PDE5 Inhibitors in Type 2 Diabetes Cardiovascular Complications
Abstract
:1. Introduction
2. Phosphodiesterase-5 Inhibitors and T2DM-Related Cardiovascular Complications
Endothelial Dysfunction and Inflammation
3. PDE5 Inhibitors and Diabetic Cardiomyopathy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov. 2019, 18, 770–796. [Google Scholar] [CrossRef] [PubMed]
- Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov. 2014, 13, 290–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isidori, A.M.; Cornacchione, M.; Barbagallo, F.; Di Grazia, A.; Barrios, F.; Fassina, L.; Monaco, L.; Giannetta, E.; Gianfrilli, D.; Garofalo, S.; et al. Inhibition of type 5 phosphodiesterase counteracts β2-adrenergic signalling in beating cardiomyocytes. Cardiovasc. Res. 2015, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, E.; Abel, K.; Krieger, M.; Palm, D.; Hoppe, V.; Hoppe, J.; Walter, U. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 1994, 269, 14509–14517. [Google Scholar]
- Surks, H.K. Regulation of Myosin Phosphatase by a Specific Interaction with cGMP- Dependent Protein Kinase I. Science (80-.) 1999, 286, 1583–1587. [Google Scholar] [CrossRef]
- Fukao, M.; Mason, H.S.; Britton, F.C.; Kenyon, J.L.; Horowitz, B.; Keef, K.D. Cyclic GMP-dependent Protein Kinase Activates Cloned BK Ca Channels Expressed in Mammalian Cells by Direct Phosphorylation at Serine 1072. J. Biol. Chem. 1999, 274, 10927–10935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlossmann, J.; Ammendola, A.; Ashman, K.; Zong, X.; Huber, A.; Neubauer, G.; Wang, G.-X.; Allescher, H.-D.; Korth, M.; Wilm, M.; et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature 2000, 404, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Forte, M.; Madonna, M.; Schiavon, S.; Valenti, V.; Versaci, F.; Biondi Zoccai, G.; Frati, G.; Sciarretta, S. Cardiovascular Pleiotropic Effects of Natriuretic Peptides. Int. J. Mol. Sci. 2019, 20, 3874. [Google Scholar] [CrossRef] [Green Version]
- Bork, N.I.; Molina, C.E.; Nikolaev, V.O. cGMP signalling in cardiomyocyte microdomains. Biochem. Soc. Trans. 2019, 47, 1327–1339. [Google Scholar] [CrossRef]
- Campolo, F.; Zevini, A.; Cardarelli, S.; Monaco, L.; Barbagallo, F.; Pellegrini, M.; Cornacchione, M.; Di Grazia, A.; De Arcangelis, V.; Gianfrilli, D.; et al. Identification of murine phosphodiesterase 5A isoforms and their functional characterization in HL-1 cardiac cell line. J. Cell. Physiol. 2018, 233. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-S. Tissue expression, distribution, and regulation of PDE5. Int. J. Impot. Res. 2004, 16, S8–S10. [Google Scholar] [CrossRef] [Green Version]
- Cesarini, V.; Guida, E.; Campolo, F.; Crescioli, C.; Di Baldassarre, A.; Pisano, C.; Balistreri, C.R.; Ruvolo, G.; Jannini, E.A.; Dolci, S. Type 5 phosphodiesterase (PDE5) and the vascular tree: From embryogenesis to aging and disease. Mech. Ageing Dev. 2020, 190, 111311. [Google Scholar] [CrossRef]
- Jannini, E.A.; Droupy, S. Needs and Expectations of Patients with Erectile Dysfunction: An Update on Pharmacological Innovations in Phosphodiesterase Type 5 Inhibition with Focus on Sildenafil. Sex Med. 2019, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Koitabashi, N.; Nagayama, T.; Rambaran, R.; Feng, N.; Takimoto, E.; Koenke, T.; O’Rourke, B.; Champion, H.C.; Crow, M.T.; et al. Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell Signal. 2008, 20, 2231–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degen, C.V.; Bishu, K.; Zakeri, R.; Ogut, O.; Redfield, M.M.; Brozovich, F.V. The Emperor’s New Clothes: PDE5 and the Heart. PLoS ONE 2015, 10, e0118664. [Google Scholar] [CrossRef]
