Effect of Sealing Greases on Inhibiting the Leakage of Supercritical CO2: A Molecular Dynamics Study
Abstract
1. Introduction
2. Modeling
3. Results and Discussions
3.1. Temperature Effect
3.2. Pressure Effect
3.3. Effect of Channel Height
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.C.; Wang, P.; Li, W. Fabrication of functionally graded porous polymer via supercritical CO2 foaming. Compos. Part B-Eng. 2011, 42, 318–325. [Google Scholar] [CrossRef]
- Areerat, S.; Funami, E.; Hayata, Y.; Nakagawa, D.; Ohshima, M. Measurement and prediction of diffusion coefficients of supercritical CO2 in molten polymers. Polym. Eng. Sci. 2004, 44, 1915–1924. [Google Scholar] [CrossRef]
- Barisik, M.; Beskok, A. Equilibrium molecular dynamics studies on nanoscale-confined fluids. Microfluid. Nanofluid. 2011, 11, 269–282. [Google Scholar] [CrossRef]
- Wang, Z.D.; Zhang, T.J.; Liu, S.C.; Ding, K.L.; Liu, T.Y.; Yao, J.; Sun, H.; Yang, Y.F.; Zhang, L.; Wang, W.D.; et al. Unveiling nanoscale fluid miscible behaviors with nanofluidic slim-tube. Energy Environ. Sci. 2024, 17, 9635–9651. [Google Scholar] [CrossRef]
- Sommer, M.; Haas, W. A new approach on grease tribology in sealing technology: Influence of the thickener particles. Tribol. Int. 2016, 103, 574–583. [Google Scholar] [CrossRef]
- Hahn, S.; Feldmeth, S.; Bauer, F. Assessment of the Lubricity of Grease-Sealing Rotary Shaft Seals Based on Grease Properties. Chem. Eng. Technol. 2023, 46, 53–60. [Google Scholar] [CrossRef]
- Kawamura, T.; Minami, M.; Hirata, M. Grease life prediction for sealed ball bearings. Tribol. Trans. 2001, 44, 256–262. [Google Scholar] [CrossRef]
- Wan, Z.; Jing, S.S.; Li, S.C.; Yuan, C.; Yin, W.F.; Guo, C.; He, Q. Numerical Simulation and Critical Threshold Analysis of the Failure Process for Shield Tail Sealing System under High Water Pressure. KSCE J. Civ. Eng. 2024, 28, 5919–5933. [Google Scholar] [CrossRef]
- Shen, X.; Yuan, D.J.; Cao, L.Q.; Fu, Y.B.; Jin, D.L.; Gao, Z.F. Experimental investigation of the dynamic sealing of shield tail grease under high water pressure. Tunn. Undergr. Space Technol. 2022, 121, 104343. [Google Scholar] [CrossRef]
- Roslan, R.; Saleh, H.; Hashim, I. Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids. Int. J. Heat Mass Transf. 2012, 55, 7247–7256. [Google Scholar] [CrossRef]
- Vakili-Nezhaad, G.; Al-Wadhahi, M.; Gujrathi, A.M.; Al-Maamari, R.; Mohammadi, M. Effect of temperature and diameter of narrow single-walled carbon nanotubes on the viscosity of nanofluid: A molecular dynamics study. Fluid Phase Equilibria 2017, 434, 193–199. [Google Scholar] [CrossRef]
- Wang, L.; Huang, C.; Yang, X.; Chai, Z.; Shi, B. Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int. J. Heat Mass Transf. 2019, 128, 688–699. [Google Scholar] [CrossRef]
- Hafeez, M.; Sajjad, R.; Hashim. Heat transfer attributes of MoS2/Al2O3 hybrid nanomaterial flow through converging/diverging channels with shape factor effect. Adv. Mech. Eng. 2021, 13, 16878140211021289. [Google Scholar] [CrossRef]
- Liu, B.; Wu, R.; Baimova, J.A.; Wu, H.; Law, A.W.K.; Dmitriev, S.V.; Zhou, K. Molecular dynamics study of pressure-driven water transport through graphene bilayers. Phys. Chem. Chem. Phys. 2016, 18, 1886–1896. [Google Scholar] [CrossRef]
- Kieu, H.T.; Liu, B.; Zhang, H.; Zhou, K.; Law, A.W.K. Molecular dynamics study of water evaporation enhancement through a capillary graphene bilayer with tunable hydrophilicity. Appl. Surf. Sci. 2018, 452, 372–380. [Google Scholar] [CrossRef]
