Evaluating the Impact of Intralipid Infusion on Pregnancy Outcomes in Infertility Treatments: A Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Intralipid Protocol
2.2. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; Huang, J.; Zhao, Q.; Mo, H.; Su, Z.; Feng, S.; Li, S.; Ruan, X. Global, regional, and national prevalence and trends of infertility among individuals of reproductive age (15–49 years) from 1990 to 2021, with projections to 2040. Hum. Reprod. 2025, 40, 529–544. [Google Scholar] [CrossRef] [PubMed]
- IVF Success Rates. February 2025. Available online: https://www.cdc.gov/art/success-rates/index.html (accessed on 26 August 2025).
- eClinicalMedicine. The current status of IVF: Are we putting the needs of the individual first? eClinicalMedicine 2023, 65, 102343. [Google Scholar] [CrossRef]
- Donoso, P.; Staessen, C.; Fauser, B.C.; Devroey, P. Current value of preimplantation genetic aneuploidy screening in IVF. Hum. Reprod. Update 2007, 13, 15–25. [Google Scholar] [CrossRef]
- Yazdani, N.; Shekari Khaniani, M.; Bastami, M.; Ghasemnejad, T.; Afkhami, F.; Mansoori Derakhshan, S. HLA-G regulatory variants and haplotypes with susceptibility to recurrent pregnancy loss. Int. J. Immunogenet. 2018, 45, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, H.M.; Popovic-Todorovic, B.; Papanikolaou, E.; Donoso, P.; Devroey, P. An update of luteal phase support in stimulated IVF cycles. Hum. Reprod. Update 2007, 13, 581–590. [Google Scholar] [CrossRef]
- Karami, N.; Boroujerdnia, M.G.; Nikbakht, R.; Khodadadi, A. Enhancement of peripheral blood CD56(dim) cell and NK cell cytotoxicity in women with recurrent spontaneous abortion or in vitro fertilization failure. J. Reprod. Immunol. 2012, 95, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Illingworth, P.; Wilton, L.; Chambers, G.M. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): Systematic review. Hum. Reprod. 2015, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.Y.; Chen, X.; Xu, Z.Z.; Xu, L.; Mao, T.; Zhang, H. Changes and clinical significance of peripheral blood helper T lymphocyte and natural killer (NK) cells in unexplained recurrent spontaneous abortion (URSA) patients after abortion and successful pregnancy. Clin. Exp. Obstet. Gynecol. 2015, 42, 62–66. [Google Scholar] [CrossRef]
- Lédée, N.; Vasseur, C.; Petitbarat, M.; Chevrier, L.; Vezmar, K.; Dray, G.; Chenière, S.; Lobersztajn, A.; Vitoux, D.; Cassuto, G.N.; et al. Intralipid® may represent a new hope for patients with reproductive failures and simultaneously an over-immune endometrial activation. J. Reprod. Immunol. 2018, 130, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Faas, M.M.; de Vos, P. Uterine NK cells and macrophages in pregnancy. Placenta 2017, 56, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Yamaya, A.; Fukui, A.; Kawai, K.; Yano, M.; Honda, H.; Nakagawa, K.; Kamei, H.; Omote, M.; Wakimoto, Y.; Mabuchi, S. A Comparative Study of Intravenous Immunoglobulin and Lipid Emulsion in Patients With Reproductive Failures Associated With NK Cell Abnormalities. Reprod. Med. Biol. 2025, 24, e12662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santillán, I.; Lozano, I.; Illán, J.; Verdú, V.; Coca, S.; Bajo-Arenas, J.M.; Martinez, F. Where and when should natural killer cells be tested in women with repeated implantation failure? J. Reprod. Immunol. 2015, 108, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.W.; Alfirevic, Z.; Quenby, S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: A systematic review. Hum. Reprod. 2011, 26, 1971–1980. [Google Scholar] [CrossRef]
