COVID-19-Associated Lung Fibrosis: Two Pathways and Two Phenotypes, Lung Transplantation, and Antifibrotics
Abstract
:1. Introduction
2. What Is the Risk of Pulmonary Fibrosis in COVID-19?
3. Pulmonary Fibrosis in Lung Transplant Recipients after COVID-19
4. Interstitial Disease Patterns: CARDS
4.1. Clinical Features and Mortality
4.2. Risk Factors
4.3. Radiology
4.4. Pathophysiology
5. Interstitial Disease Patterns: PCPF
5.1. Clinical Features and Mortality
5.2. Risk Factors
5.3. Radiology
5.4. Pathophysiology
6. How Should We Treat COVID-19-Related End Stage Lung Disease?
7. Prognosis in Patients with COVID-19-Associated Lung Fibrosis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drake, T.M.; Docherty, A.B.; Harrison, E.M.; Quint, J.K.; Adamali, H.; Agnew, S.; Babu, S.; Barber, C.M.; Barratt, S.; Bendstrup, E.; et al. Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study. Am. J. Respir. Crit. Care Med. 2020, 202, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Kostopanagiotou, K.; Schuurmans, M.M.; Inci, I.; Hage, R. COVID-19-related end stage lung disease: Two distinct phenotypes. Ann. Med. 2022, 54, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Carfi, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Cocconcelli, E.; Bernardinello, N.; Giraudo, C.; Castelli, G.; Giorgino, A.; Leoni, D.; Petrarulo, S.; Ferrari, A.; Saetta, M.; Cattelan, A.; et al. Characteristics and Prognostic Factors of Pulmonary Fibrosis After COVID-19 Pneumonia. Front. Med. 2021, 8, 823600. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Liu, H.; Han, N.; Ju, J.; Kou, Y.; Chen, L.; Jiang, M.; Pan, F.; Zheng, Y.; et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: A 15-year follow-up from a prospective cohort study. Bone Res. 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Das, K.M.; Lee, E.Y.; Singh, R.; Enani, M.A.; Al Dossari, K.; Van Gorkom, K.; Larsson, S.G.; Langer, R.D. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J. Radiol. Imaging 2017, 27, 342–349. [Google Scholar] [CrossRef]
- Mahan, L.D.; Lill, I.; Halverson, Q.; Mohanka, M.R.; Lawrence, A.; Joerns, J.; Bollineni, S.; Kaza, V.; La Hoz, R.M.; Zhang, S.; et al. Post-infection pulmonary sequelae after COVID-19 among patients with lung transplantation. Transpl. Infect. Dis. 2021, 23, e13739. [Google Scholar] [CrossRef]
- Peghin, M.; Los-Arcos, I.; Hirsch, H.H.; Codina, G.; Monforte, V.; Bravo, C.; Berastegui, C.; Jauregui, A.; Romero, L.; Cabral, E.; et al. Community-acquired Respiratory Viruses Are a Risk Factor for Chronic Lung Allograft Dysfunction. Clin. Infect. Dis. 2019, 69, 1192–1197. [Google Scholar] [CrossRef]
- Allyn, P.R.; Duffy, E.L.; Humphries, R.M.; Injean, P.; Weigt, S.S.; Saggar, R.; Shino, M.Y.; Lynch, J.P., 3rd; Ardehali, A.; Kubak, B.; et al. Graft Loss and CLAD-Onset Is Hastened by Viral Pneumonia After Lung Transplantation. Transplantation 2016, 100, 2424–2431. [Google Scholar] [CrossRef] [Green Version]
- Fisher, C.E.; Preiksaitis, C.M.; Lease, E.D.; Edelman, J.; Kirby, K.A.; Leisenring, W.M.; Raghu, G.; Boeckh, M.; Limaye, A.P. Symptomatic Respiratory Virus Infection and Chronic Lung Allograft Dysfunction. Clin. Infect. Dis. 2016, 62, 313–319. [Google Scholar] [CrossRef]
- Munting, A.; Manuel, O. Viral infections in lung transplantation. J. Thorac. Dis. 2021, 13, 6673–6694. [Google Scholar] [CrossRef] [PubMed]
- Peghin, M.; Hirsch, H.H.; Len, O.; Codina, G.; Berastegui, C.; Saez, B.; Sole, J.; Cabral, E.; Sole, A.; Zurbano, F.; et al. Epidemiology and Immediate Indirect Effects of Respiratory Viruses in Lung Transplant Recipients: A 5-Year Prospective Study. Am. J. Transpl. 2017, 17, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- McGroder, C.F.; Zhang, D.; Choudhury, M.A.; Salvatore, M.M.; D’Souza, B.M.; Hoffman, E.A.; Wei, Y.; Baldwin, M.R.; Garcia, C.K. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length. Thorax 2021, 76, 1242–1245. [Google Scholar] [CrossRef]
