Synthesis, Optical Properties and Photocatalytic Testing of Sol–Gel TiO2-Fe2O3/PVP Nanopowders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TiO2-Fe2O3/PVP Hybrids
2.3. Experimental Techniques
2.4. Photocatalytic Activity Tests
2.5. Antibacterial Assessment
2.5.1. Preparation of Bacterial Suspension
2.5.2. Experimental Setup
2.5.3. Determination of Viable Bacterial Cells by a Spread Plate Method
3. Results and Discussion
3.1. XRD and SEM Morphology of As-Prepared Ternary TiO2-Fe2O3/PVP Samples
3.2. IR Structural Investigations
3.3. Optical Properties
3.4. Photocatalytic Properties
3.5. Antibacterial Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Abbas, N.; Shao, G.N.; Haider, M.S.; Imran, S.; Park, S.S.; Kim, H.T. Sol–gel synthesis of TiO2-Fe2O3 systems: Effects of Fe2O3 content and their photocatalytic properties. J. Ind. Eng. Chem. 2016, 39, 112–120. [Google Scholar] [CrossRef]
- Ahmed, M.A.; El-Katori, E.E.; Gharni, Z.H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Compd. 2013, 553, 19–29. [Google Scholar] [CrossRef]
- Hung, W.-H.; Chien, T.-M.; Tseng, C.-M. Enhanced photocatalytic water splitting by plasmonic TiO2-Fe2O3 cocatalyst under visible light irradiation. J. Phys. Chem. C 2014, 118, 12676. [Google Scholar] [CrossRef]
- Algelal, H.M.A.; Kareem, S.S.; Mohammed, K.A.; Khamees, E.J.; Abed, A.S.; Alkhayatt, A.H.O.; Al-Okbie, R.R. Synthesis of PVA-Fe2O3-TiO2 hybrid structure for biomedical application. J. Optoelectron. Biomed. Mater. 2022, 14, 43–51. [Google Scholar] [CrossRef]
- Ahilfi, D.N.; Alkabbi, A.S.; Mohammed, K.A.; Ziadan, K.M. Fabrication and Characterization of polyaniline/CdSe Device for Applications in Nano Structured Solar Cells. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 928, p. 072069. [Google Scholar]
- Mohammed, K.A.; Alebadi, N.; Shireen, K.; Ziadan, M.; AL-Kabbi, A.S.; Alrubaie, A.J.; Hussein Hussein, M. Organic-inorganic hybrid material: Synthesis, characterization for solar cell application. J. Ovonic Res. 2022, 18, 75–82. [Google Scholar] [CrossRef]
- Janes, R.; Knightley, L.J.; Harding, C.J. Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing. Dyes Pigments 2004, 62, 199–212. [Google Scholar] [CrossRef]
- Srivastava, S.; Haridas, M.; Basu, J.K. Optical Properties of Polymer Nanocomposites. Bull. Mater. Sci. 2008, 31, 213–217. [Google Scholar] [CrossRef]
- Ebnalwaled, A.A.; Thabet, A. Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. 2016, 220, 374–383. [Google Scholar] [CrossRef]
- Aziz, S.B.; Ahmed, H.M.; Hussein, A.M.; Fathulla, A.B.; Wsw, R.M.; Hussein, R.T. Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci. Mater. Electron. 2015, 26, 8022–8028. [Google Scholar] [CrossRef]
- Saleh, T.; Kösemen, A.; San, S.E.; El Mansy, M.K. Preparation and characterization of CuI /PVA—PEDOT: PSS core—Shell for photovoltaic application. Opt. Int. J. Light Electron. Opt. 2014, 125, 2009–2016. [Google Scholar] [CrossRef]
- Makled, M.H.; Sheha, E.; Shanap, T.S.; El-Mansy, M.K. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite. J. Adv. Res. 2013, 4, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Schwertmann, U.; Cornell, R.M. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; VCH Verlag: Weinheim, Germany, 1996. [Google Scholar]
- Mersal, M.; Zedan, A.F.; Mohamed, G.G.; Hassan, G.K. Fabrication of nitrogen doped TiO2/Fe2O3 nanostructures for photocatalytic oxidation of methanol-based wastewater. Sci. Rep. 2023, 13, 4431. [Google Scholar] [CrossRef]