- Shan, X.; Quaile, M.P.; Monk, J.K.; French, B.; Cappola, T.P.; Margulies, K.B. Differential Expression of PDE5 in Failing and Nonfailing Human Myocardium. Circ. Heart Fail. 2012, 5, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandeput, F.; Krall, J.; Ockaili, R.; Salloum, F.N.; Florio, V.; Corbin, J.D.; Francis, S.H.; Kukreja, R.C.; Movsesian, M.A. cGMP-Hydrolytic Activity and Its Inhibition by Sildenafil in Normal and Failing Human and Mouse Myocardium. J. Pharmacol. Exp. Ther. 2009, 330, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Takimoto, E.; Champion, H.C.; Li, M.; Belardi, D.; Ren, S.; Rodriguez, E.R.; Bedja, D.; Gabrielson, K.L.; Wang, Y.; Kass, D.A. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 2005, 11, 214–222. [Google Scholar] [CrossRef]
- Fisher, P.W.; Salloum, F.; Das, A.; Hyder, H.; Kukreja, R.C. Phosphodiesterase-5 Inhibition With Sildenafil Attenuates Cardiomyocyte Apoptosis and Left Ventricular Dysfunction in a Chronic Model of Doxorubicin Cardiotoxicity. Circulation 2005, 111, 1601–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salloum, F.N.; Chau, V.Q.; Hoke, N.N.; Abbate, A.; Varma, A.; Ockaili, R.A.; Toldo, S.; Kukreja, R.C. Phosphodiesterase-5 Inhibitor, Tadalafil, Protects Against Myocardial Ischemia/Reperfusion Through Protein-Kinase G-Dependent Generation of Hydrogen Sulfide. Circulation 2009, 120, S31–S36. [Google Scholar] [CrossRef] [Green Version]
- Redfield, M.M.; Chen, H.H.; Borlaug, B.A.; Semigran, M.J.; Lee, K.L.; Lewis, G.; LeWinter, M.M.; Rouleau, J.L.; Bull, D.A.; Mann, D.L.; et al. Effect of Phosphodiesterase-5 Inhibition on Exercise Capacity and Clinical Status in Heart Failure with Preserved Ejection Fraction. JAMA 2013, 309, 1268. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Vicenzi, M.; Arena, R.; Guazzi, M.D. PDE5 Inhibition with Sildenafil Improves Left Ventricular Diastolic Function, Cardiac Geometry, and Clinical Status in Patients with Stable Systolic Heart Failure. Circ. Heart Fail. 2011, 4, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannetta, E.; Isidori, A.M.; Galea, N.; Carbone, I.; Mandosi, E.; Vizza, C.D.; Naro, F.; Morano, S.; Fedele, F.; Lenzi, A. Chronic Inhibition of cGMP Phosphodiesterase 5A Improves Diabetic Cardiomyopathy. Circulation 2012, 125, 2323–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denardo, S.J.; Wen, X.; Handberg, E.M.; Bairey Merz, C.N.; Sopko, G.S.; Cooper-DeHoff, R.M.; Pepine, C.J. Effect of Phosphodiesterase Type 5 Inhibition on Microvascular Coronary Dysfunction in Women: A Women’s Ischemia Syndrome Evaluation (WISE) Ancillary Study. Clin. Cardiol. 2011, 34, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Fox, K. Sildenafil citrate does not reduce exercise tolerance in men with erectile dysfunction and chronic stable angina. Eur. Heart J. 2003, 24, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Vicenzi, M.; Arena, R. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: A long-term cardiopulmonary exercise testing placebo-controlled study. Eur. J. Heart Fail. 2012, 14, 82–90. [Google Scholar] [CrossRef]
- Lewis, G.D.; Lachmann, J.; Camuso, J.; Lepore, J.J.; Shin, J.; Martinovic, M.E.; Systrom, D.M.; Bloch, K.D.; Semigran, M.J. Sildenafil Improves Exercise Hemodynamics and Oxygen Uptake in Patients With Systolic Heart Failure. Circulation 2007, 115, 59–66. [Google Scholar] [CrossRef]
