The Impact of Critical Illness on the Outcomes of Cardiac Surgery in Patients with Acute Infective Endocarditis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sy, R.W.; Kritharides, L. Health care exposure and age in infective endocarditis: Results of a contemporary population-based profile of 1536 patients in Australia. Eur. Heart J. 2010, 31, 1890–1897. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, P.; Kestler, M.; De Alarcon, A.; Miro, J.M.; Bermejo, J.; Rodríguez-Abella, H.; Fariñas, M.C.; Cobo Belaustegui, M.; Mestres, C.; Llinares, P.; et al. Current Epidemiology and Outcome of Infective Endocarditis: A Multicenter, Prospective, Cohort Study. Medicine 2015, 94, e1816. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, M.; Alqahtani, F.; Alhajji, M.; Berzingi, C.O.; Sohail, M.R. Clinical and economic burden of hospitalizations for infective endocarditis in the United States. Mayo Clin. Proc. 2020, 95, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Mettler, S.K.; Alhariri, H.; Okoli, U.; Charoenngam, N.; Guillen, R.H.; Jaroenlapnopparat, A.; Philips, B.B.; Behlau, I.; Colgrove, R.C. Gender, Age, and Regional Disparities in the Incidence and Mortality Trends of Infective Endocarditis in the United States Between 1990 and 2019. Am. J. Cardiol. 2023, 203, 128–135. [Google Scholar] [CrossRef]
- Cresti, A.; Baratta, P.; De Sensi, F.; Aloia, E.; Sposato, B.; Limbruno, U. Clinical features and mortality rate of infective endocarditis in intensive care unit: A large-scale study and literature review. Anatol. J. Cardiol. 2024, 28, 44. [Google Scholar] [CrossRef]
- Çakır, H.; Uysal, S.; Karagöz, A.; Toprak, C.; Öcal, L.; Emiroğlu, M.Y.; Kaymaz, C. The clinical course of infective endocarditis and independent predictors of in-hospital mortality. Koşuyolu Heart J. 2022, 25, 115–121. [Google Scholar] [CrossRef]
- Leroy, O.; Georges, H.; Devos, P.; Bitton, S.; De Sa, N.; Dedrie, C.; Beague, S.; Ducq, P.; Boulle-Geronimi, C.; Thellier, D.; et al. Infective endocarditis requiring ICU admission: Epidemiology and prognosis. Ann. Intensive Care 2015, 5, 45. [Google Scholar] [CrossRef]
- Samol, A.; Kaese, S.; Bloch, J.; Görlich, D.; Peters, G.; Waltenberger, J.; Baumgartner, H.; Reinecke, H.; Lebiedz, P. Infective endocarditis on ICU: Risk factors, outcome, and long-term follow-up. Infection 2015, 43, 287–295. [Google Scholar] [CrossRef]
- Karth, G.D.; Koreny, M.; Binder, T.; Knapp, S.; Zauner, C.; Valentin, A.; Honninger, R.; Heinz, G.; Siostrzonek, P. Complicated infective endocarditis necessitating ICU admission: Clinical course and prognosis. Crit. Care 2002, 6, 149–154. [Google Scholar] [CrossRef]
