Non-HLA Antibodies in Kidney Transplantation: Pathogenesis, Clinical Impact, and Management Approaches
Abstract
:1. Introduction
2. Mechanism of Non-HLA Antibody Production
3. Major Types of Non-HLA Antibodies in Kidney Transplantation
3.1. MHC Class I Chain-Related Antigen A Antibodies (MICA Abs)
3.2. Angiotensin II Type 1 Receptor Antibodies (AT1R Abs)
3.3. Anti-Endothelin A Receptor (Anti-ETAR) Antibodies
3.4. Anti-Perlecan/LG-3 Antibodies
3.5. Anti-Collagen Type IV, Type III, Type I, and Anti-Fibronectin Antibodies
3.6. Anti-Agrin Antibodies
3.7. Anti-Vimentin Antibodies
3.8. Anti-H-Y-Ab
3.9. Anti-ARHGDIB Antibodies
3.10. AntiPeroxisomal Trans-2-Enoyl-CoA Reductase (PECR Abs)
3.11. Anti-Protein Kinase C Zeta Type (PRKCZ Abs)
4. Mechanism of Injury
5. Non-HLA Antibody Detection
6. Treatment Strategies for Pathogenic Non-HLA Antibodies
7. Conclusions
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Reed, E.F. The importance of non-HLA antibodies in transplantation. Nat. Rev. Nephrol. 2016, 12, 484–495. [Google Scholar]
- Lefaucheur, C.; Louis, K.; Philippe, A.; Loupy, A.; Coates, P.T. The emerging field of non–human leukocyte antigen antibodies in transplant medicine and beyond. Kidney Int. 2021, 100, 787–798. [Google Scholar]
- Jackson, A.M.; Sigdel, T.K.; Delville, M.; Hsieh, S.-C.; Dai, H.; Bagnasco, S.; Montgomery, R.A.; Sarwal, M.M. Endothelial cell antibodies associated with novel targets and increased rejection. J. Am. Soc. Nephrol. 2015, 26, 1161–1171. [Google Scholar]
- Zhang, X.; Reinsmoen, N.L. Impact of non-human leukocyte antigen-specific antibodies in kidney and heart transplantation. Front. Immunol. 2017, 8, 434. [Google Scholar]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Krajewska, M.; Mazanowska, O.; Kamińska, D.; Bartoszek, D.; Żabińska, M.; Myszka, M.; Nowakowska, B.; et al. The impact of non-HLA antibodies directed against endothelin-1 type A receptors (ETAR) on early renal transplant outcomes. Transpl. Immunol. 2014, 30, 24–29. [Google Scholar]
- El Hennawy, H.M. Non-HLA antibodies in renal transplantation, where do we stand. J. Clin. Exp. Transplant. 2018, 3, 125. [Google Scholar]
- Senev, A.; Ray, B.; Lerut, E.; Hariharan, J.; Heylen, C.; Kuypers, D.; Sprangers, B.; Emonds, M.P.; Naesens, M. The pre-transplant non-HLA Antibody Burden Associates with the development of histology of antibody-mediated rejection after kidney transplantation. Front. Immunol. 2022, 13, 809059. [Google Scholar]
- Sorohan, B.M.; Baston, C.; Tacu, D.; Bucșa, C.; Țincu, C.; Vizireanu, P.; Sinescu, I.; Constantinescu, I. Non-HLA antibodies in kidney transplantation: Immunity and genetic insights. Biomedicines 2022, 10, 1506. [Google Scholar] [CrossRef]
- Reindl-Schwaighofer, R.; Heinzel, A.; Gualdoni, G.A.; Mesnard, L.; Claas, F.H.; Oberbauer, R. Novel insights into non-HLA alloimmunity in kidney transplantation. Transpl. Int. 2020, 33, 5–17. [Google Scholar] [CrossRef]
- Regele, H. Non-HLA antibodies in kidney allograft rejection: Convincing concept in need of further evidence. Kidney Int. 2011, 79, 583–586. [Google Scholar]
- Baranwal, A.K.; Mehra, N.K. Major histocompatibility complex class I chain-related A (MICA) molecules: Relevance in solid organ transplantation. Front. Immunol. 2017, 8, 182. [Google Scholar] [CrossRef]