- Meng, L.; Lin, J.; Chen, L.; Wang, Z.; Liu, M.; Liu, Y.; Chen, X.; Zhu, L.; Chen, H.; Zhang, J. Effectiveness and potential mechanisms of intralipid in treating unexplained recurrent spontaneous abortion. Arch. Gynecol. Obstet. 2016, 294, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Kolanska, K.; Suner, L.; Cohen, J.; Ben Kraiem, Y.; Placais, L.; Fain, O.; Bornes, M.; Selleret, L.; Delhommeau, F.; Feger, F.; et al. Proportion of Cytotoxic Peripheral Blood Natural Killer Cells and T-Cell Large Granular Lymphocytes in Recurrent Miscarriage and Repeated Implantation Failure: Case-Control Study and Meta-analysis. Arch. Immunol. Ther. Exp. 2019, 67, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Roussev, R.G.; Acacio, B.; Kaider, B.D.; Jackson, E.; Coulam, C.B. Duration of intralipid’s suppressive effect on NK cell functional activity. Am. J. Reprod. Immunol. 2008, 60, 258–263. [Google Scholar] [CrossRef]
- Coulam, C.B.; Acacio, B. Does immunotherapy for treatment of reproductive failure enhance live births? Am. J. Reprod. Immunol. 2012, 67, 296–304. [Google Scholar] [CrossRef]
- Moraru, M.; Carbone, J.; Alecsandru, D.; Castillo-Rama, M.; García-Segovia, A.; Gil, J.; Alonso, B.; Aguarón, A.; Ramos-Medina, R.; Martínez de María, J.; et al. Intravenous immunoglobulin treatment increased live birth rate in a Spanish cohort of women with recurrent reproductive failure and expanded CD56+ cells. Am. J. Reprod. Immunol. 2012, 68, 75–84. [Google Scholar] [CrossRef]
- Robertson, S.A.; Jin, M.; Yu, D.; Moldenhauer, L.M.; Davies, M.J.; Hull, M.L.; Norman, R.J. Corticosteroid therapy in assisted reproduction—Immune suppression is a faulty premise. Hum. Reprod. 2016, 31, 2164–2173. [Google Scholar] [CrossRef]
- Acacio, B.; Coulam, C.; Rinehaert, J.; Rinehart, L.; Ng, S.C.; Roussev, R.G.; Parrett, S. Pregnancy Outcome After Intralipid Infusion Among Women Experiencing Recurrent Pregnancy Loss. Fert. Steril. 2008, 89, S11. [Google Scholar] [CrossRef]
- Ndukwe, G. Recurrent embryo implantation failure after in-vitro fertilisation: Improved outcome following intralipid infusion in women with elevated T Helper r response. Hum. Fertil. 2011, 14, 21–22. [Google Scholar] [CrossRef]
- Granato, D.; Blum, S.; Rossle, C.; Le Boucher, J.; Malnoe, A.; Dutot, G. Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. J. Parenter. Enteral. Nutr. 2000, 24, 113–118. [Google Scholar] [CrossRef]
- Singh, N.; Davis, A.A.; Kumar, S.; Kriplani, A. The effect of administration of intravenous intralipid on pregnancy outcomes in women with implantation failure after IVF/ICSI with non-donor oocytes: A randomised controlled trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 240, 45–51. [Google Scholar] [CrossRef]
- Henshaw, J.; Tremellen, K. Intralipid infusion therapy as an adjunct treatment in women experiencing adenomyosis-related infertility. SAGE J. 2023, 17, 26334941231181258. [Google Scholar] [CrossRef] [PubMed]
- Han, E.J.; Lee, H.N.; Kim, M.K.; Lyu, S.W.; Lee, W.S. Efficacy of intralipid administration to improve in vitro fertilization outcomes: A systematic review and meta-analysis. Clin. Exp. Reprod. Med. 2021, 48, 203–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marchand, G.J.; Masoud, A.T.; Ulibarri, H.; Arroyo, A.; Coriell, C.; Goetz, S.; Moir, C.; Moberly, A.; Gonzalez, D.; Blanco, M.; et al. Effect of a 20% intravenous fat emulsion therapy on pregnancy outcomes in women with RPL or RIF undergoing IVF/ICSI: A systematic review and meta-analysis. J. Clin. Transl. Res. 2023, 9, 236–245. [Google Scholar] [PubMed] [PubMed Central]
- Roussev, R.G.; Ng, S.C.; Coulam, C.B. Natural killer cell functional activity suppression by intravenous immunoglobulin, intralipid and soluble human leukocyte antigen-G. Am. J. Reprod. Immunol. 2007, 57, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Asif, S.; AlAhwany, H.; Chittawar, P.B.; Nigdelis, M.P.; Toulis, K.A.; Goulis, D.G.; Kirubakaran, R.; Raine-Fenning, N.; Seshadri, S.; Child, T.; et al. Immune therapies for women with history of unsuccessful implantation undergoing IVF/ICSI treatment: A Cochrane collaboration systematic review. Hum. Reprod. 2018, 33, 85. [Google Scholar]
- Gamaleldin, I.; Gomaa, M.F.; Shafik, A.; Akande, V. Intralipid infusion does not improve live birth rates in women with unexplained recurrent implantation failure and may increase the risk of congenital malformations, a double-blinded randomised controlled trial. BJOG 2018, 125, 31–32. [Google Scholar]
- El-khayat, W.; El Sadek, M. Intralipid for repeated implantation failure (RIF): A randomized controlled trial. Fertil. Steril. 2015, 104, E26. [Google Scholar] [CrossRef]
- Martini, A.E.; Jasulaitis, S.; Fogg, L.F.; Uhler, M.L.; Hirshfeld-Cytron, J.E. Evaluating the utility of intralipid infusion to improve live birth rates in patients with recurrent pregnancy loss or recurrent implantation failure. J. Hum. Reprod. Sci. 2018, 11, 261–268. [Google Scholar] [CrossRef]
- Check, J.H.; Check, D.L. Intravenous intralipid therapy is not beneficial in having a live delivery in women aged 40–42 years with a previous history of miscarriage or failure to conceive despite embryo transfer undergoing in vitro fertilization-embryo transfer. Clin. Exp. Obstet. Gynecol. 2016, 43, 14–15. [Google Scholar] [CrossRef]
- Ehrlich, R.; Hull, M.J.; Walkley, J.; Sacks, G. Intralipid immunotherapy for repeated IVF failure. Fertil. Reprod. 2019, 1, 154–160. [Google Scholar] [CrossRef]
- Peivandi, S.; Mortazavi, L.; Gordani, N.; Zamaniyan, M.; Asgarian-Omran, H.; Ajami, A.; Khademloo, M. Effect of Intralipid Infusion on Pregnancy Outcome in Infertile Women with History of Implantation Failure: A Single Blind Randomized Clinical Trial. J. Mazandaran. Univ. Med. Sci. 2022, 32, 16–26. [Google Scholar]
- Lédée, N.; Petitbarat, M.; Chevrier, L.; Vitoux, D.; Vezmar, K.; Rahmati, M.; Dubanchet, S.; Gahéry, H.; Bensussan, A.; Chaouat, G. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am. J. Reprod. Immunol. 2016, 75, 388–401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, D.A. Intralipid as treatment for recurrent unexplained abortion? Am. J. Reprod. Immunol. 1994, 32, 290–293. [Google Scholar] [CrossRef]
- Manaster, I.; Mandelboim, O. The unique properties of uterine NK cells. Am. J. Reprod. Immunol. 2010, 63, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Manaster, I.; Mandelboim, O. The unique properties of human NK cells in the uterine mucosa. Placenta 2008, 29, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Melsen, J.E.; Lugthart, G.; Lankester, A.C.; Schilham, M.W. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations. Front. Immunol. 2016, 7, 262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feyaerts, D.; Kuret, T.; van Cranenbroek, B.; van der Zeeuw-Hingrez, S.; van der Heijden, O.W.H.; van der Meer, A.; Joosten, I.; van der Molen, R.G. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire. Hum. Reprod. 2018, 33, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, N.; Sharma, R.; Modi, D. Immune alterations in recurrent implantation failure. Am. J. Reprod. Immunol. 2023, 89, e13563. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Guo, A.; Yang, F.; Li, L.; Yan, J.; Deng, X.; Dai, C.; Li, Y. Alterations of Cytokine Profiles in Patients With Recurrent Implantation Failure. Front. Endocrinol. 2022, 13, 949123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fournier, T.; Therond, P.; Handschuh, K.; Tsatsaris, V.; Evain-Brion, D. PPAR gamma and early human placental development. Curr. Med. Chem. 2008, 15, 3011–3024. [Google Scholar] [CrossRef]
- Leslie, D.S.; Dascher, C.C.; Cembrola, K.; Townes, M.A.; Hava, D.L.; Hugendubler, L.C.; Mueller, E.; Fox, L.; Roura-Mir, C.; Moody, D.B.; et al. Serum lipids regulate dendritic cell CD1 expression and function. Immunology 2008, 125, 289–301. [Google Scholar] [CrossRef]
- Kostenis, E. A glance at G-protein-coupled receptors for lipid mediators: A growing receptor family with remarkably diverse ligands. Pharmacol. Ther. 2004, 102, 243–257. [Google Scholar] [CrossRef]
- Desmarais, J.A.; Lopes, F.L.; Zhang, H.; Das, S.K.; Murphy, B.D. The peroxisome proliferator-activated receptor gamma regulates trophoblast cell differentiation in mink (Mustela vison). Biol. Reprod. 2007, 77, 829–839. [Google Scholar] [CrossRef]
- Mayer, K.; Meyer, S.; Reinholz-Muhly, M.; Maus, U.; Merfels, M.; Lohmeyer, J.; Grimminger, F.; Seeger, W. Short-time infusion of fish oil-based lipid emulsions, approved for parenteral nutrition, reduces monocyte proinflammatory cytokine generation and adhesive interaction with endothelium in humans. J. Immunol. 2003, 171, 4837–4843. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rodriguez-Galan, M.C.; Subleski, J.J.; Ortaldo, J.R.; Hodge, D.L.; Wang, J.M.; Shimozato, O.; Reynolds, D.A.; Young, H.A. Peroxisome proliferator-activated receptor-gamma and its ligands attenuate biologic functions of human natural killer cells. Blood 2004, 104, 3276–3284. [Google Scholar] [CrossRef]
- Delerive, P.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol. 2001, 169, 453–459. [Google Scholar] [CrossRef]
- Kowalewski, M.P.; Meyer, A.; Hoffmann, B.; Aslan, S.; Boos, A. Expression and functional implications of peroxisome proliferator-activated receptor gamma (PPARγ) in canine reproductive tissues during normal pregnancy and parturition and at antiprogestin induced abortion. Theriogenology 2011, 75, 877–886. [Google Scholar] [CrossRef] [PubMed]
| Index Group n (%) n = 51 | Comparator Group n (%) n = 62 | p Value | |
|---|---|---|---|
| PCOS | 6 (18%) | 2 (3.2%) | 0.02 |
| Hypothyroidism | 9 (27% | 12 (19.3%) | >0.05 |
| Endometriosis | 2 (6%) | 2 (3.2%) | >0.05 |
| GDM | 3 (9%) | 2 (3.2%) | 0.3 |
| Regular menstrual cycles | 40 (78.4%) | 54 (87.1%) | >0.05 |
| Ovarian reserve Low Normal | 10 (19.2%) 41 (78.8%) | 16 (25.8%) 46 (74.2%) | >0.05 >0.05 |
| Cause of Infertility | Index Group n = 51 No (%) | Comparator Group n = 62 No (%) | p Value |
|---|---|---|---|
| Primary infertility | 12 (23.5%) | 23 (37.1%) | 0.01 |
| Secondary infertility | 23 (45.1%) | 32 (51.6%) | 0.57 |
| PGS | 2 (03.9%) | 4 (06.5%) | 0.68 |
| PGD | 14 (27.5%) | 2 (03.2%) | 0.0003 |
| Male factor | 0 (00.0%) | 1 (01.6%) | >0.05 |
| Outcome | Index Group (n = 51) | Comparator Group (n = 62) | p Value |
|---|---|---|---|
| Chemical pregnancy | 2 (3.9%) | 02 (3.2%) | >0.05 |
| Clinical pregnancy | 23 (45.1%) | 18 (29.0%) | 0.043 |
| Miscarriage | 7 (13.7%) | 07 (11.3%) | 0.7 |
| Ectopic pregnancy | 01 (1.96%) | 00 | 0.45 |
| Not pregnant | 18 (35.3%) | 35 (56.5%) | 0.03 |
| Study & Year | Type of Study and Sample Size | Study Population | Timing of Intralipid | Outcome | Results |
|---|---|---|---|---|---|
| Acacio et al., 2008 [21] | Cohort study n = 79 | women-68 with Recurrent implantation failure (N = 68) | Not specified | Pregnancy rates | 40% pregnancy rates, None of women > 409 achieved pregnancy |
| Ndukwe G 2011 [22] | Cohort study | Recurrent implantation failure with elevated NK cells | Not specified | Pregnancy rate | 46% clinical pregnancy rate |
| El Khayat et al., 2015 [31] | Randomized controlled (n = 203) | Unexplained implantation failure (>2–6 cycles) | Between day 4–9 of ovulation stimulation & within 1 weeks of pregnancy test | Clinical pregnancy, implantation and live birth rates | 35% clinical pregnancy rate and 33% live birth rate |
| Check & Check 2016 [33] | Matched control | Unexplained implantation failure and recurrent pregnancy loss | Mid-follicular phase | Clinical pregnancy and delivery rates | No pregnancy in those given intralipid compared to 40$ in untreated controls and 30% live births in controls |
| Gamaleldin et al., 2018 [30] (Abstract only) | Randomized double blind controlled (n = 97) | Unexplained recurrent implantation failure | 6–7 days before ET and second dose if positive pregnancy test | Clinical pregnancy and live birth rates (Treated vs. control) | Clinical pregnancy rates 39.6% vs. 26.5% and livebirth rates-29.2% vs. 18.4%. 2 of 14 livebirths in treated group had congenital ear anomalies |
| Ledee et al., 2018 [10] | Prospective cohort study (n = 94) | Recurrent implantation failure | at 5 week and again at 9 weeks | Livebirth | Livebirth rate of 54% compared to 20–25% for IFV-ET at time in France |
| Martini et al., 2018 [32] | Retrospective study (n = 127); compared to historical control (n = 20) | Unexplained implantation failure/recurrent pregnancy loss | 7–10 days before ET/insemination and at 6 and 10 weeks if pregnant | Clinical pregnancy and live birth rates | Clinical pregnancy rates of 51% vs. 70% in study and controls and livebirth rates of 37% vs. 40% respectively |
| Ehrlich et al., 2019 [34] | Retrospective case series (Cases n = 85 & aged matched controls n = 558) | Recurrent implantation failure | Day 5–9 of IVF cycles and again at positive pregnancy test; Or on day of oocyte retrieval in fresh ET or day of ET in FET and then on day of positive pregnancy test | Clinical pregnancy and livebirth rates | 40% versus 35% clinical pregnancy (in treated and controls) and livebirth rate of 35.7% in intralipid group |
| Singh et al., 2019 [24] | Randomized controlled (n = 102) | Previous implantation failure (≥1 cycle) | Day of oocyte retrieval and on day of ET | Chemical and clinical pregnancy rates, implantation rates, ongoing and live birth rates | 34.6% clinical pregnancy rate and 34.6% livebirth rate |
| Peivandi et al., 2022 [35] | Randomised blind controlled trial (n = 80) | Recurrent implantation failure | 2 days before ET | Clinical pregnancy | 30% vs. 10% in intralipid versus control groups (p < 0.05) |
| Kinarullakandi et al. (Current study) 2025 | Retrospective comparative (n = 113) | Recurrent implantation failure | Before ET or at ET and at pregnancy test and weekly until 12 weeks | Clinical pregnancy, live birth and miscarriage rates | Clinical pregnancy-44.2% vs. 29%; Miscarriage-13.7% vs. 11.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandi, S.K.; Shareef, O.O.; Obeid, A.; Abushama, M.; Ahmed, B.; Konje, J.C. Evaluating the Impact of Intralipid Infusion on Pregnancy Outcomes in Infertility Treatments: A Retrospective Study. Reprod. Med. 2025, 6, 34. https://doi.org/10.3390/reprodmed6040034
Kandi SK, Shareef OO, Obeid A, Abushama M, Ahmed B, Konje JC. Evaluating the Impact of Intralipid Infusion on Pregnancy Outcomes in Infertility Treatments: A Retrospective Study. Reproductive Medicine. 2025; 6(4):34. https://doi.org/10.3390/reprodmed6040034
Chicago/Turabian StyleKandi, Shajna Kinarulla, Osama Oro Shareef, Abdelrahim Obeid, Mandy Abushama, Badreldeen Ahmed, and Justin C. Konje. 2025. "Evaluating the Impact of Intralipid Infusion on Pregnancy Outcomes in Infertility Treatments: A Retrospective Study" Reproductive Medicine 6, no. 4: 34. https://doi.org/10.3390/reprodmed6040034
APA StyleKandi, S. K., Shareef, O. O., Obeid, A., Abushama, M., Ahmed, B., & Konje, J. C. (2025). Evaluating the Impact of Intralipid Infusion on Pregnancy Outcomes in Infertility Treatments: A Retrospective Study. Reproductive Medicine, 6(4), 34. https://doi.org/10.3390/reprodmed6040034