- Mourvillier, B.; Trouillet, J.-L.; Timsit, J.-F.; Baudot, J.; Chastre, J.; Régnier, B.; Gibert, C.; Wolff, M. Infective endocarditis in the intensive care unit: Clinical spectrum and prognostic factors in 228 consecutive patients. Intensive Care Med. 2004, 30, 2046–2052. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Epidemiology 2007, 18, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G.; Durack, D.T.; Selton-Suty, C.; Athan, E.; Bayer, A.S.; Chamis, A.L.; Dahl, A.; DiBernardo, L.; Durante-Mangoni, E.; Duval, X. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the modified Duke criteria. Clin. Infect. Dis. 2023, 77, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Kayambankadzanja, R.K.; Schell, C.O.; Wärnberg, M.G.; Tamras, T.; Mollazadegan, H.; Holmberg, M.; Alvesson, H.M.; Baker, T. Towards definitions of critical illness and critical care using concept analysis. BMJ Open 2022, 12, e060972. [Google Scholar] [CrossRef] [PubMed]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardio-Thorac. Surg. 2012, 41, 734–745. [Google Scholar] [CrossRef]
- Paul, E.; Bailey, M.; Kasza, J.; Pilcher, D. The ANZROD model: Better benchmarking of ICU outcomes and detection of outliers. Crit Care Resusc. 2016, 18, 25–36. [Google Scholar] [CrossRef]
- Knaus, W.A.; Wagner, D.P.; Draper, E.A.; Zimmerman, J.E.; Bergner, M.; Bastos, P.G.; Sirio, C.A.; Murphy, D.J.; Lotring, T.; Damiano, A.; et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991, 100, 1619–1636. [Google Scholar] [CrossRef]
- Slouha, E.; Al-Geizi, H.; Albalat, B.R.; Burle, V.S.; Clunes, L.A.; Kollias, T.F. Sex differences in infective endocarditis: A systematic review. Cureus 2023, 15, e49815. [Google Scholar] [CrossRef]
- Bell, A.; Adegboye, O.A. The epidemiology of infective endocarditis in New South Wales, Australia: A retrospective cross-sectional study from 2001 to 2020. Heart Lung Circ. 2023, 32, 506–517. [Google Scholar] [CrossRef]
- Kumar, A.; Anstey, C.; Tesar, P.; Shekar, K. Risk factors for mortality in patients undergoing cardiothoracic surgery for infective endocarditis. Ann. Thorac. Surg. 2019, 108, 1101–1106. [Google Scholar] [CrossRef]
- Doig, F.; Loewenthal, M.; Lai, K.; Mejia, R.; Iyengar, A. Infective endocarditis: A hunter New England perspective. Intern. Med. J. 2018, 48, 1109–1116. [Google Scholar] [CrossRef]
- Eranki, A.; Wilson-Smith, A.R.; Ali, U.; Saxena, A.; Slimani, E. Outcomes of surgically treated infective endocarditis in a Western Australian population. J. Cardiothorac. Surg. 2021, 16, 349. [Google Scholar] [CrossRef] [PubMed]
- Chu, V.H.; Park, L.P.; Athan, E.; Delahaye, F.; Freiberger, T.; Lamas, C.; Miro, J.M.; Mudrick, D.W.; Strahilevitz, J.; Tribouilloy, C.; et al. Association between surgical indications, operative risk, and clinical outcome in infective endocarditis: A prospective study from the International Collaboration on Endocarditis. Circulation 2015, 131, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Queensland Cardiac Outcomes Registry 2020 Annual Report|Clinical Excellence Queensland. Available online: https://cnxp3cuvtvrn68yjaibaht5ywrxspj7m.clinicalexcellence.qld.gov.au/sites/default/files/docs/priority-area/clinical-engagement/networks/cardiac/qcor-annual-report-2020-thoracic-surgery.pdf (accessed on 2 June 2025).