- Zou, Y.; Stastny, P.; Süsal, C.; Döhler, B.; Opelz, G. Antibodies against MICA antigens and kidney-transplant rejection. N. Engl. J. Med. 2007, 357, 1293–1300. [Google Scholar] [CrossRef]
- Panigrahi, A.; Gupta, N.; Siddiqui, J.A.; Margoob, A.; Bhowmik, D.; Guleria, S.; Mehra, N.K. Post transplant development of MICA and anti-HLA antibodies is associated with acute rejection episodes and renal allograft loss. Hum. Immunol. 2007, 68, 362–367. [Google Scholar] [CrossRef]
- Cox, S.T.; Stephens, H.A.; Fernando, R.; Karasu, A.; Harber, M.; Howie, A.J.; Powis, S.; Zou, Y.; Stastny, P.; Madrigal, J.A.; et al. Major histocompatibility complex class I–related chain A allele mismatching, antibodies, and rejection in renal transplantation. Hum. Immunol. 2011, 72, 827–834. [Google Scholar] [CrossRef]
- Sánchez-Zapardiel, E.; Castro-Panete, M.J.; Castillo-Rama, M.; Morales, P.; Lora-Pablos, D.; Valero-Hervás, D.; Ruiz-García, R.; Apaza, J.; Talayero, P.; Andrés, A.; et al. Harmful effect of preformed anti-MICA antibodies on renal allograft evolution in early posttransplantation period. Transplantation 2013, 96, 70–78. [Google Scholar] [CrossRef]
- Carapito, R.; Aouadi, I.; Verniquet, M.; Untrau, M.; Pichot, A.; Beaudrey, T.; Bassand, X.; Meyer, S.; Faucher, L.; Posson, J.; et al. The MHC class I MICA gene is a histocompatibility antigen in kidney transplantation. Nat. Med. 2022, 28, 989–998. [Google Scholar] [CrossRef]
- Lemy, A.; Andrien, M.; Wissing, K.M.; Ryhahi, K.; Vandersarren, A.; Racapé, J.; Heylen, C.; Ghisdal, L.; Broeders, E.; Vereerstraeten, P.; et al. Major histocompatibility complex class 1 chain-related antigen A antibodies: Sensitizing events and impact on renal graft outcomes. Transplantation 2010, 90, 168–174. [Google Scholar]
- Sorohan, B.M.; Ismail, G.; Berechet, A.; Obrișcă, B.; Constantinescu, I.; Mărunțelu, I.; Tacu, D.; Baston, C.; Sinescu, I. The early impact of preformed angiotensin II type 1 receptor antibodies on graft function in a low immunological risk cohort of kidney transplant recipients. Transpl. Immunol. 2021, 66, 101389. [Google Scholar]
- Sorohan, B.M.; Ismail, G.; Leca, N.; Tacu, D.; Obrișcă, B.; Constantinescu, I.; Baston, C.; Sinescu, I. Angiotensin II type 1 receptor antibodies in kidney transplantation: An evidence-based comprehensive review. Transplant. Rev. 2020, 34, 100573. [Google Scholar] [CrossRef]
- Simonson, M.S. Endothelins: Multifunctional renal peptides. Physiol. Rev. 1993, 73, 375–411. [Google Scholar] [CrossRef]
- Philogene, M.C.; Johnson, T.; Vaught, A.J.; Zakaria, S.; Fedarko, N. Antibodies against angiotensin II type 1 and endothelin A receptors: Relevance and pathogenicity. Hum. Immunol. 2019, 80, 561–567. [Google Scholar]
- Dieudé, M.; Cardinal, H.; Hébert, M.J. Injury derived autoimmunity: Anti-perlecan/LG3 antibodies in transplantation. Hum. Immunol. 2019, 80, 608–613. [Google Scholar]
- Soulez, M.; Pilon, E.A.; Dieudé, M.; Cardinal, H.; Brassard, N.; Qi, S.; Wu, S.J.; Durocher, Y.; Madore, F.; Perreault, C.; et al. The perlecan fragment LG3 is a novel regulator of obliterative remodeling associated with allograft vascular rejection. Circ. Res. 2012, 110, 94–104. [Google Scholar]
- O’Riordan, E.; Orlova, T.N.; Mendelev, N.; Patschan, D.; Kemp, R.; Chander, P.N.; Hu, R.; Hao, G.; Gross, S.S.; Iozzo, R.V.; et al. Urinary proteomic analysis of chronic allograft nephropathy. Proteom.-Clin. Appl. 2008, 2, 1025–1035. [Google Scholar]