- Bocchi, E.A.; Guimarães, G.; Mocelin, A.; Bacal, F.; Bellotti, G.; Ramires, J.F. Sildenafil Effects on Exercise, Neurohormonal Activation, and Erectile Dysfunction in Congestive Heart Failure. Circulation 2002, 106, 1097–1103. [Google Scholar] [CrossRef]
- Webster, L.J.; Michelakis, E.D.; Davis, T.; Archer, S.L. Use of Sildenafil for Safe Improvement of Erectile Function and Quality of Life in Men With New York Heart Association Classes II and III Congestive Heart Failure. Arch. Intern. Med. 2004, 164, 514. [Google Scholar] [CrossRef] [Green Version]
- Guazzi, M.; Tumminello, G.; Di Marco, F.; Fiorentini, C.; Guazzi, M.D. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J. Am. Coll. Cardiol. 2004, 44, 2339–2348. [Google Scholar] [CrossRef] [Green Version]
- Al-Hesayen, A.; Floras, J.S.; Parker, J.D. The effects of intravenous sildenafil on hemodynamics and cardiac sympathetic activity in chronic human heart failure. Eur. J. Heart Fail. 2006, 8, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Kaye, D.M.; Lefkovits, J.; Jennings, G.L.; Bergin, P.; Broughton, A.; Esler, M.D. Adverse consequences of high sympathetic nervous activity in the failing human heart. J. Am. Coll. Cardiol. 1995, 26, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Borlaug, B.A.; Lewis, G.D.; McNulty, S.E.; Semigran, M.J.; LeWinter, M.; Chen, H.; Lin, G.; Deswal, A.; Margulies, K.B.; Redfield, M.M. Effects of Sildenafil on Ventricular and Vascular Function in Heart Failure With Preserved Ejection Fraction. Circ. Heart Fail. 2015, 8, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghofrani, H.A.; Voswinckel, R.; Reichenberger, F.; Olschewski, H.; Haredza, P.; Karadaş, B.; Schermuly, R.T.; Weissmann, N.; Seeger, W.; Grimminger, F. Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2004, 44, 1488–1496. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, M.R.; Paul, G.A.; Strange, J.W.; Tunariu, N.; Gin-Sing, W.; Banya, W.A.; Westwood, M.A.; Stefanidis, A.; Ng, L.L.; Pennell, D.J.; et al. Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) Study. Am. J. Respir. Crit. Care Med. 2005, 171, 1292–1297. [Google Scholar] [CrossRef]
- Bhatia, S.; Frantz, R.P.; Severson, C.J.; Durst, L.A.; McGoon, M.D. Immediate and Long-term Hemodynamic and Clinical Effects of Sildenafil in Patients With Pulmonary Arterial Hypertension Receiving Vasodilator Therapy. Mayo Clin. Proc. 2003, 78, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Neick, I. Intravenous Sildenafil Is a Potent Pulmonary Vasodilator in Children With Congenital Heart Disease. Circulation 2003, 108, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; et al. Sildenafil Citrate Therapy for Pulmonary Arterial Hypertension. N. Engl. J. Med. 2005, 353, 2148–2157. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.J.; French, B.; Szwast, A.L.; McBride, M.G.; Marino, B.S.; Mirarchi, N.; Hanna, B.D.; Wernovsky, G.; Paridon, S.M.; Rychik, J. Impact of Sildenafil on Echocardiographic Indices of Myocardial Performance After the Fontan Operation. Pediatr. Cardiol. 2012, 33, 689–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C. Definition of Metabolic Syndrome. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.; Chawla, S.; Guchhait, P. Type-2 diabetes: Current understanding and future perspectives. IUBMB Life 2015, 67, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Kenny, H.C.; Abel, E.D. Heart Failure in Type 2 Diabetes Mellitus. Circ. Res. 2019, 124, 121–141. [Google Scholar] [CrossRef]
