Research on Synchronous Inversion Algorithm Based on Tri-Wavelength DIAL
Abstract
1. Introduction
2. Materials and Methods
2.1. Principle of Three-Wavelength DIAL and Joint Retrieval Algorithm Design
2.2. Method for Determining Atmospheric Extinction
2.3. Absorption Cross-Section Modeling
3. Results
3.1. Atmospheric Model Development
3.2. Analysis of Atmospheric Extinction and Scattering Coefficient Solution
3.3. Simulation of Radar Echo Signal
3.4. Comparative Analysis of Retrieved CO2 Concentration and Temperature
4. Discussion
5. Challenges and Limitations for Real Experimental Conditions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Ed.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Liu, X.; Li, P.; Liu, Y.; Zhang, C.; He, M.; Pei, Z.; Chen, J.; Shi, K.; Liu, F.; Wang, W. Hybrid Passive Cooling for Power Equipment Enabled by Metal-Organic Framework. Adv. Mater. 2024, 36, 2409473. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Zeng, X.; Luo, Y.; Luo, Z. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 2022, 4, 1058–1068. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, G.; Bick, M.; Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S.; Tibère-Inglesse, A.; Laux, C.O. Infrared spectroscopic measurements of carbon monoxide within a high temperature ablative boundary layer. J. Phys. D Appl. Phys. 2016, 49, 485502. [Google Scholar] [CrossRef]
- Dikshit, V.; Yueh, F.-Y.; Singh, J.P.; McIntyre, D.L.; Jain, J.C.; Melikechi, N. Laser induced breakdown spectroscopy: A potential tool for atmospheric carbon dioxide measurement. Spectrochim. Acta Part B 2012, 68, 65–70. [Google Scholar] [CrossRef]
- Jacobs, N.; O’Dell, C.W.; Taylor, T.E.; Logan, T.L.; Byrne, B.; Kiel, M.; Kivi, R.; Heikkinen, P.; Merrelli, A.; Payne, V.H. The importance of digital elevation model accuracy in X CO2 retrievals: Improving the Orbiting Carbon Observatory 2 Atmospheric Carbon Observations from Space version 11 retrieval product. Atmos. Meas. Tech. 2024, 17, 1375–1401. [Google Scholar] [CrossRef]
- Sugimoto, N.; Minato, A. Long-path absorption measurement of CO2 with a Raman-shifted tunable dye laser. Appl. Opt. 1993, 32, 6827–6833. [Google Scholar] [CrossRef]
- Koch, G.J.; Dharamsi, A.N.; Fitzgerald, C.M.; McCarthy, J.C. Frequency stabilization of a Ho: Tm: YLF laser to absorption lines of carbon dioxide. Appl. Opt. 2000, 39, 3664–3669. [Google Scholar] [CrossRef]
- Godin, S.; Carswell, A.I.; Donovan, D.P.; Claude, H.; Steinbrecht, W.; McDermid, I.S.; McGee, T.J.; Gross, M.R.; Nakane, H.; Swart, D.P. Ozone differential absorption lidar algorithm intercomparison. Appl. Opt. 1999, 38, 6225–6236. [Google Scholar] [CrossRef]
- Fujii, T.; Fukuchi, T.; Goto, N.; Nemoto, K.; Takeuchi, N. Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109. Appl. Opt. 2001, 40, 949–956. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, M.-Y. Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO2, NO2, and O3. Atmos. Environ. 2001, 35, 4059–4072. [Google Scholar] [CrossRef]
- Han, G.; Xu, H.; Gong, W.; Ma, X.; Liang, A. Simulations of a multi-wavelength differential absorption lidar method for CO2 measurement. Appl. Opt. 2017, 56, 8532–8540. [Google Scholar] [CrossRef] [PubMed]
- Abshire, J.B.; Riris, H.; Weaver, C.J.; Mao, J.; Allan, G.R.; Hasselbrack, W.E.; Browell, E.V. Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar. Appl. Opt. 2013, 52, 4446–4461. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wan, Y.; Dai, Y. An Improved CH4 Profile Retrieving Method for Ground-Based Differential Absorption Lidar. Atmosphere 2024, 15, 937. [Google Scholar] [CrossRef]
- Wirth, M.; Fix, A.; Mahnke, P.; Schwarzer, H.; Schrandt, F.; Ehret, G. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance. Appl. Phys. B 2009, 96, 201–213. [Google Scholar] [CrossRef]
- Cooney, J. Measurement of atmospheric temperature profiles by Raman backscatter. J. Appl. Meteorol. 1972, 11, 108–112. [Google Scholar] [CrossRef]
- Gao, Q.; Weng, W.; Li, B.; Aldén, M.; Li, Z. Gas temperature measurement using differential optical absorption spectroscopy (DOAS). Appl. Spectrosc. 2018, 72, 1014–1020. [Google Scholar] [CrossRef]