- Angaswamy, N.; Klein, C.; Tiriveedhi, V.; Gaut, J.; Anwar, S.; Rossi, A.; Phelan, D.; Wellen, J.R.; Shenoy, S.; Chapman, W.C.; et al. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. Am. J. Transplant. 2014, 14, 685–693. [Google Scholar]
- Park, S.; Yang, S.H.; Kim, J.; Cho, S.; Yang, J.; Min, S.I.; Ha, J.; Jeong, C.W.; Bhoo, S.H.; Kim, Y.C.; et al. Clinical significances of anti-collagen type I and type III antibodies in antibody-mediated rejection. Transpl. Int. 2022, 35, 10099. [Google Scholar]
- Yu, D.; Li, H.X.; Liu, Y.; Ying, Z.W.; Guo, J.J.; Cao, C.Y.; Wang, J.; Li, Y.F.; Yang, H.R. The reference intervals for serum C-terminal agrin fragment in healthy individuals and as a biomarker for renal function in kidney transplant recipients. J. Clin. Lab. Anal. 2016, 31, e22059. [Google Scholar]
- Steubl, D.; Hettwer, S.; Vrijbloed, W.; Dahinden, P.; Wolf, P.; Luppa, P.; Wagner, C.A.; Renders, L.; Heemann, U.; Roos, M. C-terminal agrin fragment-a new fast biomarker for kidney function in renal transplant recipients. Am. J. Nephrol. 2013, 38, 501–508. [Google Scholar]
- Steubl, D.; Vogel, A.; Hettwer, S.; Tholen, S.; Luppa, P.B.; Rondak, I.C.; Renders, L.; Heemann, U.; Roos, M. Early postoperative C-terminal agrin fragment (CAF) serum levels predict graft loss and proteinuria in renal transplant recipients. Clin. Chem. Lab. Med. 2016, 54, 63–72. [Google Scholar]
- Gunasekaran, M.; Maw, T.T.; Santos, R.D.; Shenoy, S.; Wellen, J.; Mohanakumar, T. Immunoglobulin isotype switching of antibodies to vimentin is associated with development of transplant glomerulopathy following human renal transplantation. Transpl. Immunol. 2017, 45, 42–47. [Google Scholar]
- Tan, J.C.; Wadia, P.P.; Coram, M.; Grumet, F.C.; Kambham, N.; Miller, K.; Pereira, S.; Vayntrub, T.; Miklos, D.B. HY antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation 2008, 86, 75–81. [Google Scholar]
- Kamburova, E.G.; Gruijters, M.L.; Kardol-Hoefnagel, T.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; Van Der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; et al. Antibodies against ARHGDIB are associated with long-term kidney graft loss. Am. J. Transplant. 2019, 19, 3335–3344. [Google Scholar]
- Dragun, D.; Müller, D.N.; Bräsen, J.H.; Fritsche, L.; Nieminen-Kelhä, M.; Dechend, R.; Kintscher, U.; Rudolph, B.; Hoebeke, J.; Eckert, D.; et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med. 2005, 352, 558–569. [Google Scholar]
- Dinavahi, R.; George, A.; Tretin, A.; Akalin, E.; Ames, S.; Bromberg, J.S.; DeBoccardo, G.; DiPaola, N.; Lerner, S.M.; Mehrotra, A.; et al. Antibodies reactive to non-HLA antigens in transplant glomerulopathy. J. Am. Soc. Nephrol. 2011, 22, 1168–1178. [Google Scholar]
- Tinckam, K.J.; Chandraker, A. Mechanisms and role of HLA and non-HLA alloantibodies. Clin. J. Am. Soc. Nephrol. 2006, 1, 404–414. [Google Scholar]
- Sutherland, S.M.; Li, L.; Sigdel, T.K.; Wadia, P.P.; Miklos, D.B.; Butte, A.J.; Sarwal, M.M. Protein microarrays identify antibodies to protein kinase C that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 2009, 76, 1277–1283. [Google Scholar]
- Dragun, D.; Hegner, B. Non-HLA antibodies post-transplantation: Clinical relevance and treatment in solid organ transplantation. Humoral Immun. Kidney Transpl. 2009, 162, 129–139. [Google Scholar]