- King, C.S.; Mannem, H.; Kukreja, J.; Aryal, S.; Tang, D.; Singer, J.P.; Bharat, A.; Behr, J.; Nathan, S.D. Lung Transplantation of COVID-19 Patients: How I Do It. Chest 2021, 161, 169. [Google Scholar] [CrossRef] [PubMed]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.G.; Qin, L.; Puah, S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020, 213, 54–56.e51. [Google Scholar] [CrossRef]
- Simpson, S.; Kay, F.U.; Abbara, S.; Bhalla, S.; Chung, J.H.; Chung, M.; Henry, T.S.; Kanne, J.P.; Kligerman, S.; Ko, J.P.; et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA—Secondary Publication. J. Thorac. Imaging 2020, 35, 219–227. [Google Scholar] [CrossRef]
- Gosangi, B.; Rubinowitz, A.N.; Irugu, D.; Gange, C.; Bader, A.; Cortopassi, I. COVID-19 ARDS: A review of imaging features and overview of mechanical ventilation and its complications. Emerg Radiol. 2022, 29, 23–34. [Google Scholar] [CrossRef]
- Wendisch, D.; Dietrich, O.; Mari, T.; von Stillfried, S.; Ibarra, I.L.; Mittermaier, M.; Mache, C.; Chua, R.L.; Knoll, R.; Timm, S.; et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 2021, 184, 6243–6261.e6227. [Google Scholar] [CrossRef] [PubMed]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Philp, C.J.; Siebeke, I.; Clements, D.; Miller, S.; Habgood, A.; John, A.E.; Navaratnam, V.; Hubbard, R.B.; Jenkins, G.; Johnson, S.R. Extracellular Matrix Cross-Linking Enhances Fibroblast Growth and Protects against Matrix Proteolysis in Lung Fibrosis. Am. J. Respir. Cell Mol. Biol. 2018, 58, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhang, N.; Liu, Y.; Yang, X.; He, Y.; Li, Q.; Shen, X.; Zhu, Y.; Yang, Y. The Interaction Between Pulmonary Fibrosis and COVID-19 and the Application of Related Anti-Fibrotic Drugs. Front. Pharmacol. 2021, 12, 805535. [Google Scholar] [CrossRef] [PubMed]
- Aspal, M.; Zemans, R.L. Mechanisms of ATII-to-ATI Cell Differentiation during Lung Regeneration. Int. J. Mol. Sci. 2020, 21, 3188. [Google Scholar] [CrossRef] [PubMed]
- Nabahati, M.; Ebrahimpour, S.; Khaleghnejad Tabari, R.; Mehraeen, R. Post-COVID-19 pulmonary fibrosis and its predictive factors: A prospective study. Egypt. J. Radiol. Nucl. Med. 2021, 52, 248. [Google Scholar] [CrossRef]
- Ali, R.M.M.; Ghonimy, M.B.I. Post-COVID-19 pneumonia lung fibrosis: A worrisome sequelae in surviving patients. Egypt. J. Radiol. Nucl. Med. 2021, 52, 101. [Google Scholar] [CrossRef]
- Han, X.; Fan, Y.; Alwalid, O.; Li, N.; Jia, X.; Yuan, M.; Li, Y.; Cao, Y.; Gu, J.; Wu, H.; et al. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology 2021, 299, E177–E186. [Google Scholar] [CrossRef]
- Giacomelli, C.; Piccarducci, R.; Marchetti, L.; Romei, C.; Martini, C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: Lessons from post-COVID-19 patients. Biochem. Pharmacol. 2021, 193, 114812. [Google Scholar] [CrossRef]
- Huang, W.; Wu, Q.; Chen, Z.; Xiong, Z.; Wang, K.; Tian, J.; Zhang, S. The potential indicators for pulmonary fibrosis in survivors of severe COVID-19. J. Infect. 2021, 82, e5–e7. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y.; Xu, D.; Zhang, R.; Lan, L.; Xu, H. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean J. Radiol. 2020, 21, 746–755. [Google Scholar] [CrossRef]
- Hu, Z.J.; Xu, J.; Yin, J.M.; Li, L.; Hou, W.; Zhang, L.L.; Zhou, Z.; Yu, Y.Z.; Li, H.J.; Feng, Y.M.; et al. Lower Circulating Interferon-Gamma Is a Risk Factor for Lung Fibrosis in COVID-19 Patients. Front. Immunol. 2020, 11, 585647. [Google Scholar] [CrossRef] [PubMed]