- Vayssieres, L.; Sathe, C.; Butorin, S.M.; Smith, D.K.; Nordgren, J.; Guo, J.H. One-Dimensional Quantum-Confinement Effect in α-Fe2O3 Ultrafine Nanorod Arrays. Adv. Mater. 2005, 17, 2320–2323. [Google Scholar] [CrossRef]
- Zheng, M.; Gu, M.; Jin, Y.; Jin, G. Preparation, structure and properties of TiO2—PVP hybrid films. Mater. Sci. Eng. B 2000, 77, 55–59. [Google Scholar] [CrossRef]
- Imran, M.; Haider, A.; Shahzadi, I.; Moeen, S.; Ul-Hamid, A.; Nabgan, W.; Shahzadi, A.; Alshahrani, T.; Ikram, M. Polyvinylpyrrolidone and chitosan-coated magnetite (Fe3O4) nanoparticles for catalytic and antimicrobial activity with molecular docking analysis. J. Environ. Chem. Eng. 2023, 11, 110088. [Google Scholar]
- Duman, Ş.; Bulut, B. Antibacterial, optical, and microstructural properties investigations of Ag-doped TiO2 and TiO2/PVA nanocomposite powders. GUFBD/GUJS 2022, 12, 687–698. [Google Scholar] [CrossRef]
- Flieger, J.; Pasieczna-Patkowska, S.; Żuk, N.; Panek, R.; Korona-Głowniak, I.; Suśniak, K.; Pizoń, M.; Franus, W. Characteristics and Antimicrobial Activities of Iron Oxide Nanoparticles Obtained via Mixed-Mode Chemical/Biogenic Synthesis Using Spent Hop (Humulus lupulus L.) Extracts. Antibiotics 2024, 13, 111. [Google Scholar] [CrossRef]
- Pragada, S.C.; Thalla, A.K. Polymer-based immobilized Fe2O3–TiO2/PVP catalyst preparation method and the degradation of triclosan in treated greywater effluent by solar photocatalysis. J. Environ. Manag. 2021, 296, 113305. [Google Scholar] [CrossRef]
- Zheng, M.-P.; Gu, M.-Y.; Jin, Y.-P.; Wang, H.-H.; Zu, P.-F.; Tao, P.; He, J.-B. Effects of PVP on structure of TiO2 prepared by the sol-gel process. Mater. Sci. Eng. B 2001, 87, 197–201. [Google Scholar] [CrossRef]
- Bachvarova-Nedelcheva, A.; Iordanova, R.; Naydenov, A.; Stoyanova, A.; Georgieva, N.; Nemska, V.; Foteva, T. Sol–gel obtaining of TiO2/TeO2 nanopowders with biocidal and environmental applications. Catalysts 2023, 13, 257. [Google Scholar] [CrossRef]
- Bachvarova-Nedelcheva, A.; Iordanova, R.; Georgieva, N.; Nemska, V.; Stoyanova, A. Photocatalytic and antibacterial assessment of Sol–gel derived TiO2/TeO2/ZnO powders. J. Chem. Technol. Metall. 2022, 57, 589–597. [Google Scholar]
- Bachvarova-Nedelcheva, A.; Iordanova, R.; Stoyanova, A.; Georgieva, N.; Angelova, T. Sol–gel synthesis of Se and Te containing TiO2 nanocomposites with photocatalytic and antibacterial properties. J. Optoel. Adv. Mater. 2016, 18, 5–9. [Google Scholar]
- Shalaby, A.; Bachvarova-Nedelcheva, A.; Iordanova, R.; Dimitriev, Y.; Stoyanova, A.; Hitkova, H.; Ivanova, N. Sol–gel synthesis and properties of nanocomposites in the Ag/TiO2/ZnO system. J. Optoel. Adv. Mater. 2015, 17, 248–256. [Google Scholar]
- Lutterotti, L. Maud: A Rietveld analysis program designed for the internet and experiment integration. Acta Crystallogr. Sect. A Found. Crystallogr. 2000, A56, s54. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Stoyanova, A.; Sredkova, M.; Bachvarova-Nedelcheva, A.; Iordanova, R.; Dimitriev, Y.; Hitkova, H.; Iliev, T. Nonhydrolytic Sol-Gel Synthesis and Antibacterial Properties of Nanosized TiO2, Optoel. Adv. Mat.–Rapid Commun. 2010, 4, 2059–2063. [Google Scholar]
- Ghosh, S.K.; Vasudevan, A.K.; Rao, P.P.; Warrier, K.G.K. Influence of different additives on anatase-rutile transformation in titania system. Br. Ceram. Trans. 2001, 100, 151–154. [Google Scholar] [CrossRef]
- Sabyrov, K.; Burrows, N.D.; Penn, R.L. Size-dependent anatase to rutile phase transformation and particle growth. Chem. Mater. 2013, 25, 1408–1415. [Google Scholar] [CrossRef]