- Jordan, P.; Kübler, D. Autoimmune diseases: Nuclear autoantigens can be found at the cell-surface. Mol. Biol. Rep. 1996, 22, 63–66. [Google Scholar]
- Lammerts, R.G.; Altulea, D.; Hepkema, B.G.; Sanders, J.S.; Born, J.V.; Berger, S.P. Antigen and cell-based assays for the detection of non-HLA antibodies. Front. Immunol. 2022, 13, 864671. [Google Scholar]
- Breimer, M.E.; Rydberg, L.; Jackson, A.M.; Lucas, D.P.; Zachary, A.A.; Melancon, J.K.; Von Visger, J.; Pelletier, R.; Saidman, S.L.; Williams, W.W., Jr.; et al. Multicenter evaluation of a novel endothelial cell crossmatch test in kidney transplantation. Transplantation 2009, 87, 549–556. [Google Scholar]
- Soyöz, M.; Ayna, T.K.; Çerçi, B.; Koçyiğit, A.Ö.; Pirim, İ. Comparison of HLA and Non-HLA Antibodies Regarding to Rejection Pattern of the Kidney Transplantation. J. Tepecik Educ. Res. Hosp. 2020, 30, 156–163. [Google Scholar] [CrossRef]
- Zitzner, J.R.; Shah, S.; Jie, C.; Wegner, W.; Tambur, A.R.; Friedewald, J.J. A prospective study evaluating the role of donor-specific anti-endothelial crossmatch (XM-ONE assay) in predicting living donor kidney transplant outcome. Hum. Immunol. 2013, 74, 1431–1436. [Google Scholar] [CrossRef]
- Yu, S.; Huh, H.J.; Lee, K.W.; Park, J.B.; Kim, S.J.; Huh, W.; Jang, H.R.; Kwon, G.Y.; Moon, H.H.; Kang, E.S. Pre-transplant angiotensin II type 1 receptor antibodies and anti-endothelial cell antibodies predict graft function and allograft rejection in a low-risk kidney transplantation setting. Ann. Lab. Med. 2020, 40, 398–408. [Google Scholar] [CrossRef]
- Philogene, M.C.; Bagnasco, S.; Kraus, E.S.; Montgomery, R.A.; Dragun, D.; Leffell, M.S.; Zachary, A.A.; Jackson, A.M. Anti-angiotensin II type 1 receptor and anti-endothelial cell antibodies: A cross-sectional analysis of pathological findings in allograft biopsies. Transplantation 2017, 101, 608–615. [Google Scholar] [CrossRef]
- Delville, M.; Charreau, B.; Rabant, M.; Legendre, C.; Anglicheau, D. Pathogenesis of non-HLA antibodies in solid organ transplantation: Where do we stand? Hum. Immunol. 2016, 77, 1055–1062. [Google Scholar]
- Michielsen, L.A.; van Zuilen, A.D.; Krebber, M.M.; Verhaar, M.C.; Otten, H.G. Clinical value of non-HLA antibodies in kidney transplantation: Still an enigma? Transpl. Rev. 2016, 30, 195–202. [Google Scholar] [CrossRef]
- Schinstock, C.A.; Mannon, R.B.; Budde, K.; Chong, A.S.; Haas, M.; Knechtle, S.; Lefaucheur, C.; Montgomery, R.A.; Nickerson, P.; Tullius, S.G.; et al. Recommended treatment for antibody-mediated rejection after kidney transplantation: The 2019 expert consensus from the transplantion society working group. Transplantation 2020, 104, 911–922. [Google Scholar]
- Opelz, G. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 2005, 365, 1570–1576. [Google Scholar] [CrossRef]
- Dieudé, M.; Bell, C.; Turgeon, J.; Beillevaire, D.; Pomerleau, L. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci. Transl. Med. 2015, 7, 318ra200. [Google Scholar] [CrossRef]
- Fuchs, K.; Rummler, S.; Ries, W.; Helmschrott, M.; Selbach, J.; Ernst, F.; Morath, C.; Gauly, A.; Atiye, S.; Stauss-Grabo, M.; et al. Performance, clinical effectiveness, and safety of immunoadsorption in a wide range of indications. Ther. Apher. Dial. 2022, 26, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Lukitsch, I.; Kehr, J.; Chaykovska, L.; Wallukat, G.; Nieminen-Kelhä, M.; Batuman, V.; Dragun, D.; Gollasch, M. Renal ischemia and transplantation predispose to vascular constriction mediated by angiotensin II type 1 receptor-activating antibodies. Transplantation 2012, 94, 8–13. [Google Scholar]