- Lejay, A.; Fang, F.; John, R.; Van, J.A.D.; Barr, M.; Thaveau, F.; Chakfe, N.; Geny, B.; Scholey, J.W. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J. Mol. Cell. Cardiol. 2016, 91, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Hackett, G.; Jones, P.W.; Strange, R.C.; Ramachandran, S. Statin, testosterone and phosphodiesterase 5-inhibitor treatments and age related mortality in diabetes. World J. Diabetes 2017, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.G.; Hutchings, D.C.; Woodward, M.; Rahimi, K.; Rutter, M.K.; Kirby, M.; Hackett, G.; Trafford, A.W.; Heald, A.H. Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality. Heart 2016, 102, 1750–1756. [Google Scholar] [CrossRef] [Green Version]
- Vanhoutte, P.M.; Mombouli, J.-V. Vascular endothelium: Vasoactive mediators. Prog. Cardiovasc. Dis. 1996, 39, 229–238. [Google Scholar] [CrossRef]
- Lyons, D. Impairment and restoration of nitric oxide-dependent vasodilation in cardiovascular disease. Int. J. Cardiol. 1997, 62, S101–S109. [Google Scholar] [CrossRef]
- Goulopoulou, S.; Hannan, J.L.; Matsumoto, T.; Ogbi, S.; Ergul, A.; Webb, R.C. Reduced vascular responses to soluble guanylyl cyclase but increased sensitivity to sildenafil in female rats with type 2 diabetes. Am. J. Physiol. Circ. Physiol. 2015, 309, H297–H304. [Google Scholar] [CrossRef] [Green Version]
- Mammi, C.; Pastore, D.; Lombardo, M.F.; Ferrelli, F.; Caprio, M.; Consoli, C.; Tesauro, M.; Gatta, L.; Fini, M.; Federici, M.; et al. Sildenafil Reduces Insulin-Resistance in Human Endothelial Cells. PLoS ONE 2011, 6, e14542. [Google Scholar] [CrossRef] [Green Version]
- Stirban, A.; Laude, D.; Elghozi, J.-L.; Sander, D.; Agelink, M.W.; Hilz, M.J.; Ziegler, D. Acute effects of sildenafil on flow mediated dilatation and cardiovascular autonomic nerve function in type 2 diabetic patients. Diabetes. Metab. Res. Rev. 2009, 25, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Desouza, C.; Parulkar, A.; Lumpkin, D.; Akers, D.; Fonseca, V.A. Acute and Prolonged Effects of Sildenafil on Brachial Artery Flow-Mediated Dilatation in Type 2 Diabetes. Diabetes Care 2002, 25, 1336–1339. [Google Scholar] [CrossRef] [Green Version]
- Aversa, A.; Vitale, C.; Volterrani, M.; Fabbri, A.; Spera, G.; Fini, M.; Rosano, G.M.C. Chronic administration of Sildenafil improves markers of endothelial function in men with Type 2 diabetes. Diabet. Med. 2008, 25, 37–44. [Google Scholar] [CrossRef]
- Rosano, G.M.C.; Aversa, A.; Vitale, C.; Fabbri, A.; Fini, M.; Spera, G. Chronic Treatment with Tadalafil Improves Endothelial Function in Men with Increased Cardiovascular Risk. Eur. Urol. 2005, 47, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Seftel, A.D. Chronic Treatment With Tadalafil Improves Endothelial Function in Men With Increased Cardiovascular Risk. J. Urol. 2005, 174, 1365. [Google Scholar] [CrossRef]
- Roli, L.; Santi, D.; Baraldi, E.; De Santis, M.C.; Trenti, T. Chronic, long term administration of vardenafil improves endothelial function and improves testosterone levels in hypogonadic patients with type 2 diabetes mellitus. Clin. Chem. Lab. Med. 2015. [Google Scholar] [CrossRef]
- Santi, D.; Giannetta, E.; Isidori, A.M.; Vitale, C.; Aversa, A.; Simoni, M. THERAPY OF ENDOCRINE DISEASE: Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: A meta-analysis. Eur. J. Endocrinol. 2015, 172, R103–R114. [Google Scholar] [CrossRef] [Green Version]