- Ambardar, S.R.; Hightower, S.L.; Huprikar, N.A.; Chung, K.K.; Singhal, A.; Collen, J.F. Post-COVID-19 Pulmonary Fibrosis: Novel Sequelae of the Current Pandemic. J. Clin. Med. 2021, 10, 2452. [Google Scholar] [CrossRef] [PubMed]
- Haulica, I.; Bild, W.; Mihaila, C.; Serban, D.N.; Serban, L.; Boisteanu, D.; Ionita, T.; Radasanu, O. Comparative study of the inhibitory effects of adrenomedullin on angiotensin II contraction in rat conductance and resistance arteries. J. Renin-Angiotensin-Aldosterone Syst. 2004, 5, 79–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnolo, P.; Balestro, E.; Aliberti, S.; Cocconcelli, E.; Biondini, D.; Casa, G.D.; Sverzellati, N.; Maher, T.M. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir. Med. 2020, 8, 750–752. [Google Scholar] [CrossRef]
- Shuai, H.; Chan, J.F.; Hu, B.; Chai, Y.; Yuen, T.T.; Yin, F.; Huang, X.; Yoon, C.; Hu, J.C.; Liu, H.; et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 2022, 603, 693–699. [Google Scholar] [CrossRef]
- Richeldi, L.; Fernández Pérez, E.R.; Costabel, U.; Albera, C.; Lederer, D.J.; Flaherty, K.R.; Ettinger, N.; Perez, R.; Scholand, M.B.; Goldin, J.; et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2020, 8, 25–33. [Google Scholar] [CrossRef]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef] [Green Version]
- Finnerty, J.P.; Ponnuswamy, A.; Dutta, P.; Abdelaziz, A.; Kamil, H. Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: A systematic review and meta-analysis. BMC Pulm. Med. 2021, 21, 411. [Google Scholar] [CrossRef]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef] [Green Version]
- Maher, T.M.; Corte, T.J.; Fischer, A.; Kreuter, M.; Lederer, D.J.; Molina-Molina, M.; Axmann, J.; Kirchgaessler, K.-U.; Samara, K.; Gilberg, F.; et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2020, 8, 147–157. [Google Scholar] [CrossRef]
- Wells, A.U.; Brown, K.K.; Flaherty, K.R.; Kolb, M.; Thannickal, V.J.; on Behalf of the IPF Consensus Working Group. What’s in a name? That which we call IPF, by any other name would act the same. Eur. Respir. J. 2018, 51, 1800692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, M.; Sindhwani, G. Antifibrotics for COVID-19 related lung fibrosis: Agents with benefits? Adv. Respir. Med. 2021, 89, 231–233. [Google Scholar] [CrossRef]
- Thille, A.W.; Esteban, A.; Fernández-Segoviano, P.; Rodriguez, J.-M.; Aramburu, J.-A.; Vargas-Errázuriz, P.; Martín-Pellicer, A.; Lorente, J.A.; Frutos-Vivar, F. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: A prospective cohort study of clinical autopsies. Lancet Respir. Med. 2013, 1, 395–401. [Google Scholar] [CrossRef]
- Levenfus, I.; Ullmann, E.; Petrowski, K.; Rose, J.; Huber, L.C.; Stussi-Helbling, M.; Schuurmans, M.M. The AIFELL Score as a Predictor of Coronavirus Disease 2019 (COVID-19) Severity and Progression in Hospitalized Patients. Diagnostics 2022, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- George, P.M.; Wells, A.U.; Jenkins, R.G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir. Med. 2020, 8, 807–815. [Google Scholar] [CrossRef]
- Umemura, Y.; Mitsuyama, Y.; Minami, K.; Nishida, T.; Watanabe, A.; Okada, N.; Yamakawa, K.; Nochioka, K.; Fujimi, S. Efficacy and safety of nintedanib for pulmonary fibrosis in severe pneumonia induced by COVID-19: An interventional study. Int. J. Infect. Dis. 2021, 108, 454–460. [Google Scholar] [CrossRef]
- Colchicine and Post-COVID-19 Pulmonary Fibrosis. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04818489 (accessed on 1 May 2022).