Antibody Type | Target Antigen | Expression Sites | Pathogenic Mechanisms | Clinical Impact |
---|---|---|---|---|
MICA Abs | MICA | Endothelial, epithelial, monocytes, dendritic cells | NKG2D-mediated cytotoxicity, complement activation | AMR, TCMR, increased AR risk |
AT1R Abs | AT1R | Endothelial cells | Complement-fixing IgG1 & IgG3, endothelial activation | AMR, vascular rejection |
Anti-ETAR Abs | ETAR | Endothelial and smooth muscle cells | Agonist activity on ETAR | AMR, vascular rejection, poor graft function |
Anti-LG3 Abs | LG3 domain of Perlecan | Vascular basement membranes | Complement-dependent cytotoxicity | Microvascular inflammation, graft fibrosis |
Anti-Collagen and Anti-Fibronectin Abs | Type I, III, IV Collagen, Fibronectin | Glomerular basement membrane | T cell activation, IFN-γ & IL-17 secretion | Transplant glomerulopathy, AMR |
Anti-Agrin Abs | Agrin | Glomerular basement membrane | Autoantibody response | Chronic AMR, proteinuria, graft loss |
Anti-Vimentin Abs | Vimentin | Endothelial, epithelial, immune cells | Complement activation (C4d deposition) | Chronic AMR, IFTA, graft failure |
Anti-H-Y Abs | H-Y Antigen | Male donor kidney cells | Alloantibody-mediated rejection | Gender-mismatched transplant rejection |
Anti-ARHGDIB Abs | ARHGDIB | Endothelial, immune cells | Endothelial injury, ischemia–reperfusion | Graft loss, AMR association |
Anti-PECR Abs | ECR | Kidney, endothelial, immune cells | Exposure after graft injury | Transplant glomerulopathy, AMR |
Anti-PRKCZ Abs | PRKCZ | Various tissues | Ischemia–reperfusion response | Potential role in graft rejection |
Non-HLA Antibodies | Autoantibody/Alloantibody | Mechanism of Injury |
---|---|---|
MICA Abs | Autoantibody and Alloantibody | Complement-dependent |
AT1R Abs | Autoantibody | Complement-independent |
Anti-ETAR Abs | Autoantibody | Complement-independent |
Anti-perlecan Abs | Autoantibody | Complement-dependent |
Anti-collagen types IV, III, I Abs | Autoantibody | Could be complement-dependent or involve antibody-mediated cellular cytotoxicity (ADCC). |
Anti-Agrin Abs | Autoantibody | Could be complement-dependent or receptor blockade |
Anti-vimentin Abs | Autoantibody | Complement-dependent |
Anti-H-Y-Abs | Alloantibody | Complement-dependent |
Anti-ARHGDIB Abs | Autoantibody | Complement-dependent |
Anti-PEC Abs | Autoantibody | Complement-dependent |
Anti-PRKCZ Abs | Autoantibody | Signaling disruption or immune-mediated cytotoxicity |
Technique | Description | Key Findings | Strengths | Limitations |
---|---|---|---|---|
Solid-Phase Assays (ELISA, Luminex) | Detects specific non-HLA Abs (e.g., AT1R, ETAR, MICA) using antigen-coated beads or plates. | High levels of AT1R and MICA Abs have been linked to graft rejection and microvascular injury. | High-throughput, widely available, standardized. | May not account for donor-specific variations; limited to known antigens. |
Flow Cytometry-Based Crossmatching | Uses donor endothelial cells as targets to detect non-HLA Abs. | Identifies AECAs, which have been linked to acute rejection in some cases. | High sensitivity provides cellular-level information. | Variability in IgG/IgM detection; difficult to standardize results. |