- Mandosi, E.; Giannetta, E.; Filardi, T.; Lococo, M.; Bertolini, C.; Fallarino, M.; Gianfrilli, D.; Venneri, M.A.; Lenti, L.; Lenzi, A.; et al. Endothelial dysfunction markers as a therapeutic target for Sildenafil treatment and effects on metabolic control in type 2 diabetes. Expert Opin. Ther. Targets 2015, 19, 1617–1622. [Google Scholar] [CrossRef]
- Grover-Páez, F.; Villegas Rivera, G.; Guillén Ortíz, R. Sildenafil citrate diminishes microalbuminuria and the percentage of A1c in male patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2007, 78, 136–140. [Google Scholar] [CrossRef]
- Poolsup, N.; Suksomboon, N.; Aung, N. Effect of phosphodiesterase-5 inhibitors on glycemic control in person with type 2 diabetes mellitus: A systematic review and meta-analysis. J. Clin. Transl. Endocrinol. 2016, 6, 50–55. [Google Scholar] [CrossRef]
- Fiore, D.; Gianfrilli, D.; Cardarelli, S.; Naro, F.; Lenzi, A.; Isidori, A.M.; Venneri, M.A. Chronic phosphodiesterase type 5 inhibition has beneficial effects on subcutaneous adipose tissue plasticity in type 2 diabetic mice. J. Cell. Physiol. 2018, 233, 8411–8417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes Mellitus and Inflammation. Curr. Diab. Rep. 2013, 13, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.; Das, A.; Hoke, N.N.; Durrant, D.E.; Salloum, F.N.; Kukreja, R.C. Anti-Inflammatory and Cardioprotective Effects of Tadalafil in Diabetic Mice. PLoS ONE 2012, 7, e45243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pofi, R.; Fiore, D.; De Gaetano, R.; Panio, G.; Gianfrilli, D.; Pozza, C.; Barbagallo, F.; Xiang, Y.K.; Giannakakis, K.; Morano, S.; et al. Phosphodiesterase-5 inhibition preserves renal hemodynamics and function in mice with diabetic kidney disease by modulating miR-22 and BMP7. Sci. Rep. 2017, 7, 44584. [Google Scholar] [CrossRef] [Green Version]
- Akwii, R.G.; Sajib, M.S.; Zahra, F.T.; Mikelis, C.M. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2019, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Isidori, A.M.; Venneri, M.A.; Fiore, D. Angiopoietin-1 and Angiopoietin-2 in metabolic disorders: Therapeutic strategies to restore the highs and lows of angiogenesis in diabetes. J. Endocrinol. Investig. 2016, 39, 1235–1246. [Google Scholar] [CrossRef]
- Venneri, M.A.; De Palma, M.; Ponzoni, M.; Pucci, F.; Scielzo, C.; Zonari, E.; Mazzieri, R.; Doglioni, C.; Naldini, L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 2007, 109, 5276–5285. [Google Scholar] [CrossRef] [Green Version]
- Rasul, S.; Reiter, M.H.; Ilhan, A.; Lampichler, K.; Wagner, L.; Kautzky-Willer, A. Circulating angiopoietin-2 and soluble Tie-2 in type 2 diabetes mellitus: A cross-sectional study. Cardiovasc. Diabetol. 2011, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Venneri, M.A.; Barbagallo, F.; Fiore, D.; De Gaetano, R.; Giannetta, E.; Sbardella, E.; Pozza, C.; Campolo, F.; Naro, F.; Lenzi, A.; et al. PDE5 Inhibition Stimulates Tie2-Expressing Monocytes and Angiopoietin-1 Restoring Angiogenic Homeostasis in Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 2623–2636. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Kim, J. Diabetic cardiomyopathy: Where we are and where we are going. Korean J. Intern. Med. 2017, 32, 404–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koka, S.; Xi, L.; Kukreja, R.C. Chronic treatment with long acting phosphodiesterase-5 inhibitor tadalafil alters proteomic changes associated with cytoskeletal rearrangement and redox regulation in Type 2 diabetic hearts. Basic Res. Cardiol. 2012, 107, 249. [Google Scholar] [CrossRef] [PubMed]
