Nanoscale Solutions: The Transformative Applications of Functionalized Nanomaterials in Environmental Remediation
Conflicts of Interest
References
- Anetor, G.O.; Nwobi, N.L.; Igharo, G.O.; Sonuga, O.O.; Anetor, J.I. Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Front. Physiol. 2022, 13, 931386. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and Environmental Effects of Persistent Organic Pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nawaz, T.; Nabi, G.; Sagir, M.; Khan, M.I.; Malik, N. Role of Nanophotocatalysts for the Treatment of Hazardous Organic and Inorganic Pollutants in Wastewater. Int. J. Environ. Anal. Chem. 2022, 102, 491–515. [Google Scholar] [CrossRef]
- David, E.; Niculescu, V.-C. Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, R.; Lv, S.; Wang, A.; Zhao, L.; Dong, S.; Yan, D.; Keller, A.A.; Huang, Y. Evidence of Indoor Dust Acting as Carrier for Metal-Based Nanoparticles: A Study of Exposure and Oxidative Risks. Environ. Sci. Technol. Lett. 2022, 9, 431–438. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Ayala, A. Air Pollution, Ultrafine Particles, and Your Brain: Are Combustion Nanoparticle Emissions and Engineered Nanoparticles Causing Preventable Fatal Neurodegenerative Diseases and Common Neuropsychiatric Outcomes? Environ. Sci. Technol. 2022, 56, 6847–6856. [Google Scholar] [CrossRef]
- Boulkhessaim, S.; Gacem, A.; Khan, S.H.; Amari, A.; Yadav, V.K.; Harharah, H.N.; Elkhaleefa, A.M.; Yadav, K.K.; Rather, S.; Ahn, H.-J.; et al. Emerging Trends in the Remediation of Persistent Organic Pollutants Using Nanomaterials and Related Processes: A Review. Nanomaterials 2022, 12, 2148. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Vo, D.-V.N. Critical Review on Hazardous Pollutants in Water Environment: Occurrence, Monitoring, Fate, Removal Technologies and Risk Assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.W.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as Pollutants in Agricultural Soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Khalilzadeh, M.A.; Jang, H.W.; Venditti, R.A.; Varma, R.S.; Shokouhimehr, M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112–1136. [Google Scholar] [CrossRef]
- Ahakwa, I.; Xu, Y.; Tackie, E.A.; Odai, L.A.; Sarpong, F.A.; Korankye, B.; Ofori, E.K. Do Natural Resources and Green Technological Innovation Matter in Addressing Environmental Degradation? Evidence from Panel Models Robust to Cross-Sectional Dependence and Slope Heterogeneity. Resour. Policy 2023, 85, 103943. [Google Scholar] [CrossRef]
- Kuhn, R.; Bryant, I.M.; Jensch, R.; Böllmann, J. Applications of Environmental Nanotechnologies in Remediation, Wastewater Treatment, Drinking Water Treatment, and Agriculture. Appl. Nano 2022, 3, 54–90. [Google Scholar] [CrossRef]
- Taglietti, A.; Pallavicini, P.; Dacarro, G. Prussian Blue and Its Analogs as Novel Nanostructured Antibacterial Materials. Appl. Nano 2021, 2, 85–97. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Chenu, C.; Munkholm, L.J.; Cornu, S.; Kuikman, P.J.; Thorsøe, M.H.; Besse-Lototskaya, A.; Visser, S.M. European Agricultural Soil Management: Towards Climate-smart and Sustainability, Knowledge Needs and Research Approaches. Eur. J. Soil Sci. 2024, 75, e13437. [Google Scholar] [CrossRef]
- Wagner, M.; Andrew Lin, K.-Y.; Oh, W.-D.; Lisak, G. Metal-Organic Frameworks for Pesticidal Persistent Organic Pollutants Detection and Adsorption—A Mini Review. J. Haz. Mat. 2021, 413, 125325. [Google Scholar] [CrossRef] [PubMed]
- Arsenov, D.; Beljin, J.; Jović, D.; Maletić, S.; Borišev, M.; Borišev, I. Nanomaterials as Endorsed Environmental Remediation Tools for the next Generation: Eco-Safety and Sustainability. J. Geochem. Explor. 2023, 253, 107283. [Google Scholar] [CrossRef]
- Fei, L.; Bilal, M.; Qamar, S.A.; Imran, H.M.; Riasat, A.; Jahangeer, M.; Ghafoor, M.; Ali, N.; Iqbal, H.M.N. Nano-Remediation Technologies for the Sustainable Mitigation of Persistent Organic Pollutants. Environ. Res. 2022, 211, 113060. [Google Scholar] [CrossRef]
- Ali, Q.; Zia, M.A.; Kamran, M.; Shabaan, M.; Zulfiqar, U.; Ahmad, M.; Iqbal, R.; Maqsood, M.F. Nanoremediation for Heavy Metal Contamination: A Review. Hybrid Adv. 2023, 4, 100091. [Google Scholar] [CrossRef]