- Stillwell, R.A.; Spuler, S.M.; Hayman, M.; Repasky, K.S.; Bunn, C.E. Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature. Opt. Express 2019, 28, 71–93. [Google Scholar] [CrossRef]
- Shibata, Y.; Chikao, N.; Abo, M. Observations of The Lower-Tropospheric Temperature Profiles Using Three Wavelength CO2-DIAL. EPJ Web Conf. 2020, 237, 03021. [Google Scholar] [CrossRef]
- Fukuchi, T.; Nayuki, T.; Cao, N.; Fujii, T.; Nemoto, K.; Mori, H.; Takeuchi, N. Differential absorption lidar system for simultaneous measurement of O3 and NO2: System development and measurement error estimation. Opt. Eng. 2003, 42, 98–104. [Google Scholar] [CrossRef]
- Shangguan, M.; Guo, X.; Lin, S.; Lee, Z. Simultaneous column-averaged CO2, temperature, and HDO measurement by absorption spectroscopy lidar: Algorithm. IEEE Trans. Geosci. Remote Sens. 2024, 63, 4100112. [Google Scholar] [CrossRef]
- Dherbecourt, J.-B.; Raybaut, M.; Melkonian, J.-M.; Hamperl, J.; Santagata, R.; Dalin, M.; Lebat, V.; Godard, A.; Flamant, C.; Totems, J. Design and pre-development of an airborne multi-species differential absorption Lidar system for water vapor and HDO isotope, carbon dioxide, and methane observation. In Proceedings of the International Conference on Space Optics—ICSO 2020, Online, 30 March–2 April 2021; SPIE: Cergy-Pontoise, France; pp. 781–790. [Google Scholar]
- Yu, J.; Cheng, Y.; Kong, Z.; Song, J.; Chang, Y.; Liu, K.; Gong, Z.; Mei, L. Broadband Continuous-Wave Differential Absorption Lidar for Atmospheric Remote Sensing of Water Vapor. Opt. Express 2024, 32, 3046–3061. [Google Scholar] [CrossRef]
- Hua, Z.; Huang, J.; Shi, D.; Yuan, K.; Hu, S.; Wang, Y. Atmospheric Carbon Dioxide Profile Detection with a Continuous-Wave Differential Absorption Lidar. Opt. Lasers Eng. 2024, 180, 108340. [Google Scholar] [CrossRef]
- Shibata, Y.N.C.; Abo, M. CO2-DIAL Error analysis in temperature measurement technique using CO2-DIAL. In Proceedings of the 37th Laser Sensing Symposium, Tokyo Metropolitan University, Tokyo, Japan, 13–15 November 2019; pp. 1–3. [Google Scholar]
- Kunz, G.J.; de Leeuw, G. Inversion of lidar signals with the slope method. Appl. Opt. 1993, 32, 3249–3256. [Google Scholar] [CrossRef]
- Mitev, V.; Grigorov, I.; Simeonov, V. Lidar measurement of atmospheric aerosol extinction profiles: A comparison between two techniques—Klett inversion and pure rotational Raman scattering methods. Appl. Opt. 1992, 31, 6469–6474. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Di, H.; Li, Y.; Wang, Y.; Yan, Q.; Xin, W.; Yuan, Y.; Hua, D. Calibration method of Fernald inversion for aerosol backscattering coefficient profiles via multi-wavelength Raman–Mie lidar. Opt. Commun. 2023, 528, 129030. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P. Global carbon budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4814. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
on-line wavelength (cm−1) | 6357.31 |
off-line wavelength (cm−1) | 6356.73 |
single pulse energy (J) | 8 × 10−5 |
input impedance (Ω) | 50 |
gain | 1000 |
truncation efficiency | 2 × 10−3 |
telescope aperture (cm) | 8 × 10−2 |
instrument constant | 0.6026 |
heterodyne efficiency | 0.461 |
quantum efficiency | 0.80 |
pulse width (ns) | 400 |
Parameter | Value |
---|---|
Speed of light (m/s) | 3 × 108 |
Power normalization factor | 1 |
System correction factors 1/2/3 | 1 |
Polarization factor of beam splitter | 0.85 |
System inclination angle (rad) | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Hua, H.; Yu, J.; Niu, Z.; Kong, M. Research on Synchronous Inversion Algorithm Based on Tri-Wavelength DIAL. Optics 2025, 6, 48. https://doi.org/10.3390/opt6040048
Xu Z, Hua H, Yu J, Niu Z, Kong M. Research on Synchronous Inversion Algorithm Based on Tri-Wavelength DIAL. Optics. 2025; 6(4):48. https://doi.org/10.3390/opt6040048
Chicago/Turabian StyleXu, Zhixiao, Hangbo Hua, Jing Yu, Zhitian Niu, and Ming Kong. 2025. "Research on Synchronous Inversion Algorithm Based on Tri-Wavelength DIAL" Optics 6, no. 4: 48. https://doi.org/10.3390/opt6040048
APA StyleXu, Z., Hua, H., Yu, J., Niu, Z., & Kong, M. (2025). Research on Synchronous Inversion Algorithm Based on Tri-Wavelength DIAL. Optics, 6(4), 48. https://doi.org/10.3390/opt6040048