- Koka, S.; Aluri, H.S.; Xi, L.; Lesnefsky, E.J.; Kukreja, R.C. Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: Potential role of NO/SIRT1/PGC-1α signaling. Am. J. Physiol. Circ. Physiol. 2014, 306, H1558–H1568. [Google Scholar] [CrossRef] [Green Version]
- Mátyás, C.; Németh, B.T.; Oláh, A.; Török, M.; Ruppert, M.; Kellermayer, D.; Barta, B.A.; Szabó, G.; Kökény, G.; Horváth, E.M.; et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur. J. Heart Fail. 2017, 19, 326–336. [Google Scholar] [CrossRef]
- Zhang, M.; Gu, H.; Chen, J.; Zhou, X. Involvement of long noncoding RNA MALAT1 in the pathogenesis of diabetic cardiomyopathy. Int. J. Cardiol. 2016, 202, 753–755. [Google Scholar] [CrossRef]
- Bacci, L.; Barbati, S.A.; Colussi, C.; Aiello, A.; Isidori, A.M.; Grassi, C.; Pontecorvi, A.; Farsetti, A.; Gaetano, C.; Nanni, S. Sildenafil normalizes MALAT1 level in diabetic cardiomyopathy. Endocrine 2018, 62, 259–262. [Google Scholar] [CrossRef] [Green Version]
- West, T.M.; Wang, Q.; Deng, B.; Zhang, Y.; Barbagallo, F.; Reddy, G.R.; Chen, D.; Phan, K.S.; Xu, B.; Isidori, A.; et al. Phosphodiesterase 5 Associates With β2 Adrenergic Receptor to Modulate Cardiac Function in Type 2 Diabetic Hearts. J. Am. Heart Assoc. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Anstrom, K.; Ilkayeva, O.; Muehlbauer, M.J.; Bain, J.R.; McNulty, S.; Newgard, C.B.; Kraus, W.E.; Hernandez, A.; Felker, G.M.; et al. Sildenafil Treatment in Heart Failure With Preserved Ejection Fraction. JAMA Cardiol. 2017, 2, 896. [Google Scholar] [CrossRef]
- Sasaki, H.; Nagayama, T.; Blanton, R.M.; Seo, K.; Zhang, M.; Zhu, G.; Lee, D.I.; Bedja, D.; Hsu, S.; Tsukamoto, O.; et al. PDE5 inhibitor efficacy is estrogen dependent in female heart disease. J. Clin. Investig. 2014, 124, 2464–2471. [Google Scholar] [CrossRef] [Green Version]
- Ockaili, R.; Salloum, F.; Hawkins, J.; Kukreja, R.C. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K ATP channels in rabbits. Am. J. Physiol. Circ. Physiol. 2002, 283, H1263–H1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreadou, I.; Iliodromitis, E.K.; Szabo, C.; Papapetropoulos, A. Hydrogen sulfide and PKG in ischemia–reperfusion injury: Sources, signaling, accelerators and brakes. Basic Res. Cardiol. 2015, 110, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, T.; Miki, T. GSK-3β, a Therapeutic Target for Cardiomyocyte Protection. Circ. J. 2009, 73, 1184–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.; Xi, L.; Kukreja, R.C. Protein Kinase G-dependent Cardioprotective Mechanism of Phosphodiesterase-5 Inhibition Involves Phosphorylation of ERK and GSK3β. J. Biol. Chem. 2008, 283, 29572–29585. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Xi, L.; Kukreja, R.C. Phosphodiesterase-5 Inhibitor Sildenafil Preconditions Adult Cardiac Myocytes against Necrosis and Apoptosis. J. Biol. Chem. 2005, 280, 12944–12955. [Google Scholar] [CrossRef] [Green Version]
- Juhaszova, M.; Zorov, D.B.; Yaniv, Y.; Nuss, H.B.; Wang, S.; Sollott, S.J. Role of Glycogen Synthase Kinase-3β in Cardioprotection. Circ. Res. 2009, 104, 1240–1252. [Google Scholar] [CrossRef] [Green Version]
Condition | Patients | Patients with T2DM (N) | Main Research Finding |
---|---|---|---|
Heart Failure with Preserved Ejection Fraction (HFpEF) | 216 subjects, 104 (48%) women (RELAX trial) | 93 | No effect on exercise capacity, LVMi, EDVi, diastolic function, PASP, mean BP ↓ in arterial elastance at CMR. [21] |