- Khan, I.; Brookes, E.; Santamaria, J.; Crisafi, D.; Wilson, A.; Darby, J.; Newcomb, A. Evolving mortality rates in people who inject drugs: An Australian tertiary hospital observational study on infective endocarditis. PLoS ONE 2022, 17, e0270283. [Google Scholar] [CrossRef]
- Zubarevich, A.; Szczechowicz, M.; Osswald, A.; Easo, J.; Rad, A.A.; Vardanyan, R.; Schmack, B.; Ruhparwar, A.; Zhigalov, K.; Weymann, A. Surgical treatment of infective endocarditis in intravenous drug abusers. J. Cardiothorac. Surg. 2021, 16, 97. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, N.L.; Baggs, J.; See, I.; Reddy, S.C.; Jernigan, J.A.; Gokhale, R.H.; Fiore, A.E. Bacterial infections associated with substance use disorders, large cohort of United States hospitals, 2012–2017. Clin. Infect. Dis. 2020, 71, e37–e44. [Google Scholar] [CrossRef]
- Hilbig, A.; Cheng, A. Infective endocarditis in the intravenous drug use population at a tertiary hospital in Melbourne, Australia. Heart Lung Circ. 2021, 29, 246–253. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Imazio, M. The 2023 new European guidelines on infective endocarditis: Main novelties and implications for clinical practice. J. Cardiovasc. Med. 2024, 25, 718–726. [Google Scholar] [CrossRef]
- Liang, F.; Song, B.; Liu, R.; Yang, L.; Tang, H.; Li, Y. Optimal timing for early surgery in infective endocarditis: A meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 336–345. [Google Scholar] [CrossRef]
- Gatti, G.; Fiore, A.; Ismail, M.; Dralov, A.; Saade, W.; Costantino, V.; Barbati, G.; Lim, P.; Lepeule, R.; Franzese, I.; et al. Prediction of 30-day mortality after surgery for infective endocarditis using risk scores: Insights from a European multicenter comparative validation study. Am. Heart J. 2024, 275, 108–118. [Google Scholar] [CrossRef]
- Di Mauro, M.; Dato, G.M.A.; Barili, F.; Gelsomino, S.; Santè, P.; Della Corte, A.; Carrozza, A.; Della Ratta, E.; Cugola, D.; Galletti, L.; et al. A predictive model for early mortality after surgical treatment of heart valve or prosthesis infective endocarditis. The EndoSCORE. Int. J. Cardiol. 2017, 241, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Ahtela, E.; Oksi, J.; Porela, P.; Ekström, T.; Rautava, P.; Kytö, V. Trends in occurrence and 30-day mortality of infective endocarditis in adults: Population-based registry study in Finland. BMJ Open 2019, 9, e026811. [Google Scholar] [CrossRef]
- Pasrija, C.; Ghoreishi, M.; Whitman, G.; Ad, N.; Alejo, D.E.; Holmes, S.D.; Schena, S.; Salenger, R.; Mazzeffi, M.A.; Fonner, C.E.; et al. Mitigating the risk: Transfusion or reoperation for bleeding after cardiac surgery. Ann. Thorac. Surg. 2020, 110, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Shou, B.L.; Aravind, P.; Ong, C.S.; Alejo, D.; Canner, J.K.; Etchill, E.W.; DiNatale, J.; Prokupets, R.; Esfandiary, T.; Lawton, J.S.; et al. Early reexploration for bleeding is associated with improved outcome in cardiac surgery. Ann. Thorac. Surg. 2023, 115, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, K.L.; Rauer, L.J.; Mortensen, P.E.; Kjeldsen, B.J. Reoperation for bleeding in cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 709–713. [Google Scholar] [CrossRef]