- Yang, L.; Dai, J.; Dong, M.; Wang, L.J.I. Molecular dynamics simulation of temperature impact on the viscosity of transformer oil-based nanofluids. In Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016. [Google Scholar]
- Holland, D.M.; Lockerby, D.A.; Borg, M.K.; Nicholls, W.D.; Reese, J.M. Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluid. Nanofluid. 2015, 18, 461–474. [Google Scholar] [CrossRef]
- Farrow, M.R.; Chremos, A.; Camp, P.J.; Harris, S.G.; Watts, R.F. Molecular Simulations of Kinetic-Friction Modification in Nanoscale Fluid Layers. Tribol. Lett. 2011, 42, 325–337. [Google Scholar] [CrossRef]
- Tien, C.L.; Weng, J.G. Molecular dynamics simulation of nanoscale interfacial phenomena in fluids. Adv. Appl. Mech. 2002, 38, 95–146. [Google Scholar]
- Harris, J.G.; Yung, K.H. Carbon Dioxide’s Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model. J. Phys. Chem. 1995, 99, 12021–12024. [Google Scholar] [CrossRef]
- Baart, P.; Lugt, P.M.; Prakash, B. Review of the lubrication, sealing, and pumping mechanisms in oil- and grease-lubricated radial lip seals. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 347–358. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Y.; Liu, Z. Study the Sensitivity of Solid Lubricating Additives to Attapulgite Clay Base Grease. Tribol. Lett. 2011, 42, 141–148. [Google Scholar] [CrossRef]
- Hwang, M.J.; Ni, X.; Waldman, M.; Ewig, C.S.; Hagler, A.T. Derivation of class II force fields. VI. Carbohydrate compounds and anomeric effects. Biopolym. Orig. Res. Biomol. 1998, 45, 435–468. [Google Scholar] [CrossRef]
- Kioupis, L.I.; Maginn, E.J. Molecular Simulation of Poly-α-olefin Synthetic Lubricants: Impact of Molecular Architecture on Performance Properties. J. Phys. Chem. B 1999, 103, 10781–10790. [Google Scholar] [CrossRef]
- Boda, D.; Henderson, D. The effects of deviations from Lorentz–Berthelot rules on the properties of a simple mixture. Mol. Phys. 2008, 106, 2367–2370. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 2154–2162. [Google Scholar] [CrossRef]
- Gupta, A.K.; Mishra, G.; Nirmalkar, N.; Chhabra, R.P. Effect of confinement on heat transfer in aqueous nanofluids from a heated sphere. Powder Technol. 2018, 325, 576–596. [Google Scholar] [CrossRef]
- Xue, L.; Keblinski, P.; Phillpot, S.R.; Choi, S.S.; Eastman, J.A. Effect of liquid layering at the liquid-solid interface on thermal transport. Int. J. Heat Mass Transf. 2004, 47, 4277–4284. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Lu, Z.; Yin, S.; Bai, L. Flow behavior and crystallization of supercritical carbon dioxide in nanochannels: Insights from molecular dynamics simulations. J. CO2 Util. 2023, 75, 102576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Liu, Z.; Tang, X.-Z.; Bai, L. Effect of Sealing Greases on Inhibiting the Leakage of Supercritical CO2: A Molecular Dynamics Study. Modelling 2025, 6, 79. https://doi.org/10.3390/modelling6030079
Shi K, Liu Z, Tang X-Z, Bai L. Effect of Sealing Greases on Inhibiting the Leakage of Supercritical CO2: A Molecular Dynamics Study. Modelling. 2025; 6(3):79. https://doi.org/10.3390/modelling6030079
Chicago/Turabian StyleShi, Kaiyu, Ze Liu, Xiu-Zhi Tang, and Lichun Bai. 2025. "Effect of Sealing Greases on Inhibiting the Leakage of Supercritical CO2: A Molecular Dynamics Study" Modelling 6, no. 3: 79. https://doi.org/10.3390/modelling6030079
APA StyleShi, K., Liu, Z., Tang, X.-Z., & Bai, L. (2025). Effect of Sealing Greases on Inhibiting the Leakage of Supercritical CO2: A Molecular Dynamics Study. Modelling, 6(3), 79. https://doi.org/10.3390/modelling6030079