44 subjects, 9 women. | 7 | ↑ cardiac index, E/A ratio, E’, and LV internal dimension; ↓ interventricular septum, posterior wall and relative wall thickness, LV mass index, E/E’, deceleration time, and isovolumic relaxation time [22] | |
59 subjects, all men (CECSID trial) | 59 | restored coupling in LV contraction: ↓ torsion&↑ strain; ↓ concentricity index [23] | |
Myocardial Infarction | 23 patients, all women | 6 | Short-term ↑ CFR in women after PDE5i (100 mg) [24] |
144 patients, all men | 43 | Short-term ↑ exercise tolerance and ischemic threshold in men with CAD and Erectile dysfunction [25] | |
12 patients, 4 women | N/A | ↑ safety after ischemic stroke [25] | |
Heart Failure | 32 patients, all men | N/A | ↑ HRR, FMD, peak VO2 ↓ PASP, ergoreflex effect on ventilation, V(E)/VCO2 slope, breathlessness score, wedge pressure, PVR, EOB, DOE [26] |
13 patients, 2 women [27] | None | ↑ oxygen uptake, CI; ↓ SVR & aorta stiffness; ↑ exercise time &↓ HR during exercise; ↑ 6-min walking distance; ↑ QoL | |
23 patients, all men [28] | None | ||
35 patients, all men [29] | 9 | ||
45 patients, no data about sex | N/A | ↑ RV & LV function, CI, isovolumetric relaxation, septal mitral annulus velocity ↓ RA pressure, pulmonary fluid content &↑ gas conductance ↓ LVMi, LAVi, LVEDV, PASP, NT-proBNP & ↑ QoL [22] | |
24 patients, all men | None | ↑ Pulmonary pressure & vascular tone, aerobic &ventilatory efficiency oxygen debt [30] | |
60 patients, all men [31] | N/A | ↓ cardiac sympathetic activity | |
10 patients, all men [32] | N/A | ||
48 patients, 28 women | 17 | AT REST: ↓ resting central SBP, trend in ↓ of E/A and SVR, no effects on resting LV systolic-diastolic function or PASP, tended to increase endothelial function. DURING EXERCISE: ↓ peak heart rate; ↑ EF and trend toward a less increase in systolic BP at low level exercise; ↓ of 11–16% LV contractility. [33] | |
Pulmonary Arterial Hypertension | 60 patients, 39 women [34] | N/A | ↑ cardiac function & exercise capacity |
26 patients, 21 women [35] | N/A | ||
13 patients, 10 women | N/A | ↑ CO; ↓PASP, PAmP, PVR [36] | |
12 patients | N/A | pulmonary vasodilation [37] | |
277 patients, 209 women | N/A | ↑ 6 min WT & WHO functional class and ↓ PAmP [38] | |
Congenital Cardiomyopathy | 28 subjects, 10 (36%) women | none | ↑ ventricular performance [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbagallo, F.; Campolo, F.; Franceschini, E.; Crecca, E.; Pofi, R.; Isidori, A.M.; Venneri, M.A. PDE5 Inhibitors in Type 2 Diabetes Cardiovascular Complications. Endocrines 2020, 1, 90-101. https://doi.org/10.3390/endocrines1020009
Barbagallo F, Campolo F, Franceschini E, Crecca E, Pofi R, Isidori AM, Venneri MA. PDE5 Inhibitors in Type 2 Diabetes Cardiovascular Complications. Endocrines. 2020; 1(2):90-101. https://doi.org/10.3390/endocrines1020009
Chicago/Turabian StyleBarbagallo, Federica, Federica Campolo, Edoardo Franceschini, Elena Crecca, Riccardo Pofi, Andrea M. Isidori, and Mary Anna Venneri. 2020. "PDE5 Inhibitors in Type 2 Diabetes Cardiovascular Complications" Endocrines 1, no. 2: 90-101. https://doi.org/10.3390/endocrines1020009
APA StyleBarbagallo, F., Campolo, F., Franceschini, E., Crecca, E., Pofi, R., Isidori, A. M., & Venneri, M. A. (2020). PDE5 Inhibitors in Type 2 Diabetes Cardiovascular Complications. Endocrines, 1(2), 90-101. https://doi.org/10.3390/endocrines1020009