- Pang, P.Y.K.; Sin, Y.K.; Lim, C.H.; Tan, T.E.; Lim, S.L.; Chao, V.T.T.; Chua, Y.L. Surgical management of infective endocarditis: An analysis of early and late outcomes. Eur. J. Cardio-Thorac. Surg. 2015, 47, 826–832. [Google Scholar] [CrossRef]
- Breel, J.S.; Wensing, A.G.C.L.; Eberl, S.; Preckel, B.; Schober, P.; Müller, M.C.A.; Klautz, R.J.M.; Hollmann, M.W.; Hermanns, H. Patients with infective endocarditis undergoing cardiac surgery have distinct ROTEM profiles and more bleeding complications compared to patients without infective endocarditis. PLoS ONE 2023, 18, e0284329. [Google Scholar] [CrossRef]
- Czerwińska-Jelonkiewicz, K.; Sanetra, K.; Buszman, P.P.; Gryszko, L.; Wood, A.; Crescenzi, O.; Milewski, K. Hemostatic disorders in patients with infective endocarditis undergoing urgent surgical valve replacement—Rethinking current beliefs. Int. J. Cardiol. 2023, 388, 131112. [Google Scholar] [CrossRef]
- Escolà-Vergé, L.; Ribera, A.; Ferreira-González, I.; Pericàs, J.M.; Fernández-Hidalgo, N. Strengths and limitations of patient registries in infective endocarditis. Clin. Microbiol. Infect. 2023, 29, 587–592. [Google Scholar] [CrossRef]
Critically Ill | Non-Critically Ill | p-Value | |
---|---|---|---|
n = 32 | n = 310 | ||
Gender | |||
· Female, n (%) | 8 (25) | 69 (22) | 0.85 |
Age (years), median (IQR) | 49 (42–56) | 61 (44–70) | 0.006 |
Age groups (years) | |||
· ≤29, n (%) | 3 (9) | 22 (7) | 0.9 |
· 30–59, n (%) | 22 (69) | 128 (41) | 0.02 |
· ≥60, n (%) | 7 (22) | 160 (52) | 0.12 |
Intravenous drug use (IVDU) history | |||
· Yes, n (%) | 13 (41) | 43 (14) | 0.03 |
· No, n (%) | 15 (47) | 192 (62) | 0.25 |
· Unknown, n (%) | 4 (13) | 75 (24) | 0.61 |
APACHE III-J, median (IQR) | 57 (49–78) | 52 (39–67) | 0.03 |
ANZROD, median (IQR) | 0.04 (0.024–0.090) | 0.013 (0.004–0.038) | 0.00002 |
EuroSCORE II, median (IQR) | 2.1 (1.3–10) | 2.8 (1.3–5.7) | 0.69 |
EuroSCORE II (risk) | |||
· Low (≤4), n (%) | 20 (63) | 194 (63) | 1.00 |
· Medium (>4 <8), n (%) | 2 (6) | 60 (19) | 0.64 |
· High (≥8), n (%) | 10 (31) | 56 (18) | 0.34 |
Acute renal failure, n (%) | 3 (9) | 15 (5) | 0.28 |
Left ventricular function (ejection fraction %) | |||
· Normal (>50%) | 23 (72) | 259 (84) | 0.14 |
· Mild dysfunction (40–49%) | 3 (9) | 34 (11) | 0.92 |
· Moderate dysfunction (30–39%) | 4 (13) | 12 (4) | 0.52 |
· Severe dysfunction (<30%) | 2 (6) | 5 (1) | 0.7 |
NYHA classification before admission | |||
· NYHA I, n (%) | 10 (32) | 100 (32) | 1.00 |
· NYHA II, n (%) | 9 (29) | 135 (44) | 0.38 |
· NYHA III, n (%) | 10 (32) | 71 (23) | 0.53 |
· NYHA IV, n (%) | 2 (7) | 4 (1) | 0.69 |
Type 2 diabetes, n (%) | 5 (16) | 57 (19) | 0.87 |
Surgery classification | |||
· Emergency, n (%) | 2 (6) | 8 (3) | 0.84 |
· Urgent, n (%) | 23 (72) | 198 (64) | 0.45 |
· Elective, n (%) | 7 (22) | 104 (34) | 0.51 |
Time to surgery (days), median (IQR) | 3.5 (1.5–8) | 3 (1–9) | 0.98 |
Active infective endocarditis, n (%) | 30 (94) | 255 (82) | 0.10 |
Site for infection by nature of valve | |||
· Native valve | 31 (97) | 285 (92) | 0.32 |
· Prosthetic valve | 1 (3) | 25 (8) | - |
Site of infection by valve | |||
· Aortic valve only | 10 (32) | 110 (35) | 0.85 |
· Mitral valve only | 5 (16) | 94 (30) | 0.50 |
· Aortic valve + aortic root | 3 (10) | 36 (12) | 0.92 |