- Guerra, F.; Attia, M.; Whitehead, D.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef]
- Mohd Kaus, N.H.; Rithwan, A.F.; Adnan, R.; Ibrahim, M.L.; Thongmee, S.; Mohd Yusoff, S.F. Effective Strategies, Mechanisms, and Photocatalytic Efficiency of Semiconductor Nanomaterials Incorporating rGO for Environmental Contaminant Degradation. Catalysts 2021, 11, 302. [Google Scholar] [CrossRef]
- Cerra, S.; Salamone, T.A.; Sciubba, F.; Marsotto, M.; Battocchio, C.; Nappini, S.; Scaramuzzo, F.A.; Li Voti, R.; Sibilia, C.; Matassa, R.; et al. Study of the Interaction Mechanism between Hydrophilic Thiol Capped Gold Nanoparticles and Melamine in Aqueous Medium. Colloids Surf. B 2021, 203, 111727. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Khan, S.A.; Qayum, M.; Khan, M.A.; Anwar, Y.; Akhtar, K.; Asiri, A.M.; Khan, S.B. Green Synthesis of Antibacterial Bimetallic Ag–Cu Nanoparticles for Catalytic Reduction of Persistent Organic Pollutants. J. Mater. Sci. Mater. Electron. 2018, 29, 20840–20855. [Google Scholar] [CrossRef]
- Fratoddi, I.; Cerra, S.; Salamone, T.A.; Fioravanti, R.; Sciubba, F.; Zampetti, E.; Macagnano, A.; Generosi, A.; Paci, B.; Scaramuzzo, F.A.; et al. Functionalized Gold Nanoparticles as an Active Layer for Mercury Vapor Detection at Room Temperature. ACS Appl. Nano Mater. 2021, 4, 2930–2940. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Liang, L.; Lin, Z.; Su, X.; Zhang, W. Immobilization of Cadmium in Contaminated Soils Using Sulfidated Nanoscale Zero-Valent Iron: Effectiveness and Remediation Mechanism. J. Haz. Mat. 2021, 420, 126605. [Google Scholar] [CrossRef] [PubMed]
- Kolya, H.; Kang, C.-W. Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration. Polymers 2023, 15, 3421. [Google Scholar] [CrossRef]
- Aashima; Mehta, S. K. Impact of Functionalized Nanomaterials towards the Environmental Remediation: Challenges and Future Needs. In Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–524. ISBN 978-0-12-816787-8. [Google Scholar]
- Mensah, M.B.; Lewis, D.J.; Boadi, N.O.; Awudza, J.A.M. Heavy Metal Pollution and the Role of Inorganic Nanomaterials in Environmental Remediation. R. Soc. Open Sci. 2021, 8, 201485. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.L.T.; Nguyen, T.M.; Lee, S.Y.; Kim, J.; Kim, S.Y.; Le, Q.V.; Varma, R.S.; Hwang, Y.J. Electrochemical Conversion of CO2 to Value-Added Chemicals over Bimetallic Pd-Based Nanostructures: Recent Progress and Emerging Trends. Environ. Res. 2022, 211, 113116. [Google Scholar] [CrossRef]
- Xu, H.Y.; Yuan, X.Q.; Dai, L.Y.; Wang, W.S.; Li, Y.; Dong, L.M. Fenton-like Degradation of Rhodamine B over Fe2O3–Al2O3-Zeolite Hybrids Derived from Coal Fly Ash. Int. J. Environ. Sci. Technol. 2023, 20, 13233–13244. [Google Scholar] [CrossRef]
- Hlophe, P.V.; Dlamini, L.N. Photocatalytic Degradation of Diazinon with a 2D/3D Nanocomposite of Black Phosphorus/Metal Organic Framework. Catalysts 2021, 11, 679. [Google Scholar] [CrossRef]
- Ezeuko, A.S.; Ojemaye, M.O.; Okoh, O.O.; Okoh, A.I. The Effectiveness of Silver Nanoparticles as a Clean-up Material for Water Polluted with Bacteria DNA Conveying Antibiotics Resistance Genes: Effect of Different Molar Concentrations and Competing Ions. OpenNano 2022, 7, 100060. [Google Scholar] [CrossRef]
- Mishra, B.; Kumar, A.; Tripathi, B.P. Polydopamine Mediated in Situ Synthesis of Highly Dispersed Gold Nanoparticles for Continuous Flow Catalysis and Environmental Remediation. J. Environ. Chem. Eng. 2020, 8, 104397. [Google Scholar] [CrossRef]
- Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; et al. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119, 4819–4880. [Google Scholar] [CrossRef] [PubMed]
- Latif, A.; Sheng, D.; Sun, K.; Si, Y.; Azeem, M.; Abbas, A.; Bilal, M. Remediation of Heavy Metals Polluted Environment Using Fe-Based Nanoparticles: Mechanisms, Influencing Factors, and Environmental Implications. Environ. Pollut. 2020, 264, 114728. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhong, H.; Ahmad, Z.; Yang, X.; Huo, L. Transport of Engineered Nanoparticles in Porous Media and Its Enhancement for Remediation of Contaminated Groundwater. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2301–2378. [Google Scholar] [CrossRef]