- Mineralocorticoid Receptor Antagonist and Pulmonary Fibrosis. Available online: https://clinicaltrials.gov/ct2/show/NCT04912011 (accessed on 19 May 2022).
- The Study of the Use of Nintedanib in Slowing Lung Disease in Patients with Fibrotic or Non-Fibrotic Interstitial Lung Disease Related to COVID-19 (ENDCOV-I). Available online: https://clinicaltrials.gov/ct2/show/NCT04619680 (accessed on 19 May 2022).
- Pirfenidone vs. Nintedanib for Fibrotic Lung Disease after Coronavirus Disease-19 Pneumonia (PINCER). Available online: https://clinicaltrials.gov/ct2/show/NCT04856111 (accessed on 19 May 2022).
- United States Department of Health and Human Services. Organ Procurement and Transplantation Network. Available online: https://optn.transplant.hrsa.gov/data/view-data-reports/build-advanced (accessed on 5 March 2022).
- Langer, F.; Aliyev, P.; Schafers, H.J.; Trudzinski, F.C.; Seiler, F.; Bals, R.; Wilkens, H.; Lepper, P.M. Improving Outcomes in Bridge-to-Transplant: Extended Extracorporeal Membrane Oxygenation Support to Obtain Optimal Donor Lungs for Marginal Recipients. ASAIO J. 2019, 65, 516–521. [Google Scholar] [CrossRef]
- Lepper, P.M.; Langer, F.; Wilkens, H.; Schäfers, H.-J.; Bals, R. Lung transplantation for COVID-19-associated ARDS. Lancet Respir. Med. 2021, 9, e88. [Google Scholar] [CrossRef]
- Falcoz, P.E.; Monnier, A.; Puyraveau, M.; Perrier, S.; Ludes, P.O.; Olland, A.; Mertes, P.M.; Schneider, F.; Helms, J.; Meziani, F. Extracorporeal Membrane Oxygenation for Critically Ill Patients with COVID-19-related Acute Respiratory Distress Syndrome: Worth the Effort? Am. J. Respir. Crit. Care Med. 2020, 202, 460–463. [Google Scholar] [CrossRef]
- Cypel, M.; Keshavjee, S. When to consider lung transplantation for COVID-19. Lancet Respir. Med. 2020, 8, 944–946. [Google Scholar] [CrossRef]
- Leard, L.E.; Holm, A.M.; Valapour, M.; Glanville, A.R.; Attawar, S.; Aversa, M.; Campos, S.V.; Christon, L.M.; Cypel, M.; Dellgren, G.; et al. Consensus document for the selection of lung transplant candidates: An update from the International Society for Heart and Lung Transplantation. J. Heart Lung Transpl. 2021, 40, 1349–1379. [Google Scholar] [CrossRef] [PubMed]
- Khajotia, R. Increasing incidence of lung transplantation in patients with post-COVID-19 pulmonary fibrosis. Pan Afr. Med. J. 2021, 40, 169. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; Machuca, T.N.; Querrey, M.; Kurihara, C.; Garza-Castillon, R.; Kim, S.; Manerikar, A.; Pelaez, A.; Pipkin, M.; Shahmohammadi, A.; et al. Early outcomes after lung transplantation for severe COVID-19: A series of the first consecutive cases from four countries. Lancet Respir. Med. 2021, 9, 487–497. [Google Scholar] [CrossRef]
- Bando, T.; Takei, R.; Mutoh, Y.; Sasano, H.; Yamano, Y.; Yokoyama, T.; Matsuda, T.; Kataoka, K.; Kimura, T.; Kondoh, Y. Acute exacerbation of idiopathic pulmonary fibrosis after SARS-CoV-2 vaccination. Eur. Respir. J. 2022, 59, 2102806. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, J.H.; Lee, I.J.; Kim, H.I.; Park, S.; Hwang, Y.I.; Jang, S.H.; Jung, K.S. COVID-19 vaccine-related interstitial lung disease: A case study. Thorax 2022, 77, 102–104. [Google Scholar] [CrossRef]
- VigiAccess. Available online: http://vigiaccess.org/ (accessed on 5 April 2022).
