., Sousa-Vidal, É. K., de Souza, R. M. M., Tavares, E. F. C., Mezzalira, N., Marques, T. d. O., Alves, B. M., Pinto, J. A. A., Irikura, L. N. N., Silva, R. E. C. d., de Oliveira, K. C., Maciel, R. M. d. B., Giannocco, G., & Serrano-Nascimento, C. (2024). Thyroid under Attack: The Adverse Impact of Plasticizers, Pesticides, and PFASs on Thyroid Function. Endocrines, 5(3), 430-453. https://doi.org/10.3390/endocrines5030032