- Khan, H.; Swati, I.K. Fe3+-doped Anatase TiO2 with d–d Transition, Oxygen Vacancies and Ti3+ Centers: Synthesis, Characterization, UV–vis Photocatalytic and Mechanistic Studies. Ind. Eng. Chem. Res. 2016, 55, 6619–6633. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all-purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Beattie, I.R.; Gilson, T. Single crystal laser Raman spectroscopy. Proc. R. Soc. A 1968, 307, 407–429. [Google Scholar]
- Henry, M.; Leavage, J.; Sanchez, C. Sol-Gel Chemistry of Transition Metal Oxides. Prog. Solid State Chem. 1988, 18, 259–341. [Google Scholar]
- Velasco, M.J.; Rubio, F.; Rubio, J.; Oteo, J. Hydrolysis of Titanium Tetrabutoxide. Study by FT-IR Spectroscopy. Spectr. Lett. 1999, 32, 289–304. [Google Scholar] [CrossRef]
- Murashkevich, A.N.; Lavitskaya, A.S.; Barannikova, T.; Zharskii, I. Infrared absorption spectra and structure of TiO2-SiO2 composites. J. Appl. Spectrosc. 2008, 75, 730–734. [Google Scholar] [CrossRef]
- Iordanova, R.; Bachvarova-Nedelcheva, A.; Gegova, R.; Kostov, K.L.; Dimitriev, Y. Sol–gel synthesis of composite powders in the TiO2–TeO2–SeO2 System. J. Sol-Gel Sci. Technol. 2016, 79, 12–28. [Google Scholar] [CrossRef]
- Iordanova, R.; Dimitriev, Y.; Dimitrov, V.; Kassabov, S.; Klissurski, D. Glass formation and structure in the system MoO3–Bi2O3–Fe2O3. J. Non-Cryst. Solids 1998, 231, 227–233. [Google Scholar] [CrossRef]
- Li, X.-L.; Peng, Q.; Yi, J.-X.; Wang, X.; Li, Y. Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 2006, 12, 2383–2391. [Google Scholar] [CrossRef]
- Sundrarajan, M.; Bama, K.; Bhavani, M.; Jegatheeswaran, S.; Ambika, S.; Sangili, A.; Nithya, P.; Sumathi, R. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J. Photochem. Photobiol. B Biol. 2017, 171, 117–124. [Google Scholar]
- Sakthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 2004, 38, 3001. [Google Scholar] [CrossRef]
- Lopez, T.; Sanchez, E.; Bosch, P.; Meas, Y.; Gomez, R. FTIR and UV-Vis (diffuse reflectance) spectroscopic characterization of TiO2 sol-gel. Mater. Chem. Phys. 1992, 32, 141–152. [Google Scholar] [CrossRef]
- Izawa, M.R.; Applin, D.M.; Morison, M.Q.; Cloutis, E.A.; Mann, P.; Mertzman, S.A. Reflectance spectroscopy of ilmenites and related Ti and Ti–Fe oxides (200 to 2500 nm): Spectral–compositional–structural relationships. Icarus 2021, 362, 114423. [Google Scholar] [CrossRef]
- Bai, N.; Liu, X.; Li, Z.; Ke, X.; Zhang, K.; Wu, Q. High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods. J. Sol-Gel Sci. Technol. 2021, 99, 92–100. [Google Scholar] [CrossRef]
- Dimitrov, V.; Sakka, S. Electronic Oxide Polarizability and Optical Basicity of Simple Oxide. J. Appl. Phys. 1996, 79, 1736–1740. [Google Scholar] [CrossRef]
- Hiromori, K.; Nakajima, N.; Hasegawa, T.; Wada, S.-I.; Takahashi, O.; Ohkochi, T.; Mase, K.; Ozawa, K. Electronic Origin of Enhanced Photocatalytic Activity at the Anatase/Rutile Boundary: A Case of Acetic Acid on the TiO2 Surface. J. Phys. Chem. C 2024, 128, 21767–21775. [Google Scholar] [CrossRef]
- Hsu, L.-C.; Liu, Y.-T.; Syu, C.-H.; Huang, M.-H.; Tzou, Y.-M.; Teah, H.Y. Adsorption of tetracycline on Fe (hydr)oxides: Effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios. R. Soc. Open Sci. 2018, 5, 171941. [Google Scholar] [CrossRef] [PubMed]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef]
- Stoyanova, A.; Hitkova, H.; Kaneva, N.; Bachvarova-Nedelcheva, A.; Iordanova, R.; Marinovska, P. Photocatalytic Degradation of Paracetamol and Antibacterial Activity of La-Modified TiO2 Obtained by Non-Hydrolytic Sol–Gel Route. Catalysts 2024, 14, 469. [Google Scholar] [CrossRef]