- Guler, S.A.; Ebner, L.; Aubry-Beigelman, C.; Bridevaux, P.O.; Brutsche, M.; Clarenbach, C.; Garzoni, C.; Geiser, T.K.; Lenoir, A.; Mancinetti, M.; et al. Pulmonary function and radiological features 4 months after COVID-19: First results from the national prospective observational Swiss COVID-19 lung study. Eur. Respir. J. 2021, 57, 2003690. [Google Scholar] [CrossRef]
- Fabbri, L.; Moss, S.; Khan, F.; Chi, W.; Xia, J.; Robinson, K.A.; Smyth, A.; Jenkins, G.; Stewart, I. Post-Viral Parenchymal Lung Disease following COVID-19 and Viral Pneumonitis Hospitalisation: A Systematic Review and Meta-Analysis. Available online: https://www.medrxiv.org/content/10.10.1101/2021.03.15.21253593v2 (accessed on 19 May 2022).
COVID-19-Related ARDS (CARDS) | Post-COVID-19 Pulmonary Fibrosis (PCPF) | |
---|---|---|
clinical features | 7–14 days after initial infection secondary pulmonary hypertension +++ | 12–16 weeks after initial infection secondary pulmonary hypertension + |
mortality 90 days | 30–50% | unknown |
risk factors | mechanical ventilation, VILI, hyperoxia, prolonged hypoxia, increased BMI, elderly patients, possibly thromboembolism and hypercoagulability, possibly NETS | profound dyspnea, higher respiratory rate, comorbid hypertension, ICU admission, hyperoxia, prolonged hypoxia, elderly patients, possibly thromboembolism and hypercoagulability, possibly NETS, higher CRP levels, lymphocytopenia, neutrophilia, eosinopenia, lower baseline IFN-γ and MCP-3 |
biomarkers | IL-6 moderately increased persistent deactivation of key immune cells, e.g., reduced surface expression of the mHLA-DR | cytokine-driven: TGF-β and IL-1β longer telomere lengths appear to be protective; this genomic biomarker estimates the balance of profibrotic and antifibrotic susceptibilities |
restrictive ventilatory defect | ++ | +++ (rib cage shrinkage) |
pneumothorax | +++ | ++ |
pathophysiology | severe pulmonary infiltration/edema and endothelitis | inflammation leading to impaired alveolar homeostasis, alteration of pulmonary physiology resulting in pulmonary fibrosis |
radiological features | rapid progression of bilateral air space opacities, with consolidations with lower lobe predominance, with anteroposterior gradient. Chest CT with rapid progression involving all 5 lobes in a patient with COVID-19 should increase concern for ARDS. Predilection for dense consolidation in the dependent posterior lower lobes with relative sparing of the anterior or non-dependent areas. In survivors, after several months from initial CT, lower lobes are spared from fibrotic changes while new fibrotic changes with traction bronchiectasis may appear in the previously spared upper lobes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hage, R.; Schuurmans, M.M. COVID-19-Associated Lung Fibrosis: Two Pathways and Two Phenotypes, Lung Transplantation, and Antifibrotics. Transplantology 2022, 3, 230-240. https://doi.org/10.3390/transplantology3030024
Hage R, Schuurmans MM. COVID-19-Associated Lung Fibrosis: Two Pathways and Two Phenotypes, Lung Transplantation, and Antifibrotics. Transplantology. 2022; 3(3):230-240. https://doi.org/10.3390/transplantology3030024
Chicago/Turabian StyleHage, René, and Macé M. Schuurmans. 2022. "COVID-19-Associated Lung Fibrosis: Two Pathways and Two Phenotypes, Lung Transplantation, and Antifibrotics" Transplantology 3, no. 3: 230-240. https://doi.org/10.3390/transplantology3030024