XM-ONE Assay | Commercial flow cytometry-based test using endothelial precursor cells (EPCs). | Some studies associate AECAs with graft dysfunction, while others find no significant correlation. | Standardized commercial assay. | EPCs lack key endothelial markers (e.g., CD31, CD34), leading to uncertain clinical relevance. |
Indirect Immunofluorescence (IIF) | Uses fluorescent-labeled antibodies to detect AECAs in serum. | Detects AECAs, but findings are inconsistent in predicting rejection. | Simple and widely available. | Lower sensitivity and specificity than flow cytometry. |
Genetic Screening (Genome-Wide Analysis) | Identifies non-HLA mismatches linked to transplant rejection. | Some mismatches in transmembrane proteins were linked to increased graft loss. | Provides insight into patient–donor incompatibility. | Expensive, not widely used in clinical practice. |
Multiplex Bead Assays (Luminex Panel) | Screens for multiple non-HLA Abs simultaneously. | Identified new rejection-associated antibodies (e.g., anti-vimentin, ARHGDIB). | High sensitivity, detects a broad range of antibodies. | Often lacks pre-transplant data, making causation difficult to establish. |
Treatment | Mechanism | Indications | Efficacy | Limitations |
---|---|---|---|---|
Intravenous Immunoglobulin (IVIG) | Immunomodulation, complement inhibition | Desensitization, AMR | Moderate | High dose required |
Plasmapheresis (Therapeutic Plasma Exchange (TPE)) | Direct antibody removal | Acute AMR, desensitization | High | Rebound effect, requires adjunct therapy |
Rituximab | B cell depletion | AMR, desensitization | Moderate | Limited effect on plasma cells |
Bortezomib | Plasma cell depletion | Refractory AMR | High | Neuropathy risk |
Eculizumab | Complement inhibition | Severe AMR, high-risk transplants | High | Expensive |
Tocilizumab | IL-6 pathway inhibition | Refractory AMR | Moderate | Limited data |
Desensitization | Pre-transplant DSA reduction | High DSA burden | Variable | Requires intensive monitoring |
Photopheresis (ECP) | Immune modulation | Chronic rejection, refractory AMR | Moderate | Limited availability |
Immune Adsorption | Specific antibody removal | AMR | Moderate | Not widely available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, V.C.; Chandra, D.; Raina, V. Non-HLA Antibodies in Kidney Transplantation: Pathogenesis, Clinical Impact, and Management Approaches. Transplantology 2025, 6, 9. https://doi.org/10.3390/transplantology6020009
Mishra VC, Chandra D, Raina V. Non-HLA Antibodies in Kidney Transplantation: Pathogenesis, Clinical Impact, and Management Approaches. Transplantology. 2025; 6(2):9. https://doi.org/10.3390/transplantology6020009
Chicago/Turabian StyleMishra, Vikash Chandra, Dinesh Chandra, and Vimarsh Raina. 2025. "Non-HLA Antibodies in Kidney Transplantation: Pathogenesis, Clinical Impact, and Management Approaches" Transplantology 6, no. 2: 9. https://doi.org/10.3390/transplantology6020009
APA StyleMishra, V. C., Chandra, D., & Raina, V. (2025). Non-HLA Antibodies in Kidney Transplantation: Pathogenesis, Clinical Impact, and Management Approaches. Transplantology, 6(2), 9. https://doi.org/10.3390/transplantology6020009