- Seraj, A.; Allafchian, A.; Karimzadeh, F.; Valikhani, A.; Jalali, S.A.H. Improving Water Treatment Using a Novel Antibacterial Kappa-Carrageenan–Coated Magnetite Decorated with Silver Nanoparticles. Environ. Sci. Pollut. Res. 2023, 30, 92611–92620. [Google Scholar] [CrossRef] [PubMed]
- Govarthanan, M.; Jeon, C.-H.; Jeon, Y.-H.; Kwon, J.-H.; Bae, H.; Kim, W. Non-Toxic Nano Approach for Wastewater Treatment Using Chlorella Vulgaris Exopolysaccharides Immobilized in Iron-Magnetic Nanoparticles. Int. J. Biol. Macromol. 2020, 162, 1241–1249. [Google Scholar] [CrossRef]
- Hajareh Haghighi, F.; Binaymotlagh, R.; Chronopoulou, L.; Cerra, S.; Marrani, A.G.; Amato, F.; Palocci, C.; Fratoddi, I. Self-Assembling Peptide-Based Magnetogels for the Removal of Heavy Metals from Water. Gels 2023, 9, 621. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Kalampaliki, T.; Makri, S.P.; Papadaki, E.; Grigoropoulos, A.; Zoikis Karathanasis, A.; Deligkiozi, I. Visible-Light Active Sulfur-Doped Titania Nanoparticles Immobilized on a Silica Matrix: Synthesis, Characterization and Photocatalytic Degradation of Pollutants. Nanomaterials 2021, 11, 2543. [Google Scholar] [CrossRef]
- Rajendran, S.; Inwati, G.K.; Yadav, V.K.; Choudhary, N.; Solanki, M.B.; Abdellattif, M.H.; Yadav, K.K.; Gupta, N.; Islam, S.; Jeon, B.-H. Enriched Catalytic Activity of TiO2 Nanoparticles Supported by Activated Carbon for Noxious Pollutant Elimination. Nanomaterials 2021, 11, 2808. [Google Scholar] [CrossRef]
- Bandehali, S.; Parvizian, F.; Ruan, H.; Moghadassi, A.; Shen, J.; Figoli, A.; Adeleye, A.S.; Hilal, N.; Matsuura, T.; Drioli, E.; et al. A Planned Review on Designing of High-Performance Nanocomposite Nanofiltration Membranes for Pollutants Removal from Water. J. Ind. Eng. Chem. 2021, 101, 78–125. [Google Scholar] [CrossRef]
- Xu, C.; Chen, W.; Gao, H.; Xie, X.; Chen, Y. Cellulose Nanocrystal/Silver (CNC/Ag) Thin-Film Nanocomposite Nanofiltration Membranes with Multifunctional Properties. Environ. Sci. Nano 2020, 7, 803–816. [Google Scholar] [CrossRef]
- Gabal, E.; Chatterjee, S.; Ahmed, F.K.; Abd-Elsalam, K.A. Carbon Nanomaterial Applications in Air Pollution Remediation. In Carbon Nanomaterials for Agri-Food and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 133–153. ISBN 978-0-12-819786-8. [Google Scholar]
- Feng, S.; Li, X.; Zhao, S.; Hu, Y.; Zhong, Z.; Xing, W.; Wang, H. Multifunctional Metal Organic Framework and Carbon Nanotube-Modified Filter for Combined Ultrafine Dust Capture and SO2 Dynamic Adsorption. Environ. Sci. Nano 2018, 5, 3023–3031. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Danquah, M.K.; Zhang, J.; Chiong, T.; Meunier, L.; Gray, S.R.; Rahman, M.M. Green Synthesis of Graphene-Oxide Based Nanocomposites for Efficient Removal of Methylene Blue Dye from Wastewater. Desalination 2023, 564, 116749. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, X.; Zhang, W.; Zeng, Z.; Liu, Z.; Zhang, C.; Liu, Y.; Shao, B.; Liang, Q.; Tang, W.; et al. Advances in the Application, Toxicity and Degradation of Carbon Nanomaterials in Environment: A Review. Environ. Int. 2020, 134, 105298. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerra, S.; Fratoddi, I. Nanoscale Solutions: The Transformative Applications of Functionalized Nanomaterials in Environmental Remediation. Appl. Nano 2024, 5, 14-19. https://doi.org/10.3390/applnano5010002
Cerra S, Fratoddi I. Nanoscale Solutions: The Transformative Applications of Functionalized Nanomaterials in Environmental Remediation. Applied Nano. 2024; 5(1):14-19. https://doi.org/10.3390/applnano5010002
Chicago/Turabian StyleCerra, Sara, and Ilaria Fratoddi. 2024. "Nanoscale Solutions: The Transformative Applications of Functionalized Nanomaterials in Environmental Remediation" Applied Nano 5, no. 1: 14-19. https://doi.org/10.3390/applnano5010002
APA StyleCerra, S., & Fratoddi, I. (2024). Nanoscale Solutions: The Transformative Applications of Functionalized Nanomaterials in Environmental Remediation. Applied Nano, 5(1), 14-19. https://doi.org/10.3390/applnano5010002