- Ezealigo, U.S.; Ezealigo, B.N.; Aisida, S.O.; Ezema, F.I. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open 2021, 4, 100027. [Google Scholar] [CrossRef]
- Wang, K.; Lv, M.; Si, T.; Tang, X.; Wang, H.; Chen, Y.; Zhou, T. Mechanism analysis of surface structure-regulated Cu2O in photocatalytic antibacterial process. J. Hazard. Mater. 2024, 461, 132479. [Google Scholar] [CrossRef]
- Chan, C.M.N.; Ng, A.M.C.; Fung, M.K.; Cheng, H.S.; Guo, M.Y.; Djurišić, A.B.; Leung, F.C.C.; Chan, W.K. Antibacterial and photocatalytic activities of TiO2 nanotubes. J. Exp. Nanosci. 2013, 8, 859–867. [Google Scholar] [CrossRef]
- Marugán, J.; van Grieken, R.; Pablos, C.; Sordo, C. Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms. Water Res. 2010, 44, 789–796. [Google Scholar] [CrossRef] [PubMed]
Sample | Phase Fraction | Unit Cell Parameters, Å | Crystallite Size, nm | Microstrains, ×10−3 a.u. | Refinement Details |
---|---|---|---|---|---|
Evonik | 100% Anatase | a = b = 3.7845 (3) c = 9.5112 (7) | 25.1 (1) | 2.50 (17) | Rwp = 12.73% χ2 = 1.29 |
Evonik 500 °C | 86.3% ± 0.4 Anatase | a = b = 3.7861 (3) c = 9.5079 (7) | 34.7 (1) | 3.80 (13) | Rwp = 10.58% χ2 = 1.18 |
13.7% ± 0.4 Rutile | a = b = 4.5940 (7) c = 2.9598 (5) | 43.8 (4) | 0.15 (1) | ||
90TiO2–10Fe2O3/ PVP | 87.1% ± 0.6 Anatase | a = b = 3.7857 (5) c = 9.5037 (12) | 27.6 (10) | 9.87 (17) | Rwp = 12.99% χ2 = 1.27 |
12.9% ± 0.6 Rutile | a = b = 4.5935 (17) c = 2.9604 (13) | 19.7 (13) | 0.70 (3) | ||
80TiO2–20Fe2O3/ PVP | 100% Anatase | a = b = 3.7860 (5) c = 9.4991 (11) | 27.7 (10) | 10.44 (16) | Rwp = 12.97% χ2 = 1.22 |
Sample | Eg, eV | ECB, eV | EVB, eV | Cut-Off, nm | Refractive Index (n) |
---|---|---|---|---|---|
90TiO2-10Fe2O3/PVP (500 °C) | 3.12 | −0.243 | 2.877 | 339.7 | 2.36 |
80TiO2-20Fe2O3/PVP (500 °C) | 3.12 | −0.236 | 2.884 | 350.7 | 2.36 |
TiO2 (Evonik) (500 °C) | 3.09 | −0.235 | 2.855 | 312.8 | 2.37 |
Catalyst | Light Source | Rate Constant ×10−3, min−1 | Light Source | Rate Constant ×10−3, min−1 |
---|---|---|---|---|
90TiO2-10Fe2O3/PVP (gel) | UV light | 9.03 | Sunlight | 15.66 |
80TiO2-20Fe2O3/PVP (gel) | 2.18 | 8.92 | ||
TiO2 (Evonik) | 54.3 | 200.97 | ||
90TiO2-10Fe2O3/PVP (500 °C) | 3.27 | 15.51 | ||
80TiO2-20Fe2O3/PVP (500 °C) | 2.21 | 6.75 | ||
TiO2 (Evonik) (500 °C) | 67.9 | 107.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, S.; Kostova, Y.; Tsvetkov, M.; Stoyanova, A.; Hitkova, H.; Marinovska, P.; Bachvarova-Nedelcheva, A. Synthesis, Optical Properties and Photocatalytic Testing of Sol–Gel TiO2-Fe2O3/PVP Nanopowders. Optics 2025, 6, 22. https://doi.org/10.3390/opt6020022
Petrova S, Kostova Y, Tsvetkov M, Stoyanova A, Hitkova H, Marinovska P, Bachvarova-Nedelcheva A. Synthesis, Optical Properties and Photocatalytic Testing of Sol–Gel TiO2-Fe2O3/PVP Nanopowders. Optics. 2025; 6(2):22. https://doi.org/10.3390/opt6020022
Chicago/Turabian StylePetrova, Stefani, Yoanna Kostova, Martin Tsvetkov, Angelina Stoyanova, Hristina Hitkova, Polya Marinovska, and Albena Bachvarova-Nedelcheva. 2025. "Synthesis, Optical Properties and Photocatalytic Testing of Sol–Gel TiO2-Fe2O3/PVP Nanopowders" Optics 6, no. 2: 22. https://doi.org/10.3390/opt6020022
APA StylePetrova, S., Kostova, Y., Tsvetkov, M., Stoyanova, A., Hitkova, H., Marinovska, P., & Bachvarova-Nedelcheva, A. (2025). Synthesis, Optical Properties and Photocatalytic Testing of Sol–Gel TiO2-Fe2O3/PVP Nanopowders. Optics, 6(2), 22. https://doi.org/10.3390/opt6020022