· Aortic valve + mitral valve | 3 (10) | 19 (6) | 0.80 |
· Tricuspid valve only | 3 (10) | 16 (5) | 0.74 |
· Other (all other combinations) | 7 (22) | 36 (12) | 0.48 |
Critically Ill (n = 32) | Non-Critically Ill (n = 310) | p-Value | |
---|---|---|---|
Mortality (30 days), n (%) | 4 (13) | 16 (5) | 0.60 |
Length of stay in days (LOSd) | |||
· ICU LOSd, median (IQR) | 5 (2–10) | 2 (1–4) | 0.0004 |
· ICU LOSd (surgery *), median (IQR) | 6 (3–11) | 3 (2–5) | 0.001 |
· Hospital LOSd, median (IQR) | 23 (14–36) | 21 (12–34) | 0.46 |
Renal replacement therapy | 11 (34) | 33 (11) | 0.0001 |
Reoperation, n (%) | 8 (25) | 89 (29) | 0.81 |
Reoperation for bleeding, n (%) | 5 (16) | 35 (11) | 0.74 |
Organism | Critically Ill (n = 32) | Non-Critically Ill (n = 310) | p-Value |
---|---|---|---|
MSSA (methicillin-susceptible Staphylococcus aureus) | 21 (66%) | 82 (27%) | p = 0.001 |
MRSA (methicillin-resistant Staphylococcus aureus) | 2 (6.3%) | 8 (2.6%) | |
Enterococcus faecalis | 2 (6.3%) | 30 (9.7%) | |
Staphylococcus lugdunensis | 1 (3.1%) | 6 (1.9%) | |
Staphylococcus epidermidis | 1 (3.1%) | 17 (5.5%) | |
Streptococcus mitis | 2 (6.3%) | 25 (8.1%) | |
Streptococcus sanguinis | 1 (3.1%) | 17 (5.5%) | |
Streptococcus mutans | 0 (0%) | 9 (2.9%) | |
Streptococcus salivarius | 0 (0%) | 3 (1.0%) | |
Streptococcus agalactiae | 0 (0%) | 12 (3.9%) | |
Streptococcus anginosus | 1 (3.1%) | 7 (2.3%) | |
Streptococcus gordonii | 0 (0%) | 6 (1.9%) | |
Haemophilus parainfluenzae | 0 (0%) | 6 (1.9%) | |
Propionibacterium acnes | 0 (0%) | 4 (1.3%) | |
Others (2 or fewer cases each) | 0 (0%) | 38 (12.3%) | |
Culture negative | 1 (3.1%) | 40 (12.9%) |
Characteristics | n (%) |
---|---|
ICU admission diagnosis (APACHE III-J) | |
•Sepsis with shock other than urinary (501) | 16 (54) |
•Cardiovascular (101–111) | 16 (50) |
Invasive therapies | |
•Inotropes | 27 (77) |
•Renal replacement therapy | 11 (34) |
•Mechanical ventilation | 30 (86) |
Patient admission source to ICU | |
•Ward | 7 (20) |
•Other hospital ICU | 24 (69) |
•Emergency department | 4 (11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matebele, M.P.; Vemuri, K.R.; Sedgwick, J.F.; Marshall, L.; Horvath, R.; Obonyo, N.G.; Ramanan, M. The Impact of Critical Illness on the Outcomes of Cardiac Surgery in Patients with Acute Infective Endocarditis. Hearts 2025, 6, 15. https://doi.org/10.3390/hearts6020015
Matebele MP, Vemuri KR, Sedgwick JF, Marshall L, Horvath R, Obonyo NG, Ramanan M. The Impact of Critical Illness on the Outcomes of Cardiac Surgery in Patients with Acute Infective Endocarditis. Hearts. 2025; 6(2):15. https://doi.org/10.3390/hearts6020015
Chicago/Turabian StyleMatebele, Mbakise P., Kanthi R. Vemuri, John F. Sedgwick, Lachlan Marshall, Robert Horvath, Nchafatso G. Obonyo, and Mahesh Ramanan. 2025. "The Impact of Critical Illness on the Outcomes of Cardiac Surgery in Patients with Acute Infective Endocarditis" Hearts 6, no. 2: 15. https://doi.org/10.3390/hearts6020015
APA StyleMatebele, M. P., Vemuri, K. R., Sedgwick, J. F., Marshall, L., Horvath, R., Obonyo, N. G., & Ramanan, M. (2025). The Impact of Critical Illness on the Outcomes of Cardiac Surgery in Patients with Acute Infective Endocarditis. Hearts, 6(2), 15. https://doi.org/10.3